vfp_init.c revision 1.56 1 1.56 christos /* $NetBSD: vfp_init.c,v 1.56 2018/03/02 23:07:55 christos Exp $ */
2 1.1 rearnsha
3 1.1 rearnsha /*
4 1.1 rearnsha * Copyright (c) 2008 ARM Ltd
5 1.1 rearnsha * All rights reserved.
6 1.1 rearnsha *
7 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
8 1.1 rearnsha * modification, are permitted provided that the following conditions
9 1.1 rearnsha * are met:
10 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
11 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
12 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
14 1.1 rearnsha * documentation and/or other materials provided with the distribution.
15 1.1 rearnsha * 3. The name of the company may not be used to endorse or promote
16 1.1 rearnsha * products derived from this software without specific prior written
17 1.1 rearnsha * permission.
18 1.1 rearnsha *
19 1.1 rearnsha * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 1.1 rearnsha * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 rearnsha * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 rearnsha * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 1.1 rearnsha * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 rearnsha * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 1.1 rearnsha * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rearnsha * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 1.1 rearnsha * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 1.1 rearnsha * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 1.1 rearnsha * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 1.1 rearnsha */
31 1.1 rearnsha
32 1.1 rearnsha #include <sys/param.h>
33 1.1 rearnsha #include <sys/types.h>
34 1.1 rearnsha #include <sys/systm.h>
35 1.1 rearnsha #include <sys/device.h>
36 1.1 rearnsha #include <sys/proc.h>
37 1.4 matt #include <sys/cpu.h>
38 1.1 rearnsha
39 1.23 matt #include <arm/locore.h>
40 1.5 matt #include <arm/pcb.h>
41 1.1 rearnsha #include <arm/undefined.h>
42 1.1 rearnsha #include <arm/vfpreg.h>
43 1.8 matt #include <arm/mcontext.h>
44 1.1 rearnsha
45 1.12 matt #include <uvm/uvm_extern.h> /* for pmap.h */
46 1.12 matt
47 1.11 matt #ifdef FPU_VFP
48 1.11 matt
49 1.29 matt #ifdef CPU_CORTEX
50 1.56 christos #define SETFPU __asm(".fpu\tvfpv4")
51 1.29 matt #else
52 1.56 christos #define SETFPU __asm(".fpu\tvfp")
53 1.29 matt #endif
54 1.56 christos SETFPU;
55 1.29 matt
56 1.1 rearnsha /* FLDMD <X>, {d0-d15} */
57 1.11 matt static inline void
58 1.13 matt load_vfpregs_lo(const uint64_t *p)
59 1.10 matt {
60 1.56 christos SETFPU;
61 1.56 christos __asm __volatile("vldmia\t%0, {d0-d15}" :: "r" (p) : "memory");
62 1.10 matt }
63 1.10 matt
64 1.10 matt /* FSTMD <X>, {d0-d15} */
65 1.11 matt static inline void
66 1.10 matt save_vfpregs_lo(uint64_t *p)
67 1.10 matt {
68 1.56 christos SETFPU;
69 1.56 christos __asm __volatile("vstmia\t%0, {d0-d15}" :: "r" (p) : "memory");
70 1.10 matt }
71 1.10 matt
72 1.10 matt #ifdef CPU_CORTEX
73 1.10 matt /* FLDMD <X>, {d16-d31} */
74 1.11 matt static inline void
75 1.13 matt load_vfpregs_hi(const uint64_t *p)
76 1.10 matt {
77 1.56 christos SETFPU;
78 1.29 matt __asm __volatile("vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
79 1.10 matt }
80 1.10 matt
81 1.10 matt /* FLDMD <X>, {d16-d31} */
82 1.11 matt static inline void
83 1.10 matt save_vfpregs_hi(uint64_t *p)
84 1.10 matt {
85 1.56 christos SETFPU;
86 1.29 matt __asm __volatile("vstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
87 1.10 matt }
88 1.10 matt #endif
89 1.1 rearnsha
90 1.13 matt static inline void
91 1.13 matt load_vfpregs(const struct vfpreg *fregs)
92 1.13 matt {
93 1.13 matt load_vfpregs_lo(fregs->vfp_regs);
94 1.13 matt #ifdef CPU_CORTEX
95 1.13 matt #ifdef CPU_ARM11
96 1.13 matt switch (curcpu()->ci_vfp_id) {
97 1.13 matt case FPU_VFP_CORTEXA5:
98 1.13 matt case FPU_VFP_CORTEXA7:
99 1.13 matt case FPU_VFP_CORTEXA8:
100 1.13 matt case FPU_VFP_CORTEXA9:
101 1.20 matt case FPU_VFP_CORTEXA15:
102 1.42 slp case FPU_VFP_CORTEXA15_QEMU:
103 1.50 skrll case FPU_VFP_CORTEXA53:
104 1.53 jmcneill case FPU_VFP_CORTEXA57:
105 1.13 matt #endif
106 1.13 matt load_vfpregs_hi(fregs->vfp_regs);
107 1.13 matt #ifdef CPU_ARM11
108 1.13 matt break;
109 1.13 matt }
110 1.13 matt #endif
111 1.13 matt #endif
112 1.13 matt }
113 1.13 matt
114 1.13 matt static inline void
115 1.13 matt save_vfpregs(struct vfpreg *fregs)
116 1.13 matt {
117 1.13 matt save_vfpregs_lo(fregs->vfp_regs);
118 1.13 matt #ifdef CPU_CORTEX
119 1.13 matt #ifdef CPU_ARM11
120 1.13 matt switch (curcpu()->ci_vfp_id) {
121 1.13 matt case FPU_VFP_CORTEXA5:
122 1.13 matt case FPU_VFP_CORTEXA7:
123 1.13 matt case FPU_VFP_CORTEXA8:
124 1.13 matt case FPU_VFP_CORTEXA9:
125 1.20 matt case FPU_VFP_CORTEXA15:
126 1.42 slp case FPU_VFP_CORTEXA15_QEMU:
127 1.50 skrll case FPU_VFP_CORTEXA53:
128 1.53 jmcneill case FPU_VFP_CORTEXA57:
129 1.13 matt #endif
130 1.13 matt save_vfpregs_hi(fregs->vfp_regs);
131 1.13 matt #ifdef CPU_ARM11
132 1.13 matt break;
133 1.13 matt }
134 1.13 matt #endif
135 1.13 matt #endif
136 1.13 matt }
137 1.13 matt
138 1.1 rearnsha /* The real handler for VFP bounces. */
139 1.1 rearnsha static int vfp_handler(u_int, u_int, trapframe_t *, int);
140 1.13 matt #ifdef CPU_CORTEX
141 1.13 matt static int neon_handler(u_int, u_int, trapframe_t *, int);
142 1.13 matt #endif
143 1.1 rearnsha
144 1.13 matt static void vfp_state_load(lwp_t *, u_int);
145 1.39 rmind static void vfp_state_save(lwp_t *);
146 1.39 rmind static void vfp_state_release(lwp_t *);
147 1.4 matt
148 1.4 matt const pcu_ops_t arm_vfp_ops = {
149 1.4 matt .pcu_id = PCU_FPU,
150 1.13 matt .pcu_state_save = vfp_state_save,
151 1.4 matt .pcu_state_load = vfp_state_load,
152 1.4 matt .pcu_state_release = vfp_state_release,
153 1.4 matt };
154 1.1 rearnsha
155 1.34 matt /* determine what bits can be changed */
156 1.34 matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
157 1.34 matt /* default to run fast */
158 1.34 matt uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
159 1.34 matt
160 1.1 rearnsha /*
161 1.1 rearnsha * Used to test for a VFP. The following function is installed as a coproc10
162 1.1 rearnsha * handler on the undefined instruction vector and then we issue a VFP
163 1.1 rearnsha * instruction. If undefined_test is non zero then the VFP did not handle
164 1.1 rearnsha * the instruction so must be absent, or disabled.
165 1.1 rearnsha */
166 1.1 rearnsha
167 1.1 rearnsha static int undefined_test;
168 1.1 rearnsha
169 1.1 rearnsha static int
170 1.4 matt vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
171 1.1 rearnsha {
172 1.1 rearnsha
173 1.1 rearnsha frame->tf_pc += INSN_SIZE;
174 1.1 rearnsha ++undefined_test;
175 1.4 matt return 0;
176 1.4 matt }
177 1.4 matt
178 1.35 matt #else
179 1.35 matt /* determine what bits can be changed */
180 1.35 matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
181 1.4 matt #endif /* FPU_VFP */
182 1.4 matt
183 1.4 matt static int
184 1.4 matt vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
185 1.4 matt {
186 1.4 matt struct lwp * const l = curlwp;
187 1.4 matt const u_int regno = (insn >> 12) & 0xf;
188 1.4 matt /*
189 1.4 matt * Only match move to/from the FPSCR register and we
190 1.4 matt * can't be using the SP,LR,PC as a source.
191 1.4 matt */
192 1.4 matt if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
193 1.4 matt return 1;
194 1.4 matt
195 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
196 1.4 matt
197 1.4 matt #ifdef FPU_VFP
198 1.4 matt /*
199 1.4 matt * If FPU is valid somewhere, let's just reenable VFP and
200 1.4 matt * retry the instruction (only safe thing to do since the
201 1.4 matt * pcb has a stale copy).
202 1.4 matt */
203 1.4 matt if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
204 1.4 matt return 1;
205 1.4 matt
206 1.51 chs if (__predict_false(!vfp_used_p(l))) {
207 1.35 matt pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
208 1.4 matt }
209 1.26 matt #endif
210 1.4 matt
211 1.4 matt /*
212 1.30 skrll * We now know the pcb has the saved copy.
213 1.4 matt */
214 1.4 matt register_t * const regp = &frame->tf_r0 + regno;
215 1.4 matt if (insn & 0x00100000) {
216 1.4 matt *regp = pcb->pcb_vfp.vfp_fpscr;
217 1.4 matt } else {
218 1.34 matt pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
219 1.34 matt pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
220 1.4 matt }
221 1.4 matt
222 1.37 matt curcpu()->ci_vfp_evs[0].ev_count++;
223 1.4 matt
224 1.4 matt frame->tf_pc += INSN_SIZE;
225 1.4 matt return 0;
226 1.1 rearnsha }
227 1.1 rearnsha
228 1.4 matt #ifndef FPU_VFP
229 1.4 matt /*
230 1.4 matt * If we don't want VFP support, we still need to handle emulating VFP FPSCR
231 1.4 matt * instructions.
232 1.4 matt */
233 1.4 matt void
234 1.37 matt vfp_attach(struct cpu_info *ci)
235 1.4 matt {
236 1.37 matt if (CPU_IS_PRIMARY(ci)) {
237 1.37 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
238 1.37 matt }
239 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
240 1.37 matt ci->ci_cpuname, "vfp fpscr traps");
241 1.4 matt }
242 1.4 matt
243 1.4 matt #else
244 1.1 rearnsha void
245 1.37 matt vfp_attach(struct cpu_info *ci)
246 1.1 rearnsha {
247 1.4 matt const char *model = NULL;
248 1.1 rearnsha
249 1.37 matt if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
250 1.37 matt || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
251 1.37 matt || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
252 1.37 matt #if 0
253 1.37 matt const uint32_t nsacr = armreg_nsacr_read();
254 1.37 matt const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
255 1.37 matt if ((nsacr & nsacr_vfp) != nsacr_vfp) {
256 1.40 matt aprint_normal_dev(ci->ci_dev,
257 1.40 matt "VFP access denied (NSACR=%#x)\n", nsacr);
258 1.37 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
259 1.37 matt ci->ci_vfp_id = 0;
260 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
261 1.37 matt EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
262 1.37 matt "vfp fpscr traps");
263 1.37 matt return;
264 1.37 matt }
265 1.37 matt #endif
266 1.7 matt const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
267 1.7 matt const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
268 1.1 rearnsha
269 1.7 matt /*
270 1.7 matt * We first need to enable access to the coprocessors.
271 1.7 matt */
272 1.7 matt uint32_t cpacr = armreg_cpacr_read();
273 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
274 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
275 1.7 matt armreg_cpacr_write(cpacr);
276 1.1 rearnsha
277 1.48 jmcneill arm_isb();
278 1.48 jmcneill
279 1.7 matt /*
280 1.7 matt * If we could enable them, then they exist.
281 1.7 matt */
282 1.7 matt cpacr = armreg_cpacr_read();
283 1.40 matt bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
284 1.40 matt && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
285 1.28 matt if (!vfp_p) {
286 1.40 matt aprint_normal_dev(ci->ci_dev,
287 1.40 matt "VFP access denied (CPACR=%#x)\n", cpacr);
288 1.28 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
289 1.28 matt ci->ci_vfp_id = 0;
290 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
291 1.37 matt EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
292 1.37 matt "vfp fpscr traps");
293 1.28 matt return;
294 1.28 matt }
295 1.6 matt }
296 1.6 matt
297 1.7 matt void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
298 1.7 matt
299 1.7 matt undefined_test = 0;
300 1.7 matt
301 1.21 matt const uint32_t fpsid = armreg_fpsid_read();
302 1.1 rearnsha
303 1.1 rearnsha remove_coproc_handler(uh);
304 1.1 rearnsha
305 1.1 rearnsha if (undefined_test != 0) {
306 1.4 matt aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
307 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
308 1.4 matt ci->ci_vfp_id = 0;
309 1.1 rearnsha return;
310 1.1 rearnsha }
311 1.1 rearnsha
312 1.4 matt ci->ci_vfp_id = fpsid;
313 1.4 matt switch (fpsid & ~ VFP_FPSID_REV_MSK) {
314 1.4 matt case FPU_VFP10_ARM10E:
315 1.4 matt model = "VFP10 R1";
316 1.4 matt break;
317 1.4 matt case FPU_VFP11_ARM11:
318 1.4 matt model = "VFP11";
319 1.4 matt break;
320 1.36 matt case FPU_VFP_MV88SV58XX:
321 1.36 matt model = "VFP3";
322 1.36 matt break;
323 1.7 matt case FPU_VFP_CORTEXA5:
324 1.7 matt case FPU_VFP_CORTEXA7:
325 1.7 matt case FPU_VFP_CORTEXA8:
326 1.7 matt case FPU_VFP_CORTEXA9:
327 1.20 matt case FPU_VFP_CORTEXA15:
328 1.42 slp case FPU_VFP_CORTEXA15_QEMU:
329 1.50 skrll case FPU_VFP_CORTEXA53:
330 1.53 jmcneill case FPU_VFP_CORTEXA57:
331 1.37 matt if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
332 1.37 matt model = "VFP 4.0+";
333 1.37 matt } else {
334 1.37 matt model = "NEON MPE (VFP 3.0+)";
335 1.37 matt cpu_neon_present = 1;
336 1.37 matt }
337 1.6 matt break;
338 1.4 matt default:
339 1.36 matt aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
340 1.4 matt fpsid);
341 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
342 1.35 matt vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
343 1.35 matt |VFP_FPSCR_RMODE;
344 1.35 matt vfp_fpscr_default = 0;
345 1.4 matt return;
346 1.4 matt }
347 1.1 rearnsha
348 1.17 matt cpu_fpu_present = 1;
349 1.21 matt cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
350 1.21 matt cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
351 1.1 rearnsha if (fpsid != 0) {
352 1.34 matt uint32_t f0 = armreg_mvfr0_read();
353 1.41 matt uint32_t f1 = armreg_mvfr1_read();
354 1.34 matt aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
355 1.37 matt device_unit(ci->ci_dev),
356 1.37 matt device_xname(ci->ci_dev),
357 1.34 matt model,
358 1.34 matt ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
359 1.34 matt ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
360 1.38 matt ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
361 1.34 matt ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
362 1.49 jmcneill aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
363 1.37 matt device_unit(ci->ci_dev), f0, f1);
364 1.37 matt if (CPU_IS_PRIMARY(ci)) {
365 1.37 matt if (f0 & ARM_MVFR0_ROUNDING_MASK) {
366 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_RMODE;
367 1.37 matt }
368 1.37 matt if (f1 & ARM_MVFR0_EXCEPT_MASK) {
369 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_ESUM;
370 1.37 matt }
371 1.38 matt // If hardware supports propagation of NaNs, select it.
372 1.37 matt if (f1 & ARM_MVFR1_D_NAN_MASK) {
373 1.37 matt vfp_fpscr_default &= ~VFP_FPSCR_DN;
374 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_DN;
375 1.37 matt }
376 1.37 matt // If hardware supports denormalized numbers, use it.
377 1.37 matt if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
378 1.37 matt vfp_fpscr_default &= ~VFP_FPSCR_FZ;
379 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_FZ;
380 1.37 matt }
381 1.37 matt }
382 1.37 matt }
383 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
384 1.37 matt ci->ci_cpuname, "vfp coproc use");
385 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
386 1.37 matt ci->ci_cpuname, "vfp coproc re-use");
387 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
388 1.37 matt ci->ci_cpuname, "vfp coproc fault");
389 1.1 rearnsha install_coproc_handler(VFP_COPROC, vfp_handler);
390 1.1 rearnsha install_coproc_handler(VFP_COPROC2, vfp_handler);
391 1.13 matt #ifdef CPU_CORTEX
392 1.43 matt if (cpu_neon_present)
393 1.43 matt install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
394 1.13 matt #endif
395 1.1 rearnsha }
396 1.1 rearnsha
397 1.1 rearnsha /* The real handler for VFP bounces. */
398 1.4 matt static int
399 1.21 matt vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
400 1.1 rearnsha {
401 1.4 matt struct cpu_info * const ci = curcpu();
402 1.1 rearnsha
403 1.1 rearnsha /* This shouldn't ever happen. */
404 1.1 rearnsha if (fault_code != FAULT_USER)
405 1.14 matt panic("VFP fault at %#x in non-user mode", frame->tf_pc);
406 1.1 rearnsha
407 1.27 matt if (ci->ci_vfp_id == 0) {
408 1.1 rearnsha /* No VFP detected, just fault. */
409 1.1 rearnsha return 1;
410 1.27 matt }
411 1.27 matt
412 1.27 matt /*
413 1.47 matt * If we are just changing/fetching FPSCR, don't bother loading it
414 1.47 matt * just emulate the instruction.
415 1.27 matt */
416 1.27 matt if (!vfp_fpscr_handler(address, insn, frame, fault_code))
417 1.47 matt return 0;
418 1.27 matt
419 1.47 matt /*
420 1.47 matt * If we already own the FPU and it's enabled (and no exception), raise
421 1.47 matt * SIGILL. If there is an exception, drop through to raise a SIGFPE.
422 1.47 matt */
423 1.46 matt if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
424 1.47 matt && (armreg_fpexc_read() & (VFP_FPEXC_EX|VFP_FPEXC_EN)) == VFP_FPEXC_EN)
425 1.47 matt return 1;
426 1.44 matt
427 1.27 matt /*
428 1.27 matt * Make sure we own the FP.
429 1.27 matt */
430 1.27 matt pcu_load(&arm_vfp_ops);
431 1.1 rearnsha
432 1.21 matt uint32_t fpexc = armreg_fpexc_read();
433 1.21 matt if (fpexc & VFP_FPEXC_EX) {
434 1.21 matt ksiginfo_t ksi;
435 1.21 matt KASSERT(fpexc & VFP_FPEXC_EN);
436 1.21 matt
437 1.37 matt curcpu()->ci_vfp_evs[2].ev_count++;
438 1.21 matt
439 1.21 matt /*
440 1.21 matt * Need the clear the exception condition so any signal
441 1.33 skrll * and future use can proceed.
442 1.21 matt */
443 1.31 skrll armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
444 1.21 matt
445 1.51 chs pcu_save(&arm_vfp_ops, curlwp);
446 1.33 skrll
447 1.33 skrll /*
448 1.33 skrll * XXX Need to emulate bounce instructions here to get correct
449 1.33 skrll * XXX exception codes, etc.
450 1.33 skrll */
451 1.21 matt KSI_INIT_TRAP(&ksi);
452 1.21 matt ksi.ksi_signo = SIGFPE;
453 1.21 matt if (fpexc & VFP_FPEXC_IXF)
454 1.21 matt ksi.ksi_code = FPE_FLTRES;
455 1.21 matt else if (fpexc & VFP_FPEXC_UFF)
456 1.21 matt ksi.ksi_code = FPE_FLTUND;
457 1.21 matt else if (fpexc & VFP_FPEXC_OFF)
458 1.21 matt ksi.ksi_code = FPE_FLTOVF;
459 1.21 matt else if (fpexc & VFP_FPEXC_DZF)
460 1.21 matt ksi.ksi_code = FPE_FLTDIV;
461 1.21 matt else if (fpexc & VFP_FPEXC_IOF)
462 1.21 matt ksi.ksi_code = FPE_FLTINV;
463 1.21 matt ksi.ksi_addr = (uint32_t *)address;
464 1.21 matt ksi.ksi_trap = 0;
465 1.21 matt trapsignal(curlwp, &ksi);
466 1.21 matt return 0;
467 1.21 matt }
468 1.21 matt
469 1.4 matt /* Need to restart the faulted instruction. */
470 1.4 matt // frame->tf_pc -= INSN_SIZE;
471 1.4 matt return 0;
472 1.4 matt }
473 1.1 rearnsha
474 1.13 matt #ifdef CPU_CORTEX
475 1.13 matt /* The real handler for NEON bounces. */
476 1.13 matt static int
477 1.21 matt neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
478 1.13 matt {
479 1.13 matt struct cpu_info * const ci = curcpu();
480 1.13 matt
481 1.13 matt if (ci->ci_vfp_id == 0)
482 1.13 matt /* No VFP detected, just fault. */
483 1.13 matt return 1;
484 1.13 matt
485 1.13 matt if ((insn & 0xfe000000) != 0xf2000000
486 1.13 matt && (insn & 0xfe000000) != 0xf4000000)
487 1.13 matt /* Not NEON instruction, just fault. */
488 1.13 matt return 1;
489 1.13 matt
490 1.13 matt /* This shouldn't ever happen. */
491 1.13 matt if (fault_code != FAULT_USER)
492 1.13 matt panic("NEON fault in non-user mode");
493 1.13 matt
494 1.45 matt /* if we already own the FPU and it's enabled, raise SIGILL */
495 1.45 matt if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
496 1.45 matt && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
497 1.47 matt return 1;
498 1.43 matt
499 1.13 matt pcu_load(&arm_vfp_ops);
500 1.13 matt
501 1.13 matt /* Need to restart the faulted instruction. */
502 1.13 matt // frame->tf_pc -= INSN_SIZE;
503 1.13 matt return 0;
504 1.13 matt }
505 1.13 matt #endif
506 1.13 matt
507 1.4 matt static void
508 1.13 matt vfp_state_load(lwp_t *l, u_int flags)
509 1.4 matt {
510 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
511 1.4 matt struct vfpreg * const fregs = &pcb->pcb_vfp;
512 1.1 rearnsha
513 1.1 rearnsha /*
514 1.1 rearnsha * Instrument VFP usage -- if a process has not previously
515 1.1 rearnsha * used the VFP, mark it as having used VFP for the first time,
516 1.1 rearnsha * and count this event.
517 1.1 rearnsha *
518 1.1 rearnsha * If a process has used the VFP, count a "used VFP, and took
519 1.1 rearnsha * a trap to use it again" event.
520 1.1 rearnsha */
521 1.39 rmind if (__predict_false((flags & PCU_VALID) == 0)) {
522 1.37 matt curcpu()->ci_vfp_evs[0].ev_count++;
523 1.34 matt pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
524 1.4 matt } else {
525 1.37 matt curcpu()->ci_vfp_evs[1].ev_count++;
526 1.4 matt }
527 1.1 rearnsha
528 1.54 bouyer KASSERT((armreg_fpexc_read() & VFP_FPEXC_EN) == 0);
529 1.39 rmind /*
530 1.39 rmind * If the VFP is already enabled we must be bouncing an instruction.
531 1.39 rmind */
532 1.39 rmind if (flags & PCU_REENABLE) {
533 1.39 rmind uint32_t fpexc = armreg_fpexc_read();
534 1.39 rmind armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
535 1.54 bouyer fregs->vfp_fpexc |= VFP_FPEXC_EN;
536 1.39 rmind return;
537 1.39 rmind }
538 1.54 bouyer KASSERT((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0);
539 1.33 skrll
540 1.39 rmind /*
541 1.39 rmind * Load and Enable the VFP (so that we can write the registers).
542 1.39 rmind */
543 1.39 rmind fregs->vfp_fpexc |= VFP_FPEXC_EN;
544 1.39 rmind armreg_fpexc_write(fregs->vfp_fpexc);
545 1.54 bouyer KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == NULL);
546 1.54 bouyer KASSERT(l->l_pcu_cpu[PCU_FPU] == NULL);
547 1.13 matt
548 1.39 rmind load_vfpregs(fregs);
549 1.39 rmind armreg_fpscr_write(fregs->vfp_fpscr);
550 1.13 matt
551 1.39 rmind if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
552 1.39 rmind /* Need to restore the exception handling state. */
553 1.52 chs armreg_fpinst_write(fregs->vfp_fpinst);
554 1.39 rmind if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
555 1.52 chs armreg_fpinst2_write(fregs->vfp_fpinst2);
556 1.1 rearnsha }
557 1.1 rearnsha }
558 1.1 rearnsha
559 1.1 rearnsha void
560 1.39 rmind vfp_state_save(lwp_t *l)
561 1.1 rearnsha {
562 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
563 1.39 rmind struct vfpreg * const fregs = &pcb->pcb_vfp;
564 1.21 matt uint32_t fpexc = armreg_fpexc_read();
565 1.33 skrll
566 1.54 bouyer KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == l);
567 1.54 bouyer KASSERT(curcpu() == l->l_pcu_cpu[PCU_FPU]);
568 1.54 bouyer KASSERT(curlwp == l || curlwp->l_pcu_cpu[PCU_FPU] != curcpu());
569 1.33 skrll /*
570 1.33 skrll * Enable the VFP (so we can read the registers).
571 1.33 skrll * Make sure the exception bit is cleared so that we can
572 1.33 skrll * safely dump the registers.
573 1.33 skrll */
574 1.21 matt armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
575 1.1 rearnsha
576 1.4 matt fregs->vfp_fpexc = fpexc;
577 1.4 matt if (fpexc & VFP_FPEXC_EX) {
578 1.4 matt /* Need to save the exception handling state */
579 1.21 matt fregs->vfp_fpinst = armreg_fpinst_read();
580 1.21 matt if (fpexc & VFP_FPEXC_FP2V)
581 1.21 matt fregs->vfp_fpinst2 = armreg_fpinst2_read();
582 1.1 rearnsha }
583 1.21 matt fregs->vfp_fpscr = armreg_fpscr_read();
584 1.13 matt save_vfpregs(fregs);
585 1.4 matt
586 1.1 rearnsha /* Disable the VFP. */
587 1.33 skrll armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
588 1.1 rearnsha }
589 1.1 rearnsha
590 1.1 rearnsha void
591 1.39 rmind vfp_state_release(lwp_t *l)
592 1.1 rearnsha {
593 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
594 1.1 rearnsha
595 1.39 rmind /*
596 1.39 rmind * Now mark the VFP as disabled (and our state
597 1.39 rmind * has been already saved or is being discarded).
598 1.39 rmind */
599 1.39 rmind pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
600 1.1 rearnsha
601 1.1 rearnsha /*
602 1.4 matt * Turn off the FPU so the next time a VFP instruction is issued
603 1.4 matt * an exception happens. We don't know if this LWP's state was
604 1.4 matt * loaded but if we turned off the FPU for some other LWP, when
605 1.4 matt * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
606 1.13 matt * is still set so it just restore fpexc and return since its
607 1.4 matt * contents are still sitting in the VFP.
608 1.1 rearnsha */
609 1.21 matt armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
610 1.1 rearnsha }
611 1.1 rearnsha
612 1.1 rearnsha void
613 1.51 chs vfp_savecontext(lwp_t *l)
614 1.1 rearnsha {
615 1.51 chs pcu_save(&arm_vfp_ops, l);
616 1.1 rearnsha }
617 1.1 rearnsha
618 1.1 rearnsha void
619 1.51 chs vfp_discardcontext(lwp_t *l, bool used_p)
620 1.1 rearnsha {
621 1.51 chs pcu_discard(&arm_vfp_ops, l, used_p);
622 1.25 matt }
623 1.25 matt
624 1.25 matt bool
625 1.51 chs vfp_used_p(const lwp_t *l)
626 1.25 matt {
627 1.51 chs return pcu_valid_p(&arm_vfp_ops, l);
628 1.13 matt }
629 1.13 matt
630 1.13 matt void
631 1.8 matt vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
632 1.8 matt {
633 1.51 chs if (vfp_used_p(l)) {
634 1.8 matt const struct pcb * const pcb = lwp_getpcb(l);
635 1.51 chs
636 1.51 chs pcu_save(&arm_vfp_ops, l);
637 1.8 matt mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
638 1.8 matt memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
639 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
640 1.10 matt *flagsp |= _UC_FPU|_UC_ARM_VFP;
641 1.8 matt }
642 1.8 matt }
643 1.8 matt
644 1.8 matt void
645 1.8 matt vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
646 1.8 matt {
647 1.8 matt struct pcb * const pcb = lwp_getpcb(l);
648 1.51 chs
649 1.51 chs pcu_discard(&arm_vfp_ops, l, true);
650 1.8 matt pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
651 1.8 matt memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
652 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
653 1.8 matt }
654 1.8 matt
655 1.4 matt #endif /* FPU_VFP */
656