vfp_init.c revision 1.63 1 1.63 tnn /* $NetBSD: vfp_init.c,v 1.63 2019/09/07 19:42:42 tnn Exp $ */
2 1.1 rearnsha
3 1.1 rearnsha /*
4 1.1 rearnsha * Copyright (c) 2008 ARM Ltd
5 1.1 rearnsha * All rights reserved.
6 1.1 rearnsha *
7 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
8 1.1 rearnsha * modification, are permitted provided that the following conditions
9 1.1 rearnsha * are met:
10 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
11 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
12 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
14 1.1 rearnsha * documentation and/or other materials provided with the distribution.
15 1.1 rearnsha * 3. The name of the company may not be used to endorse or promote
16 1.1 rearnsha * products derived from this software without specific prior written
17 1.1 rearnsha * permission.
18 1.1 rearnsha *
19 1.1 rearnsha * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 1.1 rearnsha * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 rearnsha * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 rearnsha * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 1.1 rearnsha * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 rearnsha * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 1.1 rearnsha * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rearnsha * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 1.1 rearnsha * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 1.1 rearnsha * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 1.1 rearnsha * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 1.1 rearnsha */
31 1.1 rearnsha
32 1.59 skrll #include "opt_cputypes.h"
33 1.59 skrll
34 1.58 skrll #include <sys/cdefs.h>
35 1.63 tnn __KERNEL_RCSID(0, "$NetBSD: vfp_init.c,v 1.63 2019/09/07 19:42:42 tnn Exp $");
36 1.58 skrll
37 1.1 rearnsha #include <sys/param.h>
38 1.1 rearnsha #include <sys/types.h>
39 1.1 rearnsha #include <sys/systm.h>
40 1.1 rearnsha #include <sys/device.h>
41 1.1 rearnsha #include <sys/proc.h>
42 1.4 matt #include <sys/cpu.h>
43 1.1 rearnsha
44 1.23 matt #include <arm/locore.h>
45 1.5 matt #include <arm/pcb.h>
46 1.1 rearnsha #include <arm/undefined.h>
47 1.1 rearnsha #include <arm/vfpreg.h>
48 1.8 matt #include <arm/mcontext.h>
49 1.1 rearnsha
50 1.12 matt #include <uvm/uvm_extern.h> /* for pmap.h */
51 1.12 matt
52 1.11 matt #ifdef FPU_VFP
53 1.11 matt
54 1.29 matt #ifdef CPU_CORTEX
55 1.56 christos #define SETFPU __asm(".fpu\tvfpv4")
56 1.29 matt #else
57 1.56 christos #define SETFPU __asm(".fpu\tvfp")
58 1.29 matt #endif
59 1.56 christos SETFPU;
60 1.29 matt
61 1.1 rearnsha /* FLDMD <X>, {d0-d15} */
62 1.11 matt static inline void
63 1.13 matt load_vfpregs_lo(const uint64_t *p)
64 1.10 matt {
65 1.56 christos SETFPU;
66 1.56 christos __asm __volatile("vldmia\t%0, {d0-d15}" :: "r" (p) : "memory");
67 1.10 matt }
68 1.10 matt
69 1.10 matt /* FSTMD <X>, {d0-d15} */
70 1.11 matt static inline void
71 1.10 matt save_vfpregs_lo(uint64_t *p)
72 1.10 matt {
73 1.56 christos SETFPU;
74 1.56 christos __asm __volatile("vstmia\t%0, {d0-d15}" :: "r" (p) : "memory");
75 1.10 matt }
76 1.10 matt
77 1.10 matt #ifdef CPU_CORTEX
78 1.10 matt /* FLDMD <X>, {d16-d31} */
79 1.11 matt static inline void
80 1.13 matt load_vfpregs_hi(const uint64_t *p)
81 1.10 matt {
82 1.56 christos SETFPU;
83 1.29 matt __asm __volatile("vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
84 1.10 matt }
85 1.10 matt
86 1.10 matt /* FLDMD <X>, {d16-d31} */
87 1.11 matt static inline void
88 1.10 matt save_vfpregs_hi(uint64_t *p)
89 1.10 matt {
90 1.56 christos SETFPU;
91 1.29 matt __asm __volatile("vstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
92 1.10 matt }
93 1.10 matt #endif
94 1.1 rearnsha
95 1.13 matt static inline void
96 1.13 matt load_vfpregs(const struct vfpreg *fregs)
97 1.13 matt {
98 1.13 matt load_vfpregs_lo(fregs->vfp_regs);
99 1.13 matt #ifdef CPU_CORTEX
100 1.13 matt #ifdef CPU_ARM11
101 1.13 matt switch (curcpu()->ci_vfp_id) {
102 1.13 matt case FPU_VFP_CORTEXA5:
103 1.13 matt case FPU_VFP_CORTEXA7:
104 1.13 matt case FPU_VFP_CORTEXA8:
105 1.13 matt case FPU_VFP_CORTEXA9:
106 1.20 matt case FPU_VFP_CORTEXA15:
107 1.42 slp case FPU_VFP_CORTEXA15_QEMU:
108 1.50 skrll case FPU_VFP_CORTEXA53:
109 1.53 jmcneill case FPU_VFP_CORTEXA57:
110 1.13 matt #endif
111 1.13 matt load_vfpregs_hi(fregs->vfp_regs);
112 1.13 matt #ifdef CPU_ARM11
113 1.13 matt break;
114 1.13 matt }
115 1.13 matt #endif
116 1.13 matt #endif
117 1.13 matt }
118 1.13 matt
119 1.13 matt static inline void
120 1.13 matt save_vfpregs(struct vfpreg *fregs)
121 1.13 matt {
122 1.13 matt save_vfpregs_lo(fregs->vfp_regs);
123 1.13 matt #ifdef CPU_CORTEX
124 1.13 matt #ifdef CPU_ARM11
125 1.13 matt switch (curcpu()->ci_vfp_id) {
126 1.13 matt case FPU_VFP_CORTEXA5:
127 1.13 matt case FPU_VFP_CORTEXA7:
128 1.13 matt case FPU_VFP_CORTEXA8:
129 1.13 matt case FPU_VFP_CORTEXA9:
130 1.20 matt case FPU_VFP_CORTEXA15:
131 1.42 slp case FPU_VFP_CORTEXA15_QEMU:
132 1.50 skrll case FPU_VFP_CORTEXA53:
133 1.53 jmcneill case FPU_VFP_CORTEXA57:
134 1.13 matt #endif
135 1.13 matt save_vfpregs_hi(fregs->vfp_regs);
136 1.13 matt #ifdef CPU_ARM11
137 1.13 matt break;
138 1.13 matt }
139 1.13 matt #endif
140 1.13 matt #endif
141 1.13 matt }
142 1.13 matt
143 1.1 rearnsha /* The real handler for VFP bounces. */
144 1.1 rearnsha static int vfp_handler(u_int, u_int, trapframe_t *, int);
145 1.13 matt #ifdef CPU_CORTEX
146 1.13 matt static int neon_handler(u_int, u_int, trapframe_t *, int);
147 1.13 matt #endif
148 1.1 rearnsha
149 1.13 matt static void vfp_state_load(lwp_t *, u_int);
150 1.39 rmind static void vfp_state_save(lwp_t *);
151 1.39 rmind static void vfp_state_release(lwp_t *);
152 1.4 matt
153 1.4 matt const pcu_ops_t arm_vfp_ops = {
154 1.4 matt .pcu_id = PCU_FPU,
155 1.13 matt .pcu_state_save = vfp_state_save,
156 1.4 matt .pcu_state_load = vfp_state_load,
157 1.4 matt .pcu_state_release = vfp_state_release,
158 1.4 matt };
159 1.1 rearnsha
160 1.34 matt /* determine what bits can be changed */
161 1.34 matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
162 1.34 matt /* default to run fast */
163 1.34 matt uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
164 1.34 matt
165 1.1 rearnsha /*
166 1.1 rearnsha * Used to test for a VFP. The following function is installed as a coproc10
167 1.1 rearnsha * handler on the undefined instruction vector and then we issue a VFP
168 1.1 rearnsha * instruction. If undefined_test is non zero then the VFP did not handle
169 1.1 rearnsha * the instruction so must be absent, or disabled.
170 1.1 rearnsha */
171 1.1 rearnsha
172 1.1 rearnsha static int undefined_test;
173 1.1 rearnsha
174 1.1 rearnsha static int
175 1.4 matt vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
176 1.1 rearnsha {
177 1.1 rearnsha
178 1.1 rearnsha frame->tf_pc += INSN_SIZE;
179 1.1 rearnsha ++undefined_test;
180 1.4 matt return 0;
181 1.4 matt }
182 1.4 matt
183 1.35 matt #else
184 1.35 matt /* determine what bits can be changed */
185 1.35 matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
186 1.4 matt #endif /* FPU_VFP */
187 1.4 matt
188 1.4 matt static int
189 1.4 matt vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
190 1.4 matt {
191 1.4 matt struct lwp * const l = curlwp;
192 1.4 matt const u_int regno = (insn >> 12) & 0xf;
193 1.4 matt /*
194 1.4 matt * Only match move to/from the FPSCR register and we
195 1.4 matt * can't be using the SP,LR,PC as a source.
196 1.4 matt */
197 1.4 matt if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
198 1.4 matt return 1;
199 1.4 matt
200 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
201 1.4 matt
202 1.4 matt #ifdef FPU_VFP
203 1.4 matt /*
204 1.4 matt * If FPU is valid somewhere, let's just reenable VFP and
205 1.4 matt * retry the instruction (only safe thing to do since the
206 1.4 matt * pcb has a stale copy).
207 1.4 matt */
208 1.4 matt if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
209 1.4 matt return 1;
210 1.4 matt
211 1.51 chs if (__predict_false(!vfp_used_p(l))) {
212 1.35 matt pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
213 1.4 matt }
214 1.26 matt #endif
215 1.4 matt
216 1.4 matt /*
217 1.30 skrll * We now know the pcb has the saved copy.
218 1.4 matt */
219 1.4 matt register_t * const regp = &frame->tf_r0 + regno;
220 1.4 matt if (insn & 0x00100000) {
221 1.4 matt *regp = pcb->pcb_vfp.vfp_fpscr;
222 1.4 matt } else {
223 1.34 matt pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
224 1.34 matt pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
225 1.4 matt }
226 1.4 matt
227 1.37 matt curcpu()->ci_vfp_evs[0].ev_count++;
228 1.61 skrll
229 1.4 matt frame->tf_pc += INSN_SIZE;
230 1.4 matt return 0;
231 1.1 rearnsha }
232 1.1 rearnsha
233 1.4 matt #ifndef FPU_VFP
234 1.4 matt /*
235 1.4 matt * If we don't want VFP support, we still need to handle emulating VFP FPSCR
236 1.4 matt * instructions.
237 1.4 matt */
238 1.4 matt void
239 1.37 matt vfp_attach(struct cpu_info *ci)
240 1.4 matt {
241 1.37 matt if (CPU_IS_PRIMARY(ci)) {
242 1.37 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
243 1.37 matt }
244 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
245 1.37 matt ci->ci_cpuname, "vfp fpscr traps");
246 1.4 matt }
247 1.4 matt
248 1.4 matt #else
249 1.1 rearnsha void
250 1.37 matt vfp_attach(struct cpu_info *ci)
251 1.1 rearnsha {
252 1.4 matt const char *model = NULL;
253 1.1 rearnsha
254 1.37 matt if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
255 1.37 matt || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
256 1.37 matt || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
257 1.37 matt #if 0
258 1.37 matt const uint32_t nsacr = armreg_nsacr_read();
259 1.37 matt const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
260 1.37 matt if ((nsacr & nsacr_vfp) != nsacr_vfp) {
261 1.40 matt aprint_normal_dev(ci->ci_dev,
262 1.40 matt "VFP access denied (NSACR=%#x)\n", nsacr);
263 1.62 skrll if (CPU_IS_PRIMARY(ci))
264 1.62 skrll install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
265 1.37 matt ci->ci_vfp_id = 0;
266 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
267 1.37 matt EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
268 1.37 matt "vfp fpscr traps");
269 1.37 matt return;
270 1.37 matt }
271 1.37 matt #endif
272 1.7 matt const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
273 1.7 matt const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
274 1.1 rearnsha
275 1.7 matt /*
276 1.7 matt * We first need to enable access to the coprocessors.
277 1.7 matt */
278 1.7 matt uint32_t cpacr = armreg_cpacr_read();
279 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
280 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
281 1.7 matt armreg_cpacr_write(cpacr);
282 1.1 rearnsha
283 1.48 jmcneill arm_isb();
284 1.48 jmcneill
285 1.7 matt /*
286 1.7 matt * If we could enable them, then they exist.
287 1.7 matt */
288 1.7 matt cpacr = armreg_cpacr_read();
289 1.40 matt bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
290 1.40 matt && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
291 1.28 matt if (!vfp_p) {
292 1.40 matt aprint_normal_dev(ci->ci_dev,
293 1.40 matt "VFP access denied (CPACR=%#x)\n", cpacr);
294 1.62 skrll if (CPU_IS_PRIMARY(ci))
295 1.62 skrll install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
296 1.28 matt ci->ci_vfp_id = 0;
297 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
298 1.37 matt EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
299 1.37 matt "vfp fpscr traps");
300 1.28 matt return;
301 1.28 matt }
302 1.6 matt }
303 1.6 matt
304 1.7 matt void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
305 1.7 matt
306 1.7 matt undefined_test = 0;
307 1.7 matt
308 1.21 matt const uint32_t fpsid = armreg_fpsid_read();
309 1.1 rearnsha
310 1.1 rearnsha remove_coproc_handler(uh);
311 1.1 rearnsha
312 1.1 rearnsha if (undefined_test != 0) {
313 1.4 matt aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
314 1.62 skrll if (CPU_IS_PRIMARY(ci))
315 1.62 skrll install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
316 1.4 matt ci->ci_vfp_id = 0;
317 1.1 rearnsha return;
318 1.1 rearnsha }
319 1.1 rearnsha
320 1.4 matt ci->ci_vfp_id = fpsid;
321 1.4 matt switch (fpsid & ~ VFP_FPSID_REV_MSK) {
322 1.4 matt case FPU_VFP10_ARM10E:
323 1.4 matt model = "VFP10 R1";
324 1.4 matt break;
325 1.4 matt case FPU_VFP11_ARM11:
326 1.4 matt model = "VFP11";
327 1.4 matt break;
328 1.36 matt case FPU_VFP_MV88SV58XX:
329 1.36 matt model = "VFP3";
330 1.36 matt break;
331 1.7 matt case FPU_VFP_CORTEXA5:
332 1.7 matt case FPU_VFP_CORTEXA7:
333 1.7 matt case FPU_VFP_CORTEXA8:
334 1.7 matt case FPU_VFP_CORTEXA9:
335 1.63 tnn case FPU_VFP_CORTEXA12:
336 1.20 matt case FPU_VFP_CORTEXA15:
337 1.42 slp case FPU_VFP_CORTEXA15_QEMU:
338 1.63 tnn case FPU_VFP_CORTEXA17:
339 1.50 skrll case FPU_VFP_CORTEXA53:
340 1.53 jmcneill case FPU_VFP_CORTEXA57:
341 1.37 matt if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
342 1.37 matt model = "VFP 4.0+";
343 1.37 matt } else {
344 1.37 matt model = "NEON MPE (VFP 3.0+)";
345 1.37 matt cpu_neon_present = 1;
346 1.37 matt }
347 1.6 matt break;
348 1.4 matt default:
349 1.36 matt aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
350 1.4 matt fpsid);
351 1.62 skrll if (CPU_IS_PRIMARY(ci))
352 1.62 skrll install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
353 1.35 matt vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
354 1.35 matt |VFP_FPSCR_RMODE;
355 1.35 matt vfp_fpscr_default = 0;
356 1.4 matt return;
357 1.4 matt }
358 1.1 rearnsha
359 1.17 matt cpu_fpu_present = 1;
360 1.21 matt cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
361 1.21 matt cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
362 1.1 rearnsha if (fpsid != 0) {
363 1.34 matt uint32_t f0 = armreg_mvfr0_read();
364 1.41 matt uint32_t f1 = armreg_mvfr1_read();
365 1.34 matt aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
366 1.37 matt device_unit(ci->ci_dev),
367 1.37 matt device_xname(ci->ci_dev),
368 1.34 matt model,
369 1.34 matt ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
370 1.34 matt ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
371 1.38 matt ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
372 1.34 matt ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
373 1.49 jmcneill aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
374 1.37 matt device_unit(ci->ci_dev), f0, f1);
375 1.37 matt if (CPU_IS_PRIMARY(ci)) {
376 1.37 matt if (f0 & ARM_MVFR0_ROUNDING_MASK) {
377 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_RMODE;
378 1.37 matt }
379 1.37 matt if (f1 & ARM_MVFR0_EXCEPT_MASK) {
380 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_ESUM;
381 1.37 matt }
382 1.38 matt // If hardware supports propagation of NaNs, select it.
383 1.37 matt if (f1 & ARM_MVFR1_D_NAN_MASK) {
384 1.37 matt vfp_fpscr_default &= ~VFP_FPSCR_DN;
385 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_DN;
386 1.37 matt }
387 1.37 matt // If hardware supports denormalized numbers, use it.
388 1.37 matt if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
389 1.37 matt vfp_fpscr_default &= ~VFP_FPSCR_FZ;
390 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_FZ;
391 1.37 matt }
392 1.37 matt }
393 1.37 matt }
394 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
395 1.37 matt ci->ci_cpuname, "vfp coproc use");
396 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
397 1.37 matt ci->ci_cpuname, "vfp coproc re-use");
398 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
399 1.37 matt ci->ci_cpuname, "vfp coproc fault");
400 1.62 skrll if (CPU_IS_PRIMARY(ci)) {
401 1.62 skrll install_coproc_handler(VFP_COPROC, vfp_handler);
402 1.62 skrll install_coproc_handler(VFP_COPROC2, vfp_handler);
403 1.13 matt #ifdef CPU_CORTEX
404 1.62 skrll if (cpu_neon_present)
405 1.62 skrll install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
406 1.13 matt #endif
407 1.62 skrll }
408 1.1 rearnsha }
409 1.1 rearnsha
410 1.1 rearnsha /* The real handler for VFP bounces. */
411 1.4 matt static int
412 1.21 matt vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
413 1.1 rearnsha {
414 1.4 matt struct cpu_info * const ci = curcpu();
415 1.1 rearnsha
416 1.1 rearnsha /* This shouldn't ever happen. */
417 1.1 rearnsha if (fault_code != FAULT_USER)
418 1.14 matt panic("VFP fault at %#x in non-user mode", frame->tf_pc);
419 1.1 rearnsha
420 1.27 matt if (ci->ci_vfp_id == 0) {
421 1.1 rearnsha /* No VFP detected, just fault. */
422 1.1 rearnsha return 1;
423 1.27 matt }
424 1.27 matt
425 1.47 matt /*
426 1.47 matt * If we already own the FPU and it's enabled (and no exception), raise
427 1.47 matt * SIGILL. If there is an exception, drop through to raise a SIGFPE.
428 1.47 matt */
429 1.46 matt if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
430 1.47 matt && (armreg_fpexc_read() & (VFP_FPEXC_EX|VFP_FPEXC_EN)) == VFP_FPEXC_EN)
431 1.47 matt return 1;
432 1.44 matt
433 1.27 matt /*
434 1.27 matt * Make sure we own the FP.
435 1.27 matt */
436 1.27 matt pcu_load(&arm_vfp_ops);
437 1.1 rearnsha
438 1.21 matt uint32_t fpexc = armreg_fpexc_read();
439 1.21 matt if (fpexc & VFP_FPEXC_EX) {
440 1.21 matt ksiginfo_t ksi;
441 1.21 matt KASSERT(fpexc & VFP_FPEXC_EN);
442 1.21 matt
443 1.37 matt curcpu()->ci_vfp_evs[2].ev_count++;
444 1.21 matt
445 1.21 matt /*
446 1.21 matt * Need the clear the exception condition so any signal
447 1.33 skrll * and future use can proceed.
448 1.21 matt */
449 1.31 skrll armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
450 1.21 matt
451 1.51 chs pcu_save(&arm_vfp_ops, curlwp);
452 1.33 skrll
453 1.33 skrll /*
454 1.33 skrll * XXX Need to emulate bounce instructions here to get correct
455 1.33 skrll * XXX exception codes, etc.
456 1.33 skrll */
457 1.21 matt KSI_INIT_TRAP(&ksi);
458 1.21 matt ksi.ksi_signo = SIGFPE;
459 1.21 matt if (fpexc & VFP_FPEXC_IXF)
460 1.21 matt ksi.ksi_code = FPE_FLTRES;
461 1.21 matt else if (fpexc & VFP_FPEXC_UFF)
462 1.21 matt ksi.ksi_code = FPE_FLTUND;
463 1.21 matt else if (fpexc & VFP_FPEXC_OFF)
464 1.21 matt ksi.ksi_code = FPE_FLTOVF;
465 1.21 matt else if (fpexc & VFP_FPEXC_DZF)
466 1.21 matt ksi.ksi_code = FPE_FLTDIV;
467 1.21 matt else if (fpexc & VFP_FPEXC_IOF)
468 1.21 matt ksi.ksi_code = FPE_FLTINV;
469 1.21 matt ksi.ksi_addr = (uint32_t *)address;
470 1.21 matt ksi.ksi_trap = 0;
471 1.21 matt trapsignal(curlwp, &ksi);
472 1.21 matt return 0;
473 1.21 matt }
474 1.21 matt
475 1.4 matt /* Need to restart the faulted instruction. */
476 1.4 matt // frame->tf_pc -= INSN_SIZE;
477 1.4 matt return 0;
478 1.4 matt }
479 1.1 rearnsha
480 1.13 matt #ifdef CPU_CORTEX
481 1.13 matt /* The real handler for NEON bounces. */
482 1.13 matt static int
483 1.21 matt neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
484 1.13 matt {
485 1.13 matt struct cpu_info * const ci = curcpu();
486 1.13 matt
487 1.13 matt if (ci->ci_vfp_id == 0)
488 1.13 matt /* No VFP detected, just fault. */
489 1.13 matt return 1;
490 1.13 matt
491 1.13 matt if ((insn & 0xfe000000) != 0xf2000000
492 1.13 matt && (insn & 0xfe000000) != 0xf4000000)
493 1.13 matt /* Not NEON instruction, just fault. */
494 1.13 matt return 1;
495 1.13 matt
496 1.13 matt /* This shouldn't ever happen. */
497 1.13 matt if (fault_code != FAULT_USER)
498 1.13 matt panic("NEON fault in non-user mode");
499 1.13 matt
500 1.45 matt /* if we already own the FPU and it's enabled, raise SIGILL */
501 1.45 matt if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
502 1.45 matt && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
503 1.47 matt return 1;
504 1.43 matt
505 1.13 matt pcu_load(&arm_vfp_ops);
506 1.13 matt
507 1.13 matt /* Need to restart the faulted instruction. */
508 1.13 matt // frame->tf_pc -= INSN_SIZE;
509 1.13 matt return 0;
510 1.13 matt }
511 1.13 matt #endif
512 1.13 matt
513 1.4 matt static void
514 1.13 matt vfp_state_load(lwp_t *l, u_int flags)
515 1.4 matt {
516 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
517 1.4 matt struct vfpreg * const fregs = &pcb->pcb_vfp;
518 1.1 rearnsha
519 1.1 rearnsha /*
520 1.1 rearnsha * Instrument VFP usage -- if a process has not previously
521 1.1 rearnsha * used the VFP, mark it as having used VFP for the first time,
522 1.1 rearnsha * and count this event.
523 1.1 rearnsha *
524 1.1 rearnsha * If a process has used the VFP, count a "used VFP, and took
525 1.1 rearnsha * a trap to use it again" event.
526 1.1 rearnsha */
527 1.39 rmind if (__predict_false((flags & PCU_VALID) == 0)) {
528 1.37 matt curcpu()->ci_vfp_evs[0].ev_count++;
529 1.34 matt pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
530 1.4 matt } else {
531 1.37 matt curcpu()->ci_vfp_evs[1].ev_count++;
532 1.4 matt }
533 1.1 rearnsha
534 1.54 bouyer KASSERT((armreg_fpexc_read() & VFP_FPEXC_EN) == 0);
535 1.39 rmind /*
536 1.39 rmind * If the VFP is already enabled we must be bouncing an instruction.
537 1.39 rmind */
538 1.39 rmind if (flags & PCU_REENABLE) {
539 1.39 rmind uint32_t fpexc = armreg_fpexc_read();
540 1.39 rmind armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
541 1.54 bouyer fregs->vfp_fpexc |= VFP_FPEXC_EN;
542 1.39 rmind return;
543 1.39 rmind }
544 1.54 bouyer KASSERT((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0);
545 1.33 skrll
546 1.39 rmind /*
547 1.39 rmind * Load and Enable the VFP (so that we can write the registers).
548 1.39 rmind */
549 1.39 rmind fregs->vfp_fpexc |= VFP_FPEXC_EN;
550 1.39 rmind armreg_fpexc_write(fregs->vfp_fpexc);
551 1.54 bouyer KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == NULL);
552 1.54 bouyer KASSERT(l->l_pcu_cpu[PCU_FPU] == NULL);
553 1.13 matt
554 1.39 rmind load_vfpregs(fregs);
555 1.39 rmind armreg_fpscr_write(fregs->vfp_fpscr);
556 1.13 matt
557 1.39 rmind if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
558 1.39 rmind /* Need to restore the exception handling state. */
559 1.52 chs armreg_fpinst_write(fregs->vfp_fpinst);
560 1.39 rmind if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
561 1.52 chs armreg_fpinst2_write(fregs->vfp_fpinst2);
562 1.1 rearnsha }
563 1.1 rearnsha }
564 1.1 rearnsha
565 1.1 rearnsha void
566 1.39 rmind vfp_state_save(lwp_t *l)
567 1.1 rearnsha {
568 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
569 1.39 rmind struct vfpreg * const fregs = &pcb->pcb_vfp;
570 1.21 matt uint32_t fpexc = armreg_fpexc_read();
571 1.33 skrll
572 1.54 bouyer KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == l);
573 1.54 bouyer KASSERT(curcpu() == l->l_pcu_cpu[PCU_FPU]);
574 1.54 bouyer KASSERT(curlwp == l || curlwp->l_pcu_cpu[PCU_FPU] != curcpu());
575 1.33 skrll /*
576 1.33 skrll * Enable the VFP (so we can read the registers).
577 1.33 skrll * Make sure the exception bit is cleared so that we can
578 1.33 skrll * safely dump the registers.
579 1.33 skrll */
580 1.21 matt armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
581 1.1 rearnsha
582 1.4 matt fregs->vfp_fpexc = fpexc;
583 1.4 matt if (fpexc & VFP_FPEXC_EX) {
584 1.4 matt /* Need to save the exception handling state */
585 1.21 matt fregs->vfp_fpinst = armreg_fpinst_read();
586 1.21 matt if (fpexc & VFP_FPEXC_FP2V)
587 1.21 matt fregs->vfp_fpinst2 = armreg_fpinst2_read();
588 1.1 rearnsha }
589 1.21 matt fregs->vfp_fpscr = armreg_fpscr_read();
590 1.13 matt save_vfpregs(fregs);
591 1.4 matt
592 1.1 rearnsha /* Disable the VFP. */
593 1.33 skrll armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
594 1.1 rearnsha }
595 1.1 rearnsha
596 1.1 rearnsha void
597 1.39 rmind vfp_state_release(lwp_t *l)
598 1.1 rearnsha {
599 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
600 1.1 rearnsha
601 1.39 rmind /*
602 1.39 rmind * Now mark the VFP as disabled (and our state
603 1.39 rmind * has been already saved or is being discarded).
604 1.39 rmind */
605 1.39 rmind pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
606 1.1 rearnsha
607 1.1 rearnsha /*
608 1.4 matt * Turn off the FPU so the next time a VFP instruction is issued
609 1.4 matt * an exception happens. We don't know if this LWP's state was
610 1.4 matt * loaded but if we turned off the FPU for some other LWP, when
611 1.4 matt * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
612 1.13 matt * is still set so it just restore fpexc and return since its
613 1.4 matt * contents are still sitting in the VFP.
614 1.1 rearnsha */
615 1.21 matt armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
616 1.1 rearnsha }
617 1.1 rearnsha
618 1.1 rearnsha void
619 1.51 chs vfp_savecontext(lwp_t *l)
620 1.1 rearnsha {
621 1.51 chs pcu_save(&arm_vfp_ops, l);
622 1.1 rearnsha }
623 1.1 rearnsha
624 1.1 rearnsha void
625 1.51 chs vfp_discardcontext(lwp_t *l, bool used_p)
626 1.1 rearnsha {
627 1.51 chs pcu_discard(&arm_vfp_ops, l, used_p);
628 1.25 matt }
629 1.25 matt
630 1.25 matt bool
631 1.51 chs vfp_used_p(const lwp_t *l)
632 1.25 matt {
633 1.51 chs return pcu_valid_p(&arm_vfp_ops, l);
634 1.13 matt }
635 1.13 matt
636 1.13 matt void
637 1.8 matt vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
638 1.8 matt {
639 1.51 chs if (vfp_used_p(l)) {
640 1.8 matt const struct pcb * const pcb = lwp_getpcb(l);
641 1.51 chs
642 1.51 chs pcu_save(&arm_vfp_ops, l);
643 1.8 matt mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
644 1.8 matt memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
645 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
646 1.10 matt *flagsp |= _UC_FPU|_UC_ARM_VFP;
647 1.8 matt }
648 1.8 matt }
649 1.8 matt
650 1.8 matt void
651 1.8 matt vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
652 1.8 matt {
653 1.8 matt struct pcb * const pcb = lwp_getpcb(l);
654 1.51 chs
655 1.51 chs pcu_discard(&arm_vfp_ops, l, true);
656 1.8 matt pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
657 1.8 matt memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
658 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
659 1.8 matt }
660 1.8 matt
661 1.4 matt #endif /* FPU_VFP */
662