vfp_init.c revision 1.65 1 1.65 riastrad /* $NetBSD: vfp_init.c,v 1.65 2020/06/29 23:54:06 riastradh Exp $ */
2 1.1 rearnsha
3 1.1 rearnsha /*
4 1.1 rearnsha * Copyright (c) 2008 ARM Ltd
5 1.1 rearnsha * All rights reserved.
6 1.1 rearnsha *
7 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
8 1.1 rearnsha * modification, are permitted provided that the following conditions
9 1.1 rearnsha * are met:
10 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
11 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
12 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
14 1.1 rearnsha * documentation and/or other materials provided with the distribution.
15 1.1 rearnsha * 3. The name of the company may not be used to endorse or promote
16 1.1 rearnsha * products derived from this software without specific prior written
17 1.1 rearnsha * permission.
18 1.1 rearnsha *
19 1.1 rearnsha * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 1.1 rearnsha * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 rearnsha * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 rearnsha * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 1.1 rearnsha * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 rearnsha * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 1.1 rearnsha * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rearnsha * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 1.1 rearnsha * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 1.1 rearnsha * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 1.1 rearnsha * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 1.1 rearnsha */
31 1.1 rearnsha
32 1.59 skrll #include "opt_cputypes.h"
33 1.59 skrll
34 1.58 skrll #include <sys/cdefs.h>
35 1.65 riastrad __KERNEL_RCSID(0, "$NetBSD: vfp_init.c,v 1.65 2020/06/29 23:54:06 riastradh Exp $");
36 1.58 skrll
37 1.1 rearnsha #include <sys/param.h>
38 1.1 rearnsha #include <sys/types.h>
39 1.1 rearnsha #include <sys/systm.h>
40 1.1 rearnsha #include <sys/device.h>
41 1.1 rearnsha #include <sys/proc.h>
42 1.4 matt #include <sys/cpu.h>
43 1.1 rearnsha
44 1.23 matt #include <arm/locore.h>
45 1.5 matt #include <arm/pcb.h>
46 1.1 rearnsha #include <arm/undefined.h>
47 1.1 rearnsha #include <arm/vfpreg.h>
48 1.8 matt #include <arm/mcontext.h>
49 1.65 riastrad #include <arm/fpu.h>
50 1.1 rearnsha
51 1.12 matt #include <uvm/uvm_extern.h> /* for pmap.h */
52 1.12 matt
53 1.11 matt #ifdef FPU_VFP
54 1.11 matt
55 1.29 matt #ifdef CPU_CORTEX
56 1.56 christos #define SETFPU __asm(".fpu\tvfpv4")
57 1.29 matt #else
58 1.56 christos #define SETFPU __asm(".fpu\tvfp")
59 1.29 matt #endif
60 1.56 christos SETFPU;
61 1.29 matt
62 1.1 rearnsha /* FLDMD <X>, {d0-d15} */
63 1.11 matt static inline void
64 1.13 matt load_vfpregs_lo(const uint64_t *p)
65 1.10 matt {
66 1.56 christos SETFPU;
67 1.64 joerg __asm __volatile(".fpu vfp\n vldmia\t%0, {d0-d15}" :: "r" (p) : "memory");
68 1.10 matt }
69 1.10 matt
70 1.10 matt /* FSTMD <X>, {d0-d15} */
71 1.11 matt static inline void
72 1.10 matt save_vfpregs_lo(uint64_t *p)
73 1.10 matt {
74 1.56 christos SETFPU;
75 1.64 joerg __asm __volatile(".fpu vfp\n vstmia\t%0, {d0-d15}" :: "r" (p) : "memory");
76 1.10 matt }
77 1.10 matt
78 1.10 matt #ifdef CPU_CORTEX
79 1.10 matt /* FLDMD <X>, {d16-d31} */
80 1.11 matt static inline void
81 1.13 matt load_vfpregs_hi(const uint64_t *p)
82 1.10 matt {
83 1.56 christos SETFPU;
84 1.64 joerg __asm __volatile(".fpu neon-vfpv4\n vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
85 1.10 matt }
86 1.10 matt
87 1.10 matt /* FLDMD <X>, {d16-d31} */
88 1.11 matt static inline void
89 1.10 matt save_vfpregs_hi(uint64_t *p)
90 1.10 matt {
91 1.56 christos SETFPU;
92 1.64 joerg __asm __volatile(".fpu neon-vfpv4\nvstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
93 1.10 matt }
94 1.10 matt #endif
95 1.1 rearnsha
96 1.13 matt static inline void
97 1.13 matt load_vfpregs(const struct vfpreg *fregs)
98 1.13 matt {
99 1.13 matt load_vfpregs_lo(fregs->vfp_regs);
100 1.13 matt #ifdef CPU_CORTEX
101 1.13 matt #ifdef CPU_ARM11
102 1.13 matt switch (curcpu()->ci_vfp_id) {
103 1.13 matt case FPU_VFP_CORTEXA5:
104 1.13 matt case FPU_VFP_CORTEXA7:
105 1.13 matt case FPU_VFP_CORTEXA8:
106 1.13 matt case FPU_VFP_CORTEXA9:
107 1.20 matt case FPU_VFP_CORTEXA15:
108 1.42 slp case FPU_VFP_CORTEXA15_QEMU:
109 1.50 skrll case FPU_VFP_CORTEXA53:
110 1.53 jmcneill case FPU_VFP_CORTEXA57:
111 1.13 matt #endif
112 1.13 matt load_vfpregs_hi(fregs->vfp_regs);
113 1.13 matt #ifdef CPU_ARM11
114 1.13 matt break;
115 1.13 matt }
116 1.13 matt #endif
117 1.13 matt #endif
118 1.13 matt }
119 1.13 matt
120 1.13 matt static inline void
121 1.13 matt save_vfpregs(struct vfpreg *fregs)
122 1.13 matt {
123 1.13 matt save_vfpregs_lo(fregs->vfp_regs);
124 1.13 matt #ifdef CPU_CORTEX
125 1.13 matt #ifdef CPU_ARM11
126 1.13 matt switch (curcpu()->ci_vfp_id) {
127 1.13 matt case FPU_VFP_CORTEXA5:
128 1.13 matt case FPU_VFP_CORTEXA7:
129 1.13 matt case FPU_VFP_CORTEXA8:
130 1.13 matt case FPU_VFP_CORTEXA9:
131 1.20 matt case FPU_VFP_CORTEXA15:
132 1.42 slp case FPU_VFP_CORTEXA15_QEMU:
133 1.50 skrll case FPU_VFP_CORTEXA53:
134 1.53 jmcneill case FPU_VFP_CORTEXA57:
135 1.13 matt #endif
136 1.13 matt save_vfpregs_hi(fregs->vfp_regs);
137 1.13 matt #ifdef CPU_ARM11
138 1.13 matt break;
139 1.13 matt }
140 1.13 matt #endif
141 1.13 matt #endif
142 1.13 matt }
143 1.13 matt
144 1.1 rearnsha /* The real handler for VFP bounces. */
145 1.1 rearnsha static int vfp_handler(u_int, u_int, trapframe_t *, int);
146 1.13 matt #ifdef CPU_CORTEX
147 1.13 matt static int neon_handler(u_int, u_int, trapframe_t *, int);
148 1.13 matt #endif
149 1.1 rearnsha
150 1.13 matt static void vfp_state_load(lwp_t *, u_int);
151 1.39 rmind static void vfp_state_save(lwp_t *);
152 1.39 rmind static void vfp_state_release(lwp_t *);
153 1.4 matt
154 1.4 matt const pcu_ops_t arm_vfp_ops = {
155 1.4 matt .pcu_id = PCU_FPU,
156 1.13 matt .pcu_state_save = vfp_state_save,
157 1.4 matt .pcu_state_load = vfp_state_load,
158 1.4 matt .pcu_state_release = vfp_state_release,
159 1.4 matt };
160 1.1 rearnsha
161 1.34 matt /* determine what bits can be changed */
162 1.34 matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
163 1.34 matt /* default to run fast */
164 1.34 matt uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
165 1.34 matt
166 1.1 rearnsha /*
167 1.1 rearnsha * Used to test for a VFP. The following function is installed as a coproc10
168 1.1 rearnsha * handler on the undefined instruction vector and then we issue a VFP
169 1.1 rearnsha * instruction. If undefined_test is non zero then the VFP did not handle
170 1.1 rearnsha * the instruction so must be absent, or disabled.
171 1.1 rearnsha */
172 1.1 rearnsha
173 1.1 rearnsha static int undefined_test;
174 1.1 rearnsha
175 1.1 rearnsha static int
176 1.4 matt vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
177 1.1 rearnsha {
178 1.1 rearnsha
179 1.1 rearnsha frame->tf_pc += INSN_SIZE;
180 1.1 rearnsha ++undefined_test;
181 1.4 matt return 0;
182 1.4 matt }
183 1.4 matt
184 1.35 matt #else
185 1.35 matt /* determine what bits can be changed */
186 1.35 matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
187 1.4 matt #endif /* FPU_VFP */
188 1.4 matt
189 1.4 matt static int
190 1.4 matt vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
191 1.4 matt {
192 1.4 matt struct lwp * const l = curlwp;
193 1.4 matt const u_int regno = (insn >> 12) & 0xf;
194 1.4 matt /*
195 1.4 matt * Only match move to/from the FPSCR register and we
196 1.4 matt * can't be using the SP,LR,PC as a source.
197 1.4 matt */
198 1.4 matt if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
199 1.4 matt return 1;
200 1.4 matt
201 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
202 1.4 matt
203 1.4 matt #ifdef FPU_VFP
204 1.4 matt /*
205 1.4 matt * If FPU is valid somewhere, let's just reenable VFP and
206 1.4 matt * retry the instruction (only safe thing to do since the
207 1.4 matt * pcb has a stale copy).
208 1.4 matt */
209 1.4 matt if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
210 1.4 matt return 1;
211 1.4 matt
212 1.51 chs if (__predict_false(!vfp_used_p(l))) {
213 1.35 matt pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
214 1.4 matt }
215 1.26 matt #endif
216 1.4 matt
217 1.4 matt /*
218 1.30 skrll * We now know the pcb has the saved copy.
219 1.4 matt */
220 1.4 matt register_t * const regp = &frame->tf_r0 + regno;
221 1.4 matt if (insn & 0x00100000) {
222 1.4 matt *regp = pcb->pcb_vfp.vfp_fpscr;
223 1.4 matt } else {
224 1.34 matt pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
225 1.34 matt pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
226 1.4 matt }
227 1.4 matt
228 1.37 matt curcpu()->ci_vfp_evs[0].ev_count++;
229 1.61 skrll
230 1.4 matt frame->tf_pc += INSN_SIZE;
231 1.4 matt return 0;
232 1.1 rearnsha }
233 1.1 rearnsha
234 1.4 matt #ifndef FPU_VFP
235 1.4 matt /*
236 1.4 matt * If we don't want VFP support, we still need to handle emulating VFP FPSCR
237 1.4 matt * instructions.
238 1.4 matt */
239 1.4 matt void
240 1.37 matt vfp_attach(struct cpu_info *ci)
241 1.4 matt {
242 1.37 matt if (CPU_IS_PRIMARY(ci)) {
243 1.37 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
244 1.37 matt }
245 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
246 1.37 matt ci->ci_cpuname, "vfp fpscr traps");
247 1.4 matt }
248 1.4 matt
249 1.4 matt #else
250 1.1 rearnsha void
251 1.37 matt vfp_attach(struct cpu_info *ci)
252 1.1 rearnsha {
253 1.4 matt const char *model = NULL;
254 1.1 rearnsha
255 1.37 matt if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
256 1.37 matt || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
257 1.37 matt || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
258 1.37 matt #if 0
259 1.37 matt const uint32_t nsacr = armreg_nsacr_read();
260 1.37 matt const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
261 1.37 matt if ((nsacr & nsacr_vfp) != nsacr_vfp) {
262 1.40 matt aprint_normal_dev(ci->ci_dev,
263 1.40 matt "VFP access denied (NSACR=%#x)\n", nsacr);
264 1.62 skrll if (CPU_IS_PRIMARY(ci))
265 1.62 skrll install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
266 1.37 matt ci->ci_vfp_id = 0;
267 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
268 1.37 matt EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
269 1.37 matt "vfp fpscr traps");
270 1.37 matt return;
271 1.37 matt }
272 1.37 matt #endif
273 1.7 matt const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
274 1.7 matt const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
275 1.1 rearnsha
276 1.7 matt /*
277 1.7 matt * We first need to enable access to the coprocessors.
278 1.7 matt */
279 1.7 matt uint32_t cpacr = armreg_cpacr_read();
280 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
281 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
282 1.7 matt armreg_cpacr_write(cpacr);
283 1.1 rearnsha
284 1.48 jmcneill arm_isb();
285 1.48 jmcneill
286 1.7 matt /*
287 1.7 matt * If we could enable them, then they exist.
288 1.7 matt */
289 1.7 matt cpacr = armreg_cpacr_read();
290 1.40 matt bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
291 1.40 matt && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
292 1.28 matt if (!vfp_p) {
293 1.40 matt aprint_normal_dev(ci->ci_dev,
294 1.40 matt "VFP access denied (CPACR=%#x)\n", cpacr);
295 1.62 skrll if (CPU_IS_PRIMARY(ci))
296 1.62 skrll install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
297 1.28 matt ci->ci_vfp_id = 0;
298 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
299 1.37 matt EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
300 1.37 matt "vfp fpscr traps");
301 1.28 matt return;
302 1.28 matt }
303 1.6 matt }
304 1.6 matt
305 1.7 matt void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
306 1.7 matt
307 1.7 matt undefined_test = 0;
308 1.7 matt
309 1.21 matt const uint32_t fpsid = armreg_fpsid_read();
310 1.1 rearnsha
311 1.1 rearnsha remove_coproc_handler(uh);
312 1.1 rearnsha
313 1.1 rearnsha if (undefined_test != 0) {
314 1.4 matt aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
315 1.62 skrll if (CPU_IS_PRIMARY(ci))
316 1.62 skrll install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
317 1.4 matt ci->ci_vfp_id = 0;
318 1.1 rearnsha return;
319 1.1 rearnsha }
320 1.1 rearnsha
321 1.4 matt ci->ci_vfp_id = fpsid;
322 1.4 matt switch (fpsid & ~ VFP_FPSID_REV_MSK) {
323 1.4 matt case FPU_VFP10_ARM10E:
324 1.4 matt model = "VFP10 R1";
325 1.4 matt break;
326 1.4 matt case FPU_VFP11_ARM11:
327 1.4 matt model = "VFP11";
328 1.4 matt break;
329 1.36 matt case FPU_VFP_MV88SV58XX:
330 1.36 matt model = "VFP3";
331 1.36 matt break;
332 1.7 matt case FPU_VFP_CORTEXA5:
333 1.7 matt case FPU_VFP_CORTEXA7:
334 1.7 matt case FPU_VFP_CORTEXA8:
335 1.7 matt case FPU_VFP_CORTEXA9:
336 1.63 tnn case FPU_VFP_CORTEXA12:
337 1.20 matt case FPU_VFP_CORTEXA15:
338 1.42 slp case FPU_VFP_CORTEXA15_QEMU:
339 1.63 tnn case FPU_VFP_CORTEXA17:
340 1.50 skrll case FPU_VFP_CORTEXA53:
341 1.53 jmcneill case FPU_VFP_CORTEXA57:
342 1.37 matt if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
343 1.37 matt model = "VFP 4.0+";
344 1.37 matt } else {
345 1.37 matt model = "NEON MPE (VFP 3.0+)";
346 1.37 matt cpu_neon_present = 1;
347 1.37 matt }
348 1.6 matt break;
349 1.4 matt default:
350 1.36 matt aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
351 1.4 matt fpsid);
352 1.62 skrll if (CPU_IS_PRIMARY(ci))
353 1.62 skrll install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
354 1.35 matt vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
355 1.35 matt |VFP_FPSCR_RMODE;
356 1.35 matt vfp_fpscr_default = 0;
357 1.4 matt return;
358 1.4 matt }
359 1.1 rearnsha
360 1.17 matt cpu_fpu_present = 1;
361 1.21 matt cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
362 1.21 matt cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
363 1.1 rearnsha if (fpsid != 0) {
364 1.34 matt uint32_t f0 = armreg_mvfr0_read();
365 1.41 matt uint32_t f1 = armreg_mvfr1_read();
366 1.34 matt aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
367 1.37 matt device_unit(ci->ci_dev),
368 1.37 matt device_xname(ci->ci_dev),
369 1.34 matt model,
370 1.34 matt ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
371 1.34 matt ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
372 1.38 matt ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
373 1.34 matt ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
374 1.49 jmcneill aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
375 1.37 matt device_unit(ci->ci_dev), f0, f1);
376 1.37 matt if (CPU_IS_PRIMARY(ci)) {
377 1.37 matt if (f0 & ARM_MVFR0_ROUNDING_MASK) {
378 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_RMODE;
379 1.37 matt }
380 1.37 matt if (f1 & ARM_MVFR0_EXCEPT_MASK) {
381 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_ESUM;
382 1.37 matt }
383 1.38 matt // If hardware supports propagation of NaNs, select it.
384 1.37 matt if (f1 & ARM_MVFR1_D_NAN_MASK) {
385 1.37 matt vfp_fpscr_default &= ~VFP_FPSCR_DN;
386 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_DN;
387 1.37 matt }
388 1.37 matt // If hardware supports denormalized numbers, use it.
389 1.37 matt if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
390 1.37 matt vfp_fpscr_default &= ~VFP_FPSCR_FZ;
391 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_FZ;
392 1.37 matt }
393 1.37 matt }
394 1.37 matt }
395 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
396 1.37 matt ci->ci_cpuname, "vfp coproc use");
397 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
398 1.37 matt ci->ci_cpuname, "vfp coproc re-use");
399 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
400 1.37 matt ci->ci_cpuname, "vfp coproc fault");
401 1.62 skrll if (CPU_IS_PRIMARY(ci)) {
402 1.62 skrll install_coproc_handler(VFP_COPROC, vfp_handler);
403 1.62 skrll install_coproc_handler(VFP_COPROC2, vfp_handler);
404 1.13 matt #ifdef CPU_CORTEX
405 1.62 skrll if (cpu_neon_present)
406 1.62 skrll install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
407 1.13 matt #endif
408 1.62 skrll }
409 1.1 rearnsha }
410 1.1 rearnsha
411 1.1 rearnsha /* The real handler for VFP bounces. */
412 1.4 matt static int
413 1.21 matt vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
414 1.1 rearnsha {
415 1.4 matt struct cpu_info * const ci = curcpu();
416 1.1 rearnsha
417 1.1 rearnsha /* This shouldn't ever happen. */
418 1.1 rearnsha if (fault_code != FAULT_USER)
419 1.14 matt panic("VFP fault at %#x in non-user mode", frame->tf_pc);
420 1.1 rearnsha
421 1.27 matt if (ci->ci_vfp_id == 0) {
422 1.1 rearnsha /* No VFP detected, just fault. */
423 1.1 rearnsha return 1;
424 1.27 matt }
425 1.27 matt
426 1.47 matt /*
427 1.47 matt * If we already own the FPU and it's enabled (and no exception), raise
428 1.47 matt * SIGILL. If there is an exception, drop through to raise a SIGFPE.
429 1.47 matt */
430 1.46 matt if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
431 1.47 matt && (armreg_fpexc_read() & (VFP_FPEXC_EX|VFP_FPEXC_EN)) == VFP_FPEXC_EN)
432 1.47 matt return 1;
433 1.44 matt
434 1.27 matt /*
435 1.27 matt * Make sure we own the FP.
436 1.27 matt */
437 1.27 matt pcu_load(&arm_vfp_ops);
438 1.1 rearnsha
439 1.21 matt uint32_t fpexc = armreg_fpexc_read();
440 1.21 matt if (fpexc & VFP_FPEXC_EX) {
441 1.21 matt ksiginfo_t ksi;
442 1.21 matt KASSERT(fpexc & VFP_FPEXC_EN);
443 1.21 matt
444 1.37 matt curcpu()->ci_vfp_evs[2].ev_count++;
445 1.21 matt
446 1.21 matt /*
447 1.21 matt * Need the clear the exception condition so any signal
448 1.33 skrll * and future use can proceed.
449 1.21 matt */
450 1.31 skrll armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
451 1.21 matt
452 1.51 chs pcu_save(&arm_vfp_ops, curlwp);
453 1.33 skrll
454 1.33 skrll /*
455 1.33 skrll * XXX Need to emulate bounce instructions here to get correct
456 1.33 skrll * XXX exception codes, etc.
457 1.33 skrll */
458 1.21 matt KSI_INIT_TRAP(&ksi);
459 1.21 matt ksi.ksi_signo = SIGFPE;
460 1.21 matt if (fpexc & VFP_FPEXC_IXF)
461 1.21 matt ksi.ksi_code = FPE_FLTRES;
462 1.21 matt else if (fpexc & VFP_FPEXC_UFF)
463 1.21 matt ksi.ksi_code = FPE_FLTUND;
464 1.21 matt else if (fpexc & VFP_FPEXC_OFF)
465 1.21 matt ksi.ksi_code = FPE_FLTOVF;
466 1.21 matt else if (fpexc & VFP_FPEXC_DZF)
467 1.21 matt ksi.ksi_code = FPE_FLTDIV;
468 1.21 matt else if (fpexc & VFP_FPEXC_IOF)
469 1.21 matt ksi.ksi_code = FPE_FLTINV;
470 1.21 matt ksi.ksi_addr = (uint32_t *)address;
471 1.21 matt ksi.ksi_trap = 0;
472 1.21 matt trapsignal(curlwp, &ksi);
473 1.21 matt return 0;
474 1.21 matt }
475 1.21 matt
476 1.4 matt /* Need to restart the faulted instruction. */
477 1.4 matt // frame->tf_pc -= INSN_SIZE;
478 1.4 matt return 0;
479 1.4 matt }
480 1.1 rearnsha
481 1.13 matt #ifdef CPU_CORTEX
482 1.13 matt /* The real handler for NEON bounces. */
483 1.13 matt static int
484 1.21 matt neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
485 1.13 matt {
486 1.13 matt struct cpu_info * const ci = curcpu();
487 1.13 matt
488 1.13 matt if (ci->ci_vfp_id == 0)
489 1.13 matt /* No VFP detected, just fault. */
490 1.13 matt return 1;
491 1.13 matt
492 1.13 matt if ((insn & 0xfe000000) != 0xf2000000
493 1.13 matt && (insn & 0xfe000000) != 0xf4000000)
494 1.13 matt /* Not NEON instruction, just fault. */
495 1.13 matt return 1;
496 1.13 matt
497 1.13 matt /* This shouldn't ever happen. */
498 1.13 matt if (fault_code != FAULT_USER)
499 1.13 matt panic("NEON fault in non-user mode");
500 1.13 matt
501 1.45 matt /* if we already own the FPU and it's enabled, raise SIGILL */
502 1.45 matt if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
503 1.45 matt && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
504 1.47 matt return 1;
505 1.43 matt
506 1.13 matt pcu_load(&arm_vfp_ops);
507 1.13 matt
508 1.13 matt /* Need to restart the faulted instruction. */
509 1.13 matt // frame->tf_pc -= INSN_SIZE;
510 1.13 matt return 0;
511 1.13 matt }
512 1.13 matt #endif
513 1.13 matt
514 1.4 matt static void
515 1.13 matt vfp_state_load(lwp_t *l, u_int flags)
516 1.4 matt {
517 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
518 1.4 matt struct vfpreg * const fregs = &pcb->pcb_vfp;
519 1.1 rearnsha
520 1.1 rearnsha /*
521 1.1 rearnsha * Instrument VFP usage -- if a process has not previously
522 1.1 rearnsha * used the VFP, mark it as having used VFP for the first time,
523 1.1 rearnsha * and count this event.
524 1.1 rearnsha *
525 1.1 rearnsha * If a process has used the VFP, count a "used VFP, and took
526 1.1 rearnsha * a trap to use it again" event.
527 1.1 rearnsha */
528 1.39 rmind if (__predict_false((flags & PCU_VALID) == 0)) {
529 1.37 matt curcpu()->ci_vfp_evs[0].ev_count++;
530 1.34 matt pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
531 1.4 matt } else {
532 1.37 matt curcpu()->ci_vfp_evs[1].ev_count++;
533 1.4 matt }
534 1.1 rearnsha
535 1.54 bouyer KASSERT((armreg_fpexc_read() & VFP_FPEXC_EN) == 0);
536 1.39 rmind /*
537 1.39 rmind * If the VFP is already enabled we must be bouncing an instruction.
538 1.39 rmind */
539 1.39 rmind if (flags & PCU_REENABLE) {
540 1.39 rmind uint32_t fpexc = armreg_fpexc_read();
541 1.39 rmind armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
542 1.54 bouyer fregs->vfp_fpexc |= VFP_FPEXC_EN;
543 1.39 rmind return;
544 1.39 rmind }
545 1.54 bouyer KASSERT((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0);
546 1.33 skrll
547 1.39 rmind /*
548 1.39 rmind * Load and Enable the VFP (so that we can write the registers).
549 1.39 rmind */
550 1.39 rmind fregs->vfp_fpexc |= VFP_FPEXC_EN;
551 1.39 rmind armreg_fpexc_write(fregs->vfp_fpexc);
552 1.54 bouyer KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == NULL);
553 1.54 bouyer KASSERT(l->l_pcu_cpu[PCU_FPU] == NULL);
554 1.13 matt
555 1.39 rmind load_vfpregs(fregs);
556 1.39 rmind armreg_fpscr_write(fregs->vfp_fpscr);
557 1.13 matt
558 1.39 rmind if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
559 1.39 rmind /* Need to restore the exception handling state. */
560 1.52 chs armreg_fpinst_write(fregs->vfp_fpinst);
561 1.39 rmind if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
562 1.52 chs armreg_fpinst2_write(fregs->vfp_fpinst2);
563 1.1 rearnsha }
564 1.1 rearnsha }
565 1.1 rearnsha
566 1.1 rearnsha void
567 1.39 rmind vfp_state_save(lwp_t *l)
568 1.1 rearnsha {
569 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
570 1.39 rmind struct vfpreg * const fregs = &pcb->pcb_vfp;
571 1.21 matt uint32_t fpexc = armreg_fpexc_read();
572 1.33 skrll
573 1.54 bouyer KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == l);
574 1.54 bouyer KASSERT(curcpu() == l->l_pcu_cpu[PCU_FPU]);
575 1.54 bouyer KASSERT(curlwp == l || curlwp->l_pcu_cpu[PCU_FPU] != curcpu());
576 1.33 skrll /*
577 1.33 skrll * Enable the VFP (so we can read the registers).
578 1.33 skrll * Make sure the exception bit is cleared so that we can
579 1.33 skrll * safely dump the registers.
580 1.33 skrll */
581 1.21 matt armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
582 1.1 rearnsha
583 1.4 matt fregs->vfp_fpexc = fpexc;
584 1.4 matt if (fpexc & VFP_FPEXC_EX) {
585 1.4 matt /* Need to save the exception handling state */
586 1.21 matt fregs->vfp_fpinst = armreg_fpinst_read();
587 1.21 matt if (fpexc & VFP_FPEXC_FP2V)
588 1.21 matt fregs->vfp_fpinst2 = armreg_fpinst2_read();
589 1.1 rearnsha }
590 1.21 matt fregs->vfp_fpscr = armreg_fpscr_read();
591 1.13 matt save_vfpregs(fregs);
592 1.4 matt
593 1.1 rearnsha /* Disable the VFP. */
594 1.33 skrll armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
595 1.1 rearnsha }
596 1.1 rearnsha
597 1.1 rearnsha void
598 1.39 rmind vfp_state_release(lwp_t *l)
599 1.1 rearnsha {
600 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
601 1.1 rearnsha
602 1.39 rmind /*
603 1.39 rmind * Now mark the VFP as disabled (and our state
604 1.39 rmind * has been already saved or is being discarded).
605 1.39 rmind */
606 1.39 rmind pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
607 1.1 rearnsha
608 1.1 rearnsha /*
609 1.4 matt * Turn off the FPU so the next time a VFP instruction is issued
610 1.4 matt * an exception happens. We don't know if this LWP's state was
611 1.4 matt * loaded but if we turned off the FPU for some other LWP, when
612 1.4 matt * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
613 1.13 matt * is still set so it just restore fpexc and return since its
614 1.4 matt * contents are still sitting in the VFP.
615 1.1 rearnsha */
616 1.21 matt armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
617 1.1 rearnsha }
618 1.1 rearnsha
619 1.1 rearnsha void
620 1.51 chs vfp_savecontext(lwp_t *l)
621 1.1 rearnsha {
622 1.51 chs pcu_save(&arm_vfp_ops, l);
623 1.1 rearnsha }
624 1.1 rearnsha
625 1.1 rearnsha void
626 1.51 chs vfp_discardcontext(lwp_t *l, bool used_p)
627 1.1 rearnsha {
628 1.51 chs pcu_discard(&arm_vfp_ops, l, used_p);
629 1.25 matt }
630 1.25 matt
631 1.25 matt bool
632 1.51 chs vfp_used_p(const lwp_t *l)
633 1.25 matt {
634 1.51 chs return pcu_valid_p(&arm_vfp_ops, l);
635 1.13 matt }
636 1.13 matt
637 1.13 matt void
638 1.8 matt vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
639 1.8 matt {
640 1.51 chs if (vfp_used_p(l)) {
641 1.8 matt const struct pcb * const pcb = lwp_getpcb(l);
642 1.51 chs
643 1.51 chs pcu_save(&arm_vfp_ops, l);
644 1.8 matt mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
645 1.8 matt memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
646 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
647 1.10 matt *flagsp |= _UC_FPU|_UC_ARM_VFP;
648 1.8 matt }
649 1.8 matt }
650 1.8 matt
651 1.8 matt void
652 1.8 matt vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
653 1.8 matt {
654 1.8 matt struct pcb * const pcb = lwp_getpcb(l);
655 1.51 chs
656 1.51 chs pcu_discard(&arm_vfp_ops, l, true);
657 1.8 matt pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
658 1.8 matt memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
659 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
660 1.8 matt }
661 1.8 matt
662 1.65 riastrad void
663 1.65 riastrad fpu_kern_enter(void)
664 1.65 riastrad {
665 1.65 riastrad struct lwp *l = curlwp;
666 1.65 riastrad struct cpu_info *ci;
667 1.65 riastrad uint32_t fpexc;
668 1.65 riastrad int s;
669 1.65 riastrad
670 1.65 riastrad /*
671 1.65 riastrad * Block all interrupts. We must block preemption since -- if
672 1.65 riastrad * this is a user thread -- there is nowhere to save the kernel
673 1.65 riastrad * fpu state, and if we want this to be usable in interrupts,
674 1.65 riastrad * we can't let interrupts interfere with the fpu state in use
675 1.65 riastrad * since there's nowhere for them to save it.
676 1.65 riastrad */
677 1.65 riastrad s = splhigh();
678 1.65 riastrad ci = curcpu();
679 1.65 riastrad KASSERT(ci->ci_kfpu_spl == -1);
680 1.65 riastrad ci->ci_kfpu_spl = s;
681 1.65 riastrad
682 1.65 riastrad /*
683 1.65 riastrad * If we are in a softint and have a pinned lwp, the fpu state
684 1.65 riastrad * is that of the pinned lwp, so save it there.
685 1.65 riastrad */
686 1.65 riastrad if ((l->l_pflag & LP_INTR) && (l->l_switchto != NULL))
687 1.65 riastrad l = l->l_switchto;
688 1.65 riastrad if (vfp_used_p(l))
689 1.65 riastrad vfp_savecontext(l);
690 1.65 riastrad
691 1.65 riastrad /* Enable the fpu. */
692 1.65 riastrad fpexc = armreg_fpexc_read();
693 1.65 riastrad fpexc |= VFP_FPEXC_EN;
694 1.65 riastrad fpexc &= ~VFP_FPEXC_EX;
695 1.65 riastrad armreg_fpexc_write(fpexc);
696 1.65 riastrad }
697 1.65 riastrad
698 1.65 riastrad void
699 1.65 riastrad fpu_kern_leave(void)
700 1.65 riastrad {
701 1.65 riastrad static const struct vfpreg zero_vfpreg;
702 1.65 riastrad struct cpu_info *ci = curcpu();
703 1.65 riastrad int s;
704 1.65 riastrad uint32_t fpexc;
705 1.65 riastrad
706 1.65 riastrad KASSERT(ci->ci_cpl == IPL_HIGH);
707 1.65 riastrad KASSERT(ci->ci_kfpu_spl != -1);
708 1.65 riastrad
709 1.65 riastrad /*
710 1.65 riastrad * Zero the fpu registers; otherwise we might leak secrets
711 1.65 riastrad * through Spectre-class attacks to userland, even if there are
712 1.65 riastrad * no bugs in fpu state management.
713 1.65 riastrad */
714 1.65 riastrad load_vfpregs(&zero_vfpreg);
715 1.65 riastrad
716 1.65 riastrad /*
717 1.65 riastrad * Disable the fpu so that the kernel can't accidentally use
718 1.65 riastrad * it again.
719 1.65 riastrad */
720 1.65 riastrad fpexc = armreg_fpexc_read();
721 1.65 riastrad fpexc &= ~VFP_FPEXC_EN;
722 1.65 riastrad armreg_fpexc_write(fpexc);
723 1.65 riastrad
724 1.65 riastrad /* Restore interrupts. */
725 1.65 riastrad s = ci->ci_kfpu_spl;
726 1.65 riastrad ci->ci_kfpu_spl = -1;
727 1.65 riastrad splx(s);
728 1.65 riastrad }
729 1.65 riastrad
730 1.4 matt #endif /* FPU_VFP */
731