vfp_init.c revision 1.66 1 1.66 riastrad /* $NetBSD: vfp_init.c,v 1.66 2020/06/29 23:56:31 riastradh Exp $ */
2 1.1 rearnsha
3 1.1 rearnsha /*
4 1.1 rearnsha * Copyright (c) 2008 ARM Ltd
5 1.1 rearnsha * All rights reserved.
6 1.1 rearnsha *
7 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
8 1.1 rearnsha * modification, are permitted provided that the following conditions
9 1.1 rearnsha * are met:
10 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
11 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
12 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
14 1.1 rearnsha * documentation and/or other materials provided with the distribution.
15 1.1 rearnsha * 3. The name of the company may not be used to endorse or promote
16 1.1 rearnsha * products derived from this software without specific prior written
17 1.1 rearnsha * permission.
18 1.1 rearnsha *
19 1.1 rearnsha * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 1.1 rearnsha * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 rearnsha * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 rearnsha * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 1.1 rearnsha * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 rearnsha * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 1.1 rearnsha * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rearnsha * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 1.1 rearnsha * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 1.1 rearnsha * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 1.1 rearnsha * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 1.1 rearnsha */
31 1.1 rearnsha
32 1.59 skrll #include "opt_cputypes.h"
33 1.59 skrll
34 1.58 skrll #include <sys/cdefs.h>
35 1.66 riastrad __KERNEL_RCSID(0, "$NetBSD: vfp_init.c,v 1.66 2020/06/29 23:56:31 riastradh Exp $");
36 1.58 skrll
37 1.1 rearnsha #include <sys/param.h>
38 1.1 rearnsha #include <sys/types.h>
39 1.1 rearnsha #include <sys/systm.h>
40 1.1 rearnsha #include <sys/device.h>
41 1.1 rearnsha #include <sys/proc.h>
42 1.4 matt #include <sys/cpu.h>
43 1.1 rearnsha
44 1.23 matt #include <arm/locore.h>
45 1.5 matt #include <arm/pcb.h>
46 1.1 rearnsha #include <arm/undefined.h>
47 1.1 rearnsha #include <arm/vfpreg.h>
48 1.8 matt #include <arm/mcontext.h>
49 1.65 riastrad #include <arm/fpu.h>
50 1.1 rearnsha
51 1.12 matt #include <uvm/uvm_extern.h> /* for pmap.h */
52 1.12 matt
53 1.66 riastrad #include <crypto/aes/aes.h>
54 1.66 riastrad #include <crypto/aes/arch/arm/aes_neon.h>
55 1.66 riastrad
56 1.11 matt #ifdef FPU_VFP
57 1.11 matt
58 1.29 matt #ifdef CPU_CORTEX
59 1.56 christos #define SETFPU __asm(".fpu\tvfpv4")
60 1.29 matt #else
61 1.56 christos #define SETFPU __asm(".fpu\tvfp")
62 1.29 matt #endif
63 1.56 christos SETFPU;
64 1.29 matt
65 1.1 rearnsha /* FLDMD <X>, {d0-d15} */
66 1.11 matt static inline void
67 1.13 matt load_vfpregs_lo(const uint64_t *p)
68 1.10 matt {
69 1.56 christos SETFPU;
70 1.64 joerg __asm __volatile(".fpu vfp\n vldmia\t%0, {d0-d15}" :: "r" (p) : "memory");
71 1.10 matt }
72 1.10 matt
73 1.10 matt /* FSTMD <X>, {d0-d15} */
74 1.11 matt static inline void
75 1.10 matt save_vfpregs_lo(uint64_t *p)
76 1.10 matt {
77 1.56 christos SETFPU;
78 1.64 joerg __asm __volatile(".fpu vfp\n vstmia\t%0, {d0-d15}" :: "r" (p) : "memory");
79 1.10 matt }
80 1.10 matt
81 1.10 matt #ifdef CPU_CORTEX
82 1.10 matt /* FLDMD <X>, {d16-d31} */
83 1.11 matt static inline void
84 1.13 matt load_vfpregs_hi(const uint64_t *p)
85 1.10 matt {
86 1.56 christos SETFPU;
87 1.64 joerg __asm __volatile(".fpu neon-vfpv4\n vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
88 1.10 matt }
89 1.10 matt
90 1.10 matt /* FLDMD <X>, {d16-d31} */
91 1.11 matt static inline void
92 1.10 matt save_vfpregs_hi(uint64_t *p)
93 1.10 matt {
94 1.56 christos SETFPU;
95 1.64 joerg __asm __volatile(".fpu neon-vfpv4\nvstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
96 1.10 matt }
97 1.10 matt #endif
98 1.1 rearnsha
99 1.13 matt static inline void
100 1.13 matt load_vfpregs(const struct vfpreg *fregs)
101 1.13 matt {
102 1.13 matt load_vfpregs_lo(fregs->vfp_regs);
103 1.13 matt #ifdef CPU_CORTEX
104 1.13 matt #ifdef CPU_ARM11
105 1.13 matt switch (curcpu()->ci_vfp_id) {
106 1.13 matt case FPU_VFP_CORTEXA5:
107 1.13 matt case FPU_VFP_CORTEXA7:
108 1.13 matt case FPU_VFP_CORTEXA8:
109 1.13 matt case FPU_VFP_CORTEXA9:
110 1.20 matt case FPU_VFP_CORTEXA15:
111 1.42 slp case FPU_VFP_CORTEXA15_QEMU:
112 1.50 skrll case FPU_VFP_CORTEXA53:
113 1.53 jmcneill case FPU_VFP_CORTEXA57:
114 1.13 matt #endif
115 1.13 matt load_vfpregs_hi(fregs->vfp_regs);
116 1.13 matt #ifdef CPU_ARM11
117 1.13 matt break;
118 1.13 matt }
119 1.13 matt #endif
120 1.13 matt #endif
121 1.13 matt }
122 1.13 matt
123 1.13 matt static inline void
124 1.13 matt save_vfpregs(struct vfpreg *fregs)
125 1.13 matt {
126 1.13 matt save_vfpregs_lo(fregs->vfp_regs);
127 1.13 matt #ifdef CPU_CORTEX
128 1.13 matt #ifdef CPU_ARM11
129 1.13 matt switch (curcpu()->ci_vfp_id) {
130 1.13 matt case FPU_VFP_CORTEXA5:
131 1.13 matt case FPU_VFP_CORTEXA7:
132 1.13 matt case FPU_VFP_CORTEXA8:
133 1.13 matt case FPU_VFP_CORTEXA9:
134 1.20 matt case FPU_VFP_CORTEXA15:
135 1.42 slp case FPU_VFP_CORTEXA15_QEMU:
136 1.50 skrll case FPU_VFP_CORTEXA53:
137 1.53 jmcneill case FPU_VFP_CORTEXA57:
138 1.13 matt #endif
139 1.13 matt save_vfpregs_hi(fregs->vfp_regs);
140 1.13 matt #ifdef CPU_ARM11
141 1.13 matt break;
142 1.13 matt }
143 1.13 matt #endif
144 1.13 matt #endif
145 1.13 matt }
146 1.13 matt
147 1.1 rearnsha /* The real handler for VFP bounces. */
148 1.1 rearnsha static int vfp_handler(u_int, u_int, trapframe_t *, int);
149 1.13 matt #ifdef CPU_CORTEX
150 1.13 matt static int neon_handler(u_int, u_int, trapframe_t *, int);
151 1.13 matt #endif
152 1.1 rearnsha
153 1.13 matt static void vfp_state_load(lwp_t *, u_int);
154 1.39 rmind static void vfp_state_save(lwp_t *);
155 1.39 rmind static void vfp_state_release(lwp_t *);
156 1.4 matt
157 1.4 matt const pcu_ops_t arm_vfp_ops = {
158 1.4 matt .pcu_id = PCU_FPU,
159 1.13 matt .pcu_state_save = vfp_state_save,
160 1.4 matt .pcu_state_load = vfp_state_load,
161 1.4 matt .pcu_state_release = vfp_state_release,
162 1.4 matt };
163 1.1 rearnsha
164 1.34 matt /* determine what bits can be changed */
165 1.34 matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
166 1.34 matt /* default to run fast */
167 1.34 matt uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
168 1.34 matt
169 1.1 rearnsha /*
170 1.1 rearnsha * Used to test for a VFP. The following function is installed as a coproc10
171 1.1 rearnsha * handler on the undefined instruction vector and then we issue a VFP
172 1.1 rearnsha * instruction. If undefined_test is non zero then the VFP did not handle
173 1.1 rearnsha * the instruction so must be absent, or disabled.
174 1.1 rearnsha */
175 1.1 rearnsha
176 1.1 rearnsha static int undefined_test;
177 1.1 rearnsha
178 1.1 rearnsha static int
179 1.4 matt vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
180 1.1 rearnsha {
181 1.1 rearnsha
182 1.1 rearnsha frame->tf_pc += INSN_SIZE;
183 1.1 rearnsha ++undefined_test;
184 1.4 matt return 0;
185 1.4 matt }
186 1.4 matt
187 1.35 matt #else
188 1.35 matt /* determine what bits can be changed */
189 1.35 matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
190 1.4 matt #endif /* FPU_VFP */
191 1.4 matt
192 1.4 matt static int
193 1.4 matt vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
194 1.4 matt {
195 1.4 matt struct lwp * const l = curlwp;
196 1.4 matt const u_int regno = (insn >> 12) & 0xf;
197 1.4 matt /*
198 1.4 matt * Only match move to/from the FPSCR register and we
199 1.4 matt * can't be using the SP,LR,PC as a source.
200 1.4 matt */
201 1.4 matt if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
202 1.4 matt return 1;
203 1.4 matt
204 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
205 1.4 matt
206 1.4 matt #ifdef FPU_VFP
207 1.4 matt /*
208 1.4 matt * If FPU is valid somewhere, let's just reenable VFP and
209 1.4 matt * retry the instruction (only safe thing to do since the
210 1.4 matt * pcb has a stale copy).
211 1.4 matt */
212 1.4 matt if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
213 1.4 matt return 1;
214 1.4 matt
215 1.51 chs if (__predict_false(!vfp_used_p(l))) {
216 1.35 matt pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
217 1.4 matt }
218 1.26 matt #endif
219 1.4 matt
220 1.4 matt /*
221 1.30 skrll * We now know the pcb has the saved copy.
222 1.4 matt */
223 1.4 matt register_t * const regp = &frame->tf_r0 + regno;
224 1.4 matt if (insn & 0x00100000) {
225 1.4 matt *regp = pcb->pcb_vfp.vfp_fpscr;
226 1.4 matt } else {
227 1.34 matt pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
228 1.34 matt pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
229 1.4 matt }
230 1.4 matt
231 1.37 matt curcpu()->ci_vfp_evs[0].ev_count++;
232 1.61 skrll
233 1.4 matt frame->tf_pc += INSN_SIZE;
234 1.4 matt return 0;
235 1.1 rearnsha }
236 1.1 rearnsha
237 1.4 matt #ifndef FPU_VFP
238 1.4 matt /*
239 1.4 matt * If we don't want VFP support, we still need to handle emulating VFP FPSCR
240 1.4 matt * instructions.
241 1.4 matt */
242 1.4 matt void
243 1.37 matt vfp_attach(struct cpu_info *ci)
244 1.4 matt {
245 1.37 matt if (CPU_IS_PRIMARY(ci)) {
246 1.37 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
247 1.37 matt }
248 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
249 1.37 matt ci->ci_cpuname, "vfp fpscr traps");
250 1.4 matt }
251 1.4 matt
252 1.4 matt #else
253 1.1 rearnsha void
254 1.37 matt vfp_attach(struct cpu_info *ci)
255 1.1 rearnsha {
256 1.4 matt const char *model = NULL;
257 1.1 rearnsha
258 1.37 matt if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
259 1.37 matt || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
260 1.37 matt || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
261 1.37 matt #if 0
262 1.37 matt const uint32_t nsacr = armreg_nsacr_read();
263 1.37 matt const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
264 1.37 matt if ((nsacr & nsacr_vfp) != nsacr_vfp) {
265 1.40 matt aprint_normal_dev(ci->ci_dev,
266 1.40 matt "VFP access denied (NSACR=%#x)\n", nsacr);
267 1.62 skrll if (CPU_IS_PRIMARY(ci))
268 1.62 skrll install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
269 1.37 matt ci->ci_vfp_id = 0;
270 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
271 1.37 matt EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
272 1.37 matt "vfp fpscr traps");
273 1.37 matt return;
274 1.37 matt }
275 1.37 matt #endif
276 1.7 matt const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
277 1.7 matt const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
278 1.1 rearnsha
279 1.7 matt /*
280 1.7 matt * We first need to enable access to the coprocessors.
281 1.7 matt */
282 1.7 matt uint32_t cpacr = armreg_cpacr_read();
283 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
284 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
285 1.7 matt armreg_cpacr_write(cpacr);
286 1.1 rearnsha
287 1.48 jmcneill arm_isb();
288 1.48 jmcneill
289 1.7 matt /*
290 1.7 matt * If we could enable them, then they exist.
291 1.7 matt */
292 1.7 matt cpacr = armreg_cpacr_read();
293 1.40 matt bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
294 1.40 matt && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
295 1.28 matt if (!vfp_p) {
296 1.40 matt aprint_normal_dev(ci->ci_dev,
297 1.40 matt "VFP access denied (CPACR=%#x)\n", cpacr);
298 1.62 skrll if (CPU_IS_PRIMARY(ci))
299 1.62 skrll install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
300 1.28 matt ci->ci_vfp_id = 0;
301 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
302 1.37 matt EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
303 1.37 matt "vfp fpscr traps");
304 1.28 matt return;
305 1.28 matt }
306 1.6 matt }
307 1.6 matt
308 1.7 matt void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
309 1.7 matt
310 1.7 matt undefined_test = 0;
311 1.7 matt
312 1.21 matt const uint32_t fpsid = armreg_fpsid_read();
313 1.1 rearnsha
314 1.1 rearnsha remove_coproc_handler(uh);
315 1.1 rearnsha
316 1.1 rearnsha if (undefined_test != 0) {
317 1.4 matt aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
318 1.62 skrll if (CPU_IS_PRIMARY(ci))
319 1.62 skrll install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
320 1.4 matt ci->ci_vfp_id = 0;
321 1.1 rearnsha return;
322 1.1 rearnsha }
323 1.1 rearnsha
324 1.4 matt ci->ci_vfp_id = fpsid;
325 1.4 matt switch (fpsid & ~ VFP_FPSID_REV_MSK) {
326 1.4 matt case FPU_VFP10_ARM10E:
327 1.4 matt model = "VFP10 R1";
328 1.4 matt break;
329 1.4 matt case FPU_VFP11_ARM11:
330 1.4 matt model = "VFP11";
331 1.4 matt break;
332 1.36 matt case FPU_VFP_MV88SV58XX:
333 1.36 matt model = "VFP3";
334 1.36 matt break;
335 1.7 matt case FPU_VFP_CORTEXA5:
336 1.7 matt case FPU_VFP_CORTEXA7:
337 1.7 matt case FPU_VFP_CORTEXA8:
338 1.7 matt case FPU_VFP_CORTEXA9:
339 1.63 tnn case FPU_VFP_CORTEXA12:
340 1.20 matt case FPU_VFP_CORTEXA15:
341 1.42 slp case FPU_VFP_CORTEXA15_QEMU:
342 1.63 tnn case FPU_VFP_CORTEXA17:
343 1.50 skrll case FPU_VFP_CORTEXA53:
344 1.53 jmcneill case FPU_VFP_CORTEXA57:
345 1.37 matt if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
346 1.37 matt model = "VFP 4.0+";
347 1.37 matt } else {
348 1.37 matt model = "NEON MPE (VFP 3.0+)";
349 1.37 matt cpu_neon_present = 1;
350 1.37 matt }
351 1.6 matt break;
352 1.4 matt default:
353 1.36 matt aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
354 1.4 matt fpsid);
355 1.62 skrll if (CPU_IS_PRIMARY(ci))
356 1.62 skrll install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
357 1.35 matt vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
358 1.35 matt |VFP_FPSCR_RMODE;
359 1.35 matt vfp_fpscr_default = 0;
360 1.4 matt return;
361 1.4 matt }
362 1.1 rearnsha
363 1.17 matt cpu_fpu_present = 1;
364 1.21 matt cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
365 1.21 matt cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
366 1.1 rearnsha if (fpsid != 0) {
367 1.34 matt uint32_t f0 = armreg_mvfr0_read();
368 1.41 matt uint32_t f1 = armreg_mvfr1_read();
369 1.34 matt aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
370 1.37 matt device_unit(ci->ci_dev),
371 1.37 matt device_xname(ci->ci_dev),
372 1.34 matt model,
373 1.34 matt ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
374 1.34 matt ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
375 1.38 matt ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
376 1.34 matt ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
377 1.49 jmcneill aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
378 1.37 matt device_unit(ci->ci_dev), f0, f1);
379 1.37 matt if (CPU_IS_PRIMARY(ci)) {
380 1.37 matt if (f0 & ARM_MVFR0_ROUNDING_MASK) {
381 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_RMODE;
382 1.37 matt }
383 1.37 matt if (f1 & ARM_MVFR0_EXCEPT_MASK) {
384 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_ESUM;
385 1.37 matt }
386 1.38 matt // If hardware supports propagation of NaNs, select it.
387 1.37 matt if (f1 & ARM_MVFR1_D_NAN_MASK) {
388 1.37 matt vfp_fpscr_default &= ~VFP_FPSCR_DN;
389 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_DN;
390 1.37 matt }
391 1.37 matt // If hardware supports denormalized numbers, use it.
392 1.37 matt if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
393 1.37 matt vfp_fpscr_default &= ~VFP_FPSCR_FZ;
394 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_FZ;
395 1.37 matt }
396 1.37 matt }
397 1.37 matt }
398 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
399 1.37 matt ci->ci_cpuname, "vfp coproc use");
400 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
401 1.37 matt ci->ci_cpuname, "vfp coproc re-use");
402 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
403 1.37 matt ci->ci_cpuname, "vfp coproc fault");
404 1.62 skrll if (CPU_IS_PRIMARY(ci)) {
405 1.62 skrll install_coproc_handler(VFP_COPROC, vfp_handler);
406 1.62 skrll install_coproc_handler(VFP_COPROC2, vfp_handler);
407 1.13 matt #ifdef CPU_CORTEX
408 1.66 riastrad if (cpu_neon_present) {
409 1.66 riastrad install_coproc_handler(CORE_UNKNOWN_HANDLER,
410 1.66 riastrad neon_handler);
411 1.66 riastrad aes_md_init(&aes_neon_impl);
412 1.66 riastrad }
413 1.13 matt #endif
414 1.62 skrll }
415 1.1 rearnsha }
416 1.1 rearnsha
417 1.1 rearnsha /* The real handler for VFP bounces. */
418 1.4 matt static int
419 1.21 matt vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
420 1.1 rearnsha {
421 1.4 matt struct cpu_info * const ci = curcpu();
422 1.1 rearnsha
423 1.1 rearnsha /* This shouldn't ever happen. */
424 1.1 rearnsha if (fault_code != FAULT_USER)
425 1.14 matt panic("VFP fault at %#x in non-user mode", frame->tf_pc);
426 1.1 rearnsha
427 1.27 matt if (ci->ci_vfp_id == 0) {
428 1.1 rearnsha /* No VFP detected, just fault. */
429 1.1 rearnsha return 1;
430 1.27 matt }
431 1.27 matt
432 1.47 matt /*
433 1.47 matt * If we already own the FPU and it's enabled (and no exception), raise
434 1.47 matt * SIGILL. If there is an exception, drop through to raise a SIGFPE.
435 1.47 matt */
436 1.46 matt if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
437 1.47 matt && (armreg_fpexc_read() & (VFP_FPEXC_EX|VFP_FPEXC_EN)) == VFP_FPEXC_EN)
438 1.47 matt return 1;
439 1.44 matt
440 1.27 matt /*
441 1.27 matt * Make sure we own the FP.
442 1.27 matt */
443 1.27 matt pcu_load(&arm_vfp_ops);
444 1.1 rearnsha
445 1.21 matt uint32_t fpexc = armreg_fpexc_read();
446 1.21 matt if (fpexc & VFP_FPEXC_EX) {
447 1.21 matt ksiginfo_t ksi;
448 1.21 matt KASSERT(fpexc & VFP_FPEXC_EN);
449 1.21 matt
450 1.37 matt curcpu()->ci_vfp_evs[2].ev_count++;
451 1.21 matt
452 1.21 matt /*
453 1.21 matt * Need the clear the exception condition so any signal
454 1.33 skrll * and future use can proceed.
455 1.21 matt */
456 1.31 skrll armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
457 1.21 matt
458 1.51 chs pcu_save(&arm_vfp_ops, curlwp);
459 1.33 skrll
460 1.33 skrll /*
461 1.33 skrll * XXX Need to emulate bounce instructions here to get correct
462 1.33 skrll * XXX exception codes, etc.
463 1.33 skrll */
464 1.21 matt KSI_INIT_TRAP(&ksi);
465 1.21 matt ksi.ksi_signo = SIGFPE;
466 1.21 matt if (fpexc & VFP_FPEXC_IXF)
467 1.21 matt ksi.ksi_code = FPE_FLTRES;
468 1.21 matt else if (fpexc & VFP_FPEXC_UFF)
469 1.21 matt ksi.ksi_code = FPE_FLTUND;
470 1.21 matt else if (fpexc & VFP_FPEXC_OFF)
471 1.21 matt ksi.ksi_code = FPE_FLTOVF;
472 1.21 matt else if (fpexc & VFP_FPEXC_DZF)
473 1.21 matt ksi.ksi_code = FPE_FLTDIV;
474 1.21 matt else if (fpexc & VFP_FPEXC_IOF)
475 1.21 matt ksi.ksi_code = FPE_FLTINV;
476 1.21 matt ksi.ksi_addr = (uint32_t *)address;
477 1.21 matt ksi.ksi_trap = 0;
478 1.21 matt trapsignal(curlwp, &ksi);
479 1.21 matt return 0;
480 1.21 matt }
481 1.21 matt
482 1.4 matt /* Need to restart the faulted instruction. */
483 1.4 matt // frame->tf_pc -= INSN_SIZE;
484 1.4 matt return 0;
485 1.4 matt }
486 1.1 rearnsha
487 1.13 matt #ifdef CPU_CORTEX
488 1.13 matt /* The real handler for NEON bounces. */
489 1.13 matt static int
490 1.21 matt neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
491 1.13 matt {
492 1.13 matt struct cpu_info * const ci = curcpu();
493 1.13 matt
494 1.13 matt if (ci->ci_vfp_id == 0)
495 1.13 matt /* No VFP detected, just fault. */
496 1.13 matt return 1;
497 1.13 matt
498 1.13 matt if ((insn & 0xfe000000) != 0xf2000000
499 1.13 matt && (insn & 0xfe000000) != 0xf4000000)
500 1.13 matt /* Not NEON instruction, just fault. */
501 1.13 matt return 1;
502 1.13 matt
503 1.13 matt /* This shouldn't ever happen. */
504 1.13 matt if (fault_code != FAULT_USER)
505 1.13 matt panic("NEON fault in non-user mode");
506 1.13 matt
507 1.45 matt /* if we already own the FPU and it's enabled, raise SIGILL */
508 1.45 matt if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
509 1.45 matt && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
510 1.47 matt return 1;
511 1.43 matt
512 1.13 matt pcu_load(&arm_vfp_ops);
513 1.13 matt
514 1.13 matt /* Need to restart the faulted instruction. */
515 1.13 matt // frame->tf_pc -= INSN_SIZE;
516 1.13 matt return 0;
517 1.13 matt }
518 1.13 matt #endif
519 1.13 matt
520 1.4 matt static void
521 1.13 matt vfp_state_load(lwp_t *l, u_int flags)
522 1.4 matt {
523 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
524 1.4 matt struct vfpreg * const fregs = &pcb->pcb_vfp;
525 1.1 rearnsha
526 1.1 rearnsha /*
527 1.1 rearnsha * Instrument VFP usage -- if a process has not previously
528 1.1 rearnsha * used the VFP, mark it as having used VFP for the first time,
529 1.1 rearnsha * and count this event.
530 1.1 rearnsha *
531 1.1 rearnsha * If a process has used the VFP, count a "used VFP, and took
532 1.1 rearnsha * a trap to use it again" event.
533 1.1 rearnsha */
534 1.39 rmind if (__predict_false((flags & PCU_VALID) == 0)) {
535 1.37 matt curcpu()->ci_vfp_evs[0].ev_count++;
536 1.34 matt pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
537 1.4 matt } else {
538 1.37 matt curcpu()->ci_vfp_evs[1].ev_count++;
539 1.4 matt }
540 1.1 rearnsha
541 1.54 bouyer KASSERT((armreg_fpexc_read() & VFP_FPEXC_EN) == 0);
542 1.39 rmind /*
543 1.39 rmind * If the VFP is already enabled we must be bouncing an instruction.
544 1.39 rmind */
545 1.39 rmind if (flags & PCU_REENABLE) {
546 1.39 rmind uint32_t fpexc = armreg_fpexc_read();
547 1.39 rmind armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
548 1.54 bouyer fregs->vfp_fpexc |= VFP_FPEXC_EN;
549 1.39 rmind return;
550 1.39 rmind }
551 1.54 bouyer KASSERT((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0);
552 1.33 skrll
553 1.39 rmind /*
554 1.39 rmind * Load and Enable the VFP (so that we can write the registers).
555 1.39 rmind */
556 1.39 rmind fregs->vfp_fpexc |= VFP_FPEXC_EN;
557 1.39 rmind armreg_fpexc_write(fregs->vfp_fpexc);
558 1.54 bouyer KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == NULL);
559 1.54 bouyer KASSERT(l->l_pcu_cpu[PCU_FPU] == NULL);
560 1.13 matt
561 1.39 rmind load_vfpregs(fregs);
562 1.39 rmind armreg_fpscr_write(fregs->vfp_fpscr);
563 1.13 matt
564 1.39 rmind if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
565 1.39 rmind /* Need to restore the exception handling state. */
566 1.52 chs armreg_fpinst_write(fregs->vfp_fpinst);
567 1.39 rmind if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
568 1.52 chs armreg_fpinst2_write(fregs->vfp_fpinst2);
569 1.1 rearnsha }
570 1.1 rearnsha }
571 1.1 rearnsha
572 1.1 rearnsha void
573 1.39 rmind vfp_state_save(lwp_t *l)
574 1.1 rearnsha {
575 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
576 1.39 rmind struct vfpreg * const fregs = &pcb->pcb_vfp;
577 1.21 matt uint32_t fpexc = armreg_fpexc_read();
578 1.33 skrll
579 1.54 bouyer KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == l);
580 1.54 bouyer KASSERT(curcpu() == l->l_pcu_cpu[PCU_FPU]);
581 1.54 bouyer KASSERT(curlwp == l || curlwp->l_pcu_cpu[PCU_FPU] != curcpu());
582 1.33 skrll /*
583 1.33 skrll * Enable the VFP (so we can read the registers).
584 1.33 skrll * Make sure the exception bit is cleared so that we can
585 1.33 skrll * safely dump the registers.
586 1.33 skrll */
587 1.21 matt armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
588 1.1 rearnsha
589 1.4 matt fregs->vfp_fpexc = fpexc;
590 1.4 matt if (fpexc & VFP_FPEXC_EX) {
591 1.4 matt /* Need to save the exception handling state */
592 1.21 matt fregs->vfp_fpinst = armreg_fpinst_read();
593 1.21 matt if (fpexc & VFP_FPEXC_FP2V)
594 1.21 matt fregs->vfp_fpinst2 = armreg_fpinst2_read();
595 1.1 rearnsha }
596 1.21 matt fregs->vfp_fpscr = armreg_fpscr_read();
597 1.13 matt save_vfpregs(fregs);
598 1.4 matt
599 1.1 rearnsha /* Disable the VFP. */
600 1.33 skrll armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
601 1.1 rearnsha }
602 1.1 rearnsha
603 1.1 rearnsha void
604 1.39 rmind vfp_state_release(lwp_t *l)
605 1.1 rearnsha {
606 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
607 1.1 rearnsha
608 1.39 rmind /*
609 1.39 rmind * Now mark the VFP as disabled (and our state
610 1.39 rmind * has been already saved or is being discarded).
611 1.39 rmind */
612 1.39 rmind pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
613 1.1 rearnsha
614 1.1 rearnsha /*
615 1.4 matt * Turn off the FPU so the next time a VFP instruction is issued
616 1.4 matt * an exception happens. We don't know if this LWP's state was
617 1.4 matt * loaded but if we turned off the FPU for some other LWP, when
618 1.4 matt * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
619 1.13 matt * is still set so it just restore fpexc and return since its
620 1.4 matt * contents are still sitting in the VFP.
621 1.1 rearnsha */
622 1.21 matt armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
623 1.1 rearnsha }
624 1.1 rearnsha
625 1.1 rearnsha void
626 1.51 chs vfp_savecontext(lwp_t *l)
627 1.1 rearnsha {
628 1.51 chs pcu_save(&arm_vfp_ops, l);
629 1.1 rearnsha }
630 1.1 rearnsha
631 1.1 rearnsha void
632 1.51 chs vfp_discardcontext(lwp_t *l, bool used_p)
633 1.1 rearnsha {
634 1.51 chs pcu_discard(&arm_vfp_ops, l, used_p);
635 1.25 matt }
636 1.25 matt
637 1.25 matt bool
638 1.51 chs vfp_used_p(const lwp_t *l)
639 1.25 matt {
640 1.51 chs return pcu_valid_p(&arm_vfp_ops, l);
641 1.13 matt }
642 1.13 matt
643 1.13 matt void
644 1.8 matt vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
645 1.8 matt {
646 1.51 chs if (vfp_used_p(l)) {
647 1.8 matt const struct pcb * const pcb = lwp_getpcb(l);
648 1.51 chs
649 1.51 chs pcu_save(&arm_vfp_ops, l);
650 1.8 matt mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
651 1.8 matt memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
652 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
653 1.10 matt *flagsp |= _UC_FPU|_UC_ARM_VFP;
654 1.8 matt }
655 1.8 matt }
656 1.8 matt
657 1.8 matt void
658 1.8 matt vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
659 1.8 matt {
660 1.8 matt struct pcb * const pcb = lwp_getpcb(l);
661 1.51 chs
662 1.51 chs pcu_discard(&arm_vfp_ops, l, true);
663 1.8 matt pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
664 1.8 matt memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
665 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
666 1.8 matt }
667 1.8 matt
668 1.65 riastrad void
669 1.65 riastrad fpu_kern_enter(void)
670 1.65 riastrad {
671 1.65 riastrad struct lwp *l = curlwp;
672 1.65 riastrad struct cpu_info *ci;
673 1.65 riastrad uint32_t fpexc;
674 1.65 riastrad int s;
675 1.65 riastrad
676 1.65 riastrad /*
677 1.65 riastrad * Block all interrupts. We must block preemption since -- if
678 1.65 riastrad * this is a user thread -- there is nowhere to save the kernel
679 1.65 riastrad * fpu state, and if we want this to be usable in interrupts,
680 1.65 riastrad * we can't let interrupts interfere with the fpu state in use
681 1.65 riastrad * since there's nowhere for them to save it.
682 1.65 riastrad */
683 1.65 riastrad s = splhigh();
684 1.65 riastrad ci = curcpu();
685 1.65 riastrad KASSERT(ci->ci_kfpu_spl == -1);
686 1.65 riastrad ci->ci_kfpu_spl = s;
687 1.65 riastrad
688 1.65 riastrad /*
689 1.65 riastrad * If we are in a softint and have a pinned lwp, the fpu state
690 1.65 riastrad * is that of the pinned lwp, so save it there.
691 1.65 riastrad */
692 1.65 riastrad if ((l->l_pflag & LP_INTR) && (l->l_switchto != NULL))
693 1.65 riastrad l = l->l_switchto;
694 1.65 riastrad if (vfp_used_p(l))
695 1.65 riastrad vfp_savecontext(l);
696 1.65 riastrad
697 1.65 riastrad /* Enable the fpu. */
698 1.65 riastrad fpexc = armreg_fpexc_read();
699 1.65 riastrad fpexc |= VFP_FPEXC_EN;
700 1.65 riastrad fpexc &= ~VFP_FPEXC_EX;
701 1.65 riastrad armreg_fpexc_write(fpexc);
702 1.65 riastrad }
703 1.65 riastrad
704 1.65 riastrad void
705 1.65 riastrad fpu_kern_leave(void)
706 1.65 riastrad {
707 1.65 riastrad static const struct vfpreg zero_vfpreg;
708 1.65 riastrad struct cpu_info *ci = curcpu();
709 1.65 riastrad int s;
710 1.65 riastrad uint32_t fpexc;
711 1.65 riastrad
712 1.65 riastrad KASSERT(ci->ci_cpl == IPL_HIGH);
713 1.65 riastrad KASSERT(ci->ci_kfpu_spl != -1);
714 1.65 riastrad
715 1.65 riastrad /*
716 1.65 riastrad * Zero the fpu registers; otherwise we might leak secrets
717 1.65 riastrad * through Spectre-class attacks to userland, even if there are
718 1.65 riastrad * no bugs in fpu state management.
719 1.65 riastrad */
720 1.65 riastrad load_vfpregs(&zero_vfpreg);
721 1.65 riastrad
722 1.65 riastrad /*
723 1.65 riastrad * Disable the fpu so that the kernel can't accidentally use
724 1.65 riastrad * it again.
725 1.65 riastrad */
726 1.65 riastrad fpexc = armreg_fpexc_read();
727 1.65 riastrad fpexc &= ~VFP_FPEXC_EN;
728 1.65 riastrad armreg_fpexc_write(fpexc);
729 1.65 riastrad
730 1.65 riastrad /* Restore interrupts. */
731 1.65 riastrad s = ci->ci_kfpu_spl;
732 1.65 riastrad ci->ci_kfpu_spl = -1;
733 1.65 riastrad splx(s);
734 1.65 riastrad }
735 1.65 riastrad
736 1.4 matt #endif /* FPU_VFP */
737