Home | History | Annotate | Line # | Download | only in vfp
vfp_init.c revision 1.67
      1  1.67  riastrad /*      $NetBSD: vfp_init.c,v 1.67 2020/07/13 16:53:06 riastradh Exp $ */
      2   1.1  rearnsha 
      3   1.1  rearnsha /*
      4   1.1  rearnsha  * Copyright (c) 2008 ARM Ltd
      5   1.1  rearnsha  * All rights reserved.
      6   1.1  rearnsha  *
      7   1.1  rearnsha  * Redistribution and use in source and binary forms, with or without
      8   1.1  rearnsha  * modification, are permitted provided that the following conditions
      9   1.1  rearnsha  * are met:
     10   1.1  rearnsha  * 1. Redistributions of source code must retain the above copyright
     11   1.1  rearnsha  *    notice, this list of conditions and the following disclaimer.
     12   1.1  rearnsha  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1  rearnsha  *    notice, this list of conditions and the following disclaimer in the
     14   1.1  rearnsha  *    documentation and/or other materials provided with the distribution.
     15   1.1  rearnsha  * 3. The name of the company may not be used to endorse or promote
     16   1.1  rearnsha  *    products derived from this software without specific prior written
     17   1.1  rearnsha  *    permission.
     18   1.1  rearnsha  *
     19   1.1  rearnsha  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
     20   1.1  rearnsha  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21   1.1  rearnsha  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22   1.1  rearnsha  * ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
     23   1.1  rearnsha  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24   1.1  rearnsha  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     25   1.1  rearnsha  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1  rearnsha  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     27   1.1  rearnsha  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28   1.1  rearnsha  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29   1.1  rearnsha  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30   1.1  rearnsha  */
     31   1.1  rearnsha 
     32  1.59     skrll #include "opt_cputypes.h"
     33  1.59     skrll 
     34  1.58     skrll #include <sys/cdefs.h>
     35  1.67  riastrad __KERNEL_RCSID(0, "$NetBSD: vfp_init.c,v 1.67 2020/07/13 16:53:06 riastradh Exp $");
     36  1.58     skrll 
     37   1.1  rearnsha #include <sys/param.h>
     38   1.1  rearnsha #include <sys/types.h>
     39   1.1  rearnsha #include <sys/systm.h>
     40   1.1  rearnsha #include <sys/device.h>
     41   1.1  rearnsha #include <sys/proc.h>
     42   1.4      matt #include <sys/cpu.h>
     43   1.1  rearnsha 
     44  1.23      matt #include <arm/locore.h>
     45   1.5      matt #include <arm/pcb.h>
     46   1.1  rearnsha #include <arm/undefined.h>
     47   1.1  rearnsha #include <arm/vfpreg.h>
     48   1.8      matt #include <arm/mcontext.h>
     49  1.65  riastrad #include <arm/fpu.h>
     50   1.1  rearnsha 
     51  1.12      matt #include <uvm/uvm_extern.h>		/* for pmap.h */
     52  1.12      matt 
     53  1.66  riastrad #include <crypto/aes/aes.h>
     54  1.66  riastrad #include <crypto/aes/arch/arm/aes_neon.h>
     55  1.66  riastrad 
     56  1.11      matt #ifdef FPU_VFP
     57  1.11      matt 
     58  1.29      matt #ifdef CPU_CORTEX
     59  1.56  christos #define SETFPU __asm(".fpu\tvfpv4")
     60  1.29      matt #else
     61  1.56  christos #define SETFPU __asm(".fpu\tvfp")
     62  1.29      matt #endif
     63  1.56  christos SETFPU;
     64  1.29      matt 
     65   1.1  rearnsha /* FLDMD <X>, {d0-d15} */
     66  1.11      matt static inline void
     67  1.13      matt load_vfpregs_lo(const uint64_t *p)
     68  1.10      matt {
     69  1.56  christos 	SETFPU;
     70  1.64     joerg 	__asm __volatile(".fpu vfp\n vldmia\t%0, {d0-d15}" :: "r" (p) : "memory");
     71  1.10      matt }
     72  1.10      matt 
     73  1.10      matt /* FSTMD <X>, {d0-d15} */
     74  1.11      matt static inline void
     75  1.10      matt save_vfpregs_lo(uint64_t *p)
     76  1.10      matt {
     77  1.56  christos 	SETFPU;
     78  1.64     joerg 	__asm __volatile(".fpu vfp\n vstmia\t%0, {d0-d15}" :: "r" (p) : "memory");
     79  1.10      matt }
     80  1.10      matt 
     81  1.10      matt #ifdef CPU_CORTEX
     82  1.10      matt /* FLDMD <X>, {d16-d31} */
     83  1.11      matt static inline void
     84  1.13      matt load_vfpregs_hi(const uint64_t *p)
     85  1.10      matt {
     86  1.56  christos 	SETFPU;
     87  1.64     joerg 	__asm __volatile(".fpu neon-vfpv4\n vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
     88  1.10      matt }
     89  1.10      matt 
     90  1.10      matt /* FLDMD <X>, {d16-d31} */
     91  1.11      matt static inline void
     92  1.10      matt save_vfpregs_hi(uint64_t *p)
     93  1.10      matt {
     94  1.56  christos 	SETFPU;
     95  1.64     joerg 	__asm __volatile(".fpu neon-vfpv4\nvstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
     96  1.10      matt }
     97  1.10      matt #endif
     98   1.1  rearnsha 
     99  1.13      matt static inline void
    100  1.13      matt load_vfpregs(const struct vfpreg *fregs)
    101  1.13      matt {
    102  1.13      matt 	load_vfpregs_lo(fregs->vfp_regs);
    103  1.13      matt #ifdef CPU_CORTEX
    104  1.13      matt #ifdef CPU_ARM11
    105  1.13      matt 	switch (curcpu()->ci_vfp_id) {
    106  1.13      matt 	case FPU_VFP_CORTEXA5:
    107  1.13      matt 	case FPU_VFP_CORTEXA7:
    108  1.13      matt 	case FPU_VFP_CORTEXA8:
    109  1.13      matt 	case FPU_VFP_CORTEXA9:
    110  1.20      matt 	case FPU_VFP_CORTEXA15:
    111  1.42       slp 	case FPU_VFP_CORTEXA15_QEMU:
    112  1.50     skrll 	case FPU_VFP_CORTEXA53:
    113  1.53  jmcneill 	case FPU_VFP_CORTEXA57:
    114  1.13      matt #endif
    115  1.13      matt 		load_vfpregs_hi(fregs->vfp_regs);
    116  1.13      matt #ifdef CPU_ARM11
    117  1.13      matt 		break;
    118  1.13      matt 	}
    119  1.13      matt #endif
    120  1.13      matt #endif
    121  1.13      matt }
    122  1.13      matt 
    123  1.13      matt static inline void
    124  1.13      matt save_vfpregs(struct vfpreg *fregs)
    125  1.13      matt {
    126  1.13      matt 	save_vfpregs_lo(fregs->vfp_regs);
    127  1.13      matt #ifdef CPU_CORTEX
    128  1.13      matt #ifdef CPU_ARM11
    129  1.13      matt 	switch (curcpu()->ci_vfp_id) {
    130  1.13      matt 	case FPU_VFP_CORTEXA5:
    131  1.13      matt 	case FPU_VFP_CORTEXA7:
    132  1.13      matt 	case FPU_VFP_CORTEXA8:
    133  1.13      matt 	case FPU_VFP_CORTEXA9:
    134  1.20      matt 	case FPU_VFP_CORTEXA15:
    135  1.42       slp 	case FPU_VFP_CORTEXA15_QEMU:
    136  1.50     skrll 	case FPU_VFP_CORTEXA53:
    137  1.53  jmcneill 	case FPU_VFP_CORTEXA57:
    138  1.13      matt #endif
    139  1.13      matt 		save_vfpregs_hi(fregs->vfp_regs);
    140  1.13      matt #ifdef CPU_ARM11
    141  1.13      matt 		break;
    142  1.13      matt 	}
    143  1.13      matt #endif
    144  1.13      matt #endif
    145  1.13      matt }
    146  1.13      matt 
    147   1.1  rearnsha /* The real handler for VFP bounces.  */
    148   1.1  rearnsha static int vfp_handler(u_int, u_int, trapframe_t *, int);
    149  1.13      matt #ifdef CPU_CORTEX
    150  1.13      matt static int neon_handler(u_int, u_int, trapframe_t *, int);
    151  1.13      matt #endif
    152   1.1  rearnsha 
    153  1.13      matt static void vfp_state_load(lwp_t *, u_int);
    154  1.39     rmind static void vfp_state_save(lwp_t *);
    155  1.39     rmind static void vfp_state_release(lwp_t *);
    156   1.4      matt 
    157   1.4      matt const pcu_ops_t arm_vfp_ops = {
    158   1.4      matt 	.pcu_id = PCU_FPU,
    159  1.13      matt 	.pcu_state_save = vfp_state_save,
    160   1.4      matt 	.pcu_state_load = vfp_state_load,
    161   1.4      matt 	.pcu_state_release = vfp_state_release,
    162   1.4      matt };
    163   1.1  rearnsha 
    164  1.34      matt /* determine what bits can be changed */
    165  1.34      matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
    166  1.34      matt /* default to run fast */
    167  1.34      matt uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
    168  1.34      matt 
    169   1.1  rearnsha /*
    170   1.1  rearnsha  * Used to test for a VFP. The following function is installed as a coproc10
    171   1.1  rearnsha  * handler on the undefined instruction vector and then we issue a VFP
    172   1.1  rearnsha  * instruction. If undefined_test is non zero then the VFP did not handle
    173   1.1  rearnsha  * the instruction so must be absent, or disabled.
    174   1.1  rearnsha  */
    175   1.1  rearnsha 
    176   1.1  rearnsha static int undefined_test;
    177   1.1  rearnsha 
    178   1.1  rearnsha static int
    179   1.4      matt vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    180   1.1  rearnsha {
    181   1.1  rearnsha 
    182   1.1  rearnsha 	frame->tf_pc += INSN_SIZE;
    183   1.1  rearnsha 	++undefined_test;
    184   1.4      matt 	return 0;
    185   1.4      matt }
    186   1.4      matt 
    187  1.35      matt #else
    188  1.35      matt /* determine what bits can be changed */
    189  1.35      matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
    190   1.4      matt #endif /* FPU_VFP */
    191   1.4      matt 
    192   1.4      matt static int
    193   1.4      matt vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    194   1.4      matt {
    195   1.4      matt 	struct lwp * const l = curlwp;
    196   1.4      matt 	const u_int regno = (insn >> 12) & 0xf;
    197   1.4      matt 	/*
    198   1.4      matt 	 * Only match move to/from the FPSCR register and we
    199   1.4      matt 	 * can't be using the SP,LR,PC as a source.
    200   1.4      matt 	 */
    201   1.4      matt 	if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
    202   1.4      matt 		return 1;
    203   1.4      matt 
    204   1.4      matt 	struct pcb * const pcb = lwp_getpcb(l);
    205   1.4      matt 
    206   1.4      matt #ifdef FPU_VFP
    207   1.4      matt 	/*
    208   1.4      matt 	 * If FPU is valid somewhere, let's just reenable VFP and
    209   1.4      matt 	 * retry the instruction (only safe thing to do since the
    210   1.4      matt 	 * pcb has a stale copy).
    211   1.4      matt 	 */
    212   1.4      matt 	if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
    213   1.4      matt 		return 1;
    214   1.4      matt 
    215  1.51       chs 	if (__predict_false(!vfp_used_p(l))) {
    216  1.35      matt 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
    217   1.4      matt 	}
    218  1.26      matt #endif
    219   1.4      matt 
    220   1.4      matt 	/*
    221  1.30     skrll 	 * We now know the pcb has the saved copy.
    222   1.4      matt 	 */
    223   1.4      matt 	register_t * const regp = &frame->tf_r0 + regno;
    224   1.4      matt 	if (insn & 0x00100000) {
    225   1.4      matt 		*regp = pcb->pcb_vfp.vfp_fpscr;
    226   1.4      matt 	} else {
    227  1.34      matt 		pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
    228  1.34      matt 		pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
    229   1.4      matt 	}
    230   1.4      matt 
    231  1.37      matt 	curcpu()->ci_vfp_evs[0].ev_count++;
    232  1.61     skrll 
    233   1.4      matt 	frame->tf_pc += INSN_SIZE;
    234   1.4      matt 	return 0;
    235   1.1  rearnsha }
    236   1.1  rearnsha 
    237   1.4      matt #ifndef FPU_VFP
    238   1.4      matt /*
    239   1.4      matt  * If we don't want VFP support, we still need to handle emulating VFP FPSCR
    240   1.4      matt  * instructions.
    241   1.4      matt  */
    242   1.4      matt void
    243  1.37      matt vfp_attach(struct cpu_info *ci)
    244   1.4      matt {
    245  1.37      matt 	if (CPU_IS_PRIMARY(ci)) {
    246  1.37      matt 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    247  1.37      matt 	}
    248  1.37      matt 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
    249  1.37      matt 	    ci->ci_cpuname, "vfp fpscr traps");
    250   1.4      matt }
    251   1.4      matt 
    252   1.4      matt #else
    253   1.1  rearnsha void
    254  1.37      matt vfp_attach(struct cpu_info *ci)
    255   1.1  rearnsha {
    256   1.4      matt 	const char *model = NULL;
    257   1.1  rearnsha 
    258  1.37      matt 	if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
    259  1.37      matt 	    || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
    260  1.37      matt 	    || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
    261  1.37      matt #if 0
    262  1.37      matt 		const uint32_t nsacr = armreg_nsacr_read();
    263  1.37      matt 		const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
    264  1.37      matt 		if ((nsacr & nsacr_vfp) != nsacr_vfp) {
    265  1.40      matt 			aprint_normal_dev(ci->ci_dev,
    266  1.40      matt 			    "VFP access denied (NSACR=%#x)\n", nsacr);
    267  1.62     skrll 			if (CPU_IS_PRIMARY(ci))
    268  1.62     skrll 				install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    269  1.37      matt 			ci->ci_vfp_id = 0;
    270  1.37      matt 			evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
    271  1.37      matt 			    EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
    272  1.37      matt 			    "vfp fpscr traps");
    273  1.37      matt 			return;
    274  1.37      matt 		}
    275  1.37      matt #endif
    276   1.7      matt 		const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
    277   1.7      matt 		const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
    278   1.1  rearnsha 
    279   1.7      matt 		/*
    280   1.7      matt 		 * We first need to enable access to the coprocessors.
    281   1.7      matt 		 */
    282   1.7      matt 		uint32_t cpacr = armreg_cpacr_read();
    283   1.7      matt 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
    284   1.7      matt 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
    285   1.7      matt 		armreg_cpacr_write(cpacr);
    286   1.1  rearnsha 
    287  1.48  jmcneill 		arm_isb();
    288  1.48  jmcneill 
    289   1.7      matt 		/*
    290   1.7      matt 		 * If we could enable them, then they exist.
    291   1.7      matt 		 */
    292   1.7      matt 		cpacr = armreg_cpacr_read();
    293  1.40      matt 		bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
    294  1.40      matt 		    && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
    295  1.28      matt 		if (!vfp_p) {
    296  1.40      matt 			aprint_normal_dev(ci->ci_dev,
    297  1.40      matt 			    "VFP access denied (CPACR=%#x)\n", cpacr);
    298  1.62     skrll 			if (CPU_IS_PRIMARY(ci))
    299  1.62     skrll 				install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    300  1.28      matt 			ci->ci_vfp_id = 0;
    301  1.37      matt 			evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
    302  1.37      matt 			    EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
    303  1.37      matt 			    "vfp fpscr traps");
    304  1.28      matt 			return;
    305  1.28      matt 		}
    306   1.6      matt 	}
    307   1.6      matt 
    308   1.7      matt 	void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
    309   1.7      matt 
    310   1.7      matt 	undefined_test = 0;
    311   1.7      matt 
    312  1.21      matt 	const uint32_t fpsid = armreg_fpsid_read();
    313   1.1  rearnsha 
    314   1.1  rearnsha 	remove_coproc_handler(uh);
    315   1.1  rearnsha 
    316   1.1  rearnsha 	if (undefined_test != 0) {
    317   1.4      matt 		aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
    318  1.62     skrll 		if (CPU_IS_PRIMARY(ci))
    319  1.62     skrll 			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    320   1.4      matt 		ci->ci_vfp_id = 0;
    321   1.1  rearnsha 		return;
    322   1.1  rearnsha 	}
    323   1.1  rearnsha 
    324   1.4      matt 	ci->ci_vfp_id = fpsid;
    325   1.4      matt 	switch (fpsid & ~ VFP_FPSID_REV_MSK) {
    326   1.4      matt 	case FPU_VFP10_ARM10E:
    327   1.4      matt 		model = "VFP10 R1";
    328   1.4      matt 		break;
    329   1.4      matt 	case FPU_VFP11_ARM11:
    330   1.4      matt 		model = "VFP11";
    331   1.4      matt 		break;
    332  1.36      matt 	case FPU_VFP_MV88SV58XX:
    333  1.36      matt 		model = "VFP3";
    334  1.36      matt 		break;
    335   1.7      matt 	case FPU_VFP_CORTEXA5:
    336   1.7      matt 	case FPU_VFP_CORTEXA7:
    337   1.7      matt 	case FPU_VFP_CORTEXA8:
    338   1.7      matt 	case FPU_VFP_CORTEXA9:
    339  1.63       tnn 	case FPU_VFP_CORTEXA12:
    340  1.20      matt 	case FPU_VFP_CORTEXA15:
    341  1.42       slp 	case FPU_VFP_CORTEXA15_QEMU:
    342  1.63       tnn 	case FPU_VFP_CORTEXA17:
    343  1.50     skrll 	case FPU_VFP_CORTEXA53:
    344  1.53  jmcneill 	case FPU_VFP_CORTEXA57:
    345  1.37      matt 		if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
    346  1.37      matt 			model = "VFP 4.0+";
    347  1.37      matt 		} else {
    348  1.37      matt 			model = "NEON MPE (VFP 3.0+)";
    349  1.37      matt 			cpu_neon_present = 1;
    350  1.37      matt 		}
    351   1.6      matt 		break;
    352   1.4      matt 	default:
    353  1.36      matt 		aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
    354   1.4      matt 		    fpsid);
    355  1.62     skrll 		if (CPU_IS_PRIMARY(ci))
    356  1.62     skrll 			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    357  1.35      matt 		vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
    358  1.35      matt 		    |VFP_FPSCR_RMODE;
    359  1.35      matt 		vfp_fpscr_default = 0;
    360   1.4      matt 		return;
    361   1.4      matt 	}
    362   1.1  rearnsha 
    363  1.17      matt 	cpu_fpu_present = 1;
    364  1.21      matt 	cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
    365  1.21      matt 	cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
    366   1.1  rearnsha 	if (fpsid != 0) {
    367  1.34      matt 		uint32_t f0 = armreg_mvfr0_read();
    368  1.41      matt 		uint32_t f1 = armreg_mvfr1_read();
    369  1.34      matt 		aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
    370  1.37      matt 		    device_unit(ci->ci_dev),
    371  1.37      matt 		    device_xname(ci->ci_dev),
    372  1.34      matt 		    model,
    373  1.34      matt 		    ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
    374  1.34      matt 		    ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
    375  1.38      matt 		    ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
    376  1.34      matt 		    ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
    377  1.49  jmcneill 		aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
    378  1.37      matt 		    device_unit(ci->ci_dev), f0, f1);
    379  1.37      matt 		if (CPU_IS_PRIMARY(ci)) {
    380  1.37      matt 			if (f0 & ARM_MVFR0_ROUNDING_MASK) {
    381  1.37      matt 				vfp_fpscr_changable |= VFP_FPSCR_RMODE;
    382  1.37      matt 			}
    383  1.37      matt 			if (f1 & ARM_MVFR0_EXCEPT_MASK) {
    384  1.37      matt 				vfp_fpscr_changable |= VFP_FPSCR_ESUM;
    385  1.37      matt 			}
    386  1.38      matt 			// If hardware supports propagation of NaNs, select it.
    387  1.37      matt 			if (f1 & ARM_MVFR1_D_NAN_MASK) {
    388  1.37      matt 				vfp_fpscr_default &= ~VFP_FPSCR_DN;
    389  1.37      matt 				vfp_fpscr_changable |= VFP_FPSCR_DN;
    390  1.37      matt 			}
    391  1.37      matt 			// If hardware supports denormalized numbers, use it.
    392  1.37      matt 			if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
    393  1.37      matt 				vfp_fpscr_default &= ~VFP_FPSCR_FZ;
    394  1.37      matt 				vfp_fpscr_changable |= VFP_FPSCR_FZ;
    395  1.37      matt 			}
    396  1.37      matt 		}
    397  1.37      matt 	}
    398  1.37      matt 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
    399  1.37      matt 	    ci->ci_cpuname, "vfp coproc use");
    400  1.37      matt 	evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
    401  1.37      matt 	    ci->ci_cpuname, "vfp coproc re-use");
    402  1.37      matt 	evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
    403  1.37      matt 	    ci->ci_cpuname, "vfp coproc fault");
    404  1.62     skrll 	if (CPU_IS_PRIMARY(ci)) {
    405  1.62     skrll 		install_coproc_handler(VFP_COPROC, vfp_handler);
    406  1.62     skrll 		install_coproc_handler(VFP_COPROC2, vfp_handler);
    407  1.13      matt #ifdef CPU_CORTEX
    408  1.66  riastrad 		if (cpu_neon_present) {
    409  1.66  riastrad 			install_coproc_handler(CORE_UNKNOWN_HANDLER,
    410  1.66  riastrad 			    neon_handler);
    411  1.66  riastrad 			aes_md_init(&aes_neon_impl);
    412  1.66  riastrad 		}
    413  1.13      matt #endif
    414  1.62     skrll 	}
    415   1.1  rearnsha }
    416   1.1  rearnsha 
    417   1.1  rearnsha /* The real handler for VFP bounces.  */
    418   1.4      matt static int
    419  1.21      matt vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    420   1.1  rearnsha {
    421   1.4      matt 	struct cpu_info * const ci = curcpu();
    422   1.1  rearnsha 
    423   1.1  rearnsha 	/* This shouldn't ever happen.  */
    424   1.1  rearnsha 	if (fault_code != FAULT_USER)
    425  1.14      matt 		panic("VFP fault at %#x in non-user mode", frame->tf_pc);
    426   1.1  rearnsha 
    427  1.27      matt 	if (ci->ci_vfp_id == 0) {
    428   1.1  rearnsha 		/* No VFP detected, just fault.  */
    429   1.1  rearnsha 		return 1;
    430  1.27      matt 	}
    431  1.27      matt 
    432  1.47      matt 	/*
    433  1.47      matt 	 * If we already own the FPU and it's enabled (and no exception), raise
    434  1.47      matt 	 * SIGILL.  If there is an exception, drop through to raise a SIGFPE.
    435  1.47      matt 	 */
    436  1.46      matt 	if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
    437  1.47      matt 	    && (armreg_fpexc_read() & (VFP_FPEXC_EX|VFP_FPEXC_EN)) == VFP_FPEXC_EN)
    438  1.47      matt 		return 1;
    439  1.44      matt 
    440  1.27      matt 	/*
    441  1.27      matt 	 * Make sure we own the FP.
    442  1.27      matt 	 */
    443  1.27      matt 	pcu_load(&arm_vfp_ops);
    444   1.1  rearnsha 
    445  1.21      matt 	uint32_t fpexc = armreg_fpexc_read();
    446  1.21      matt 	if (fpexc & VFP_FPEXC_EX) {
    447  1.21      matt 		ksiginfo_t ksi;
    448  1.21      matt 		KASSERT(fpexc & VFP_FPEXC_EN);
    449  1.21      matt 
    450  1.37      matt 		curcpu()->ci_vfp_evs[2].ev_count++;
    451  1.21      matt 
    452  1.21      matt 		/*
    453  1.21      matt 		 * Need the clear the exception condition so any signal
    454  1.33     skrll 		 * and future use can proceed.
    455  1.21      matt 		 */
    456  1.31     skrll 		armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
    457  1.21      matt 
    458  1.51       chs 		pcu_save(&arm_vfp_ops, curlwp);
    459  1.33     skrll 
    460  1.33     skrll 		/*
    461  1.33     skrll 		 * XXX Need to emulate bounce instructions here to get correct
    462  1.33     skrll 		 * XXX exception codes, etc.
    463  1.33     skrll 		 */
    464  1.21      matt 		KSI_INIT_TRAP(&ksi);
    465  1.21      matt 		ksi.ksi_signo = SIGFPE;
    466  1.21      matt 		if (fpexc & VFP_FPEXC_IXF)
    467  1.21      matt 			ksi.ksi_code = FPE_FLTRES;
    468  1.21      matt 		else if (fpexc & VFP_FPEXC_UFF)
    469  1.21      matt 			ksi.ksi_code = FPE_FLTUND;
    470  1.21      matt 		else if (fpexc & VFP_FPEXC_OFF)
    471  1.21      matt 			ksi.ksi_code = FPE_FLTOVF;
    472  1.21      matt 		else if (fpexc & VFP_FPEXC_DZF)
    473  1.21      matt 			ksi.ksi_code = FPE_FLTDIV;
    474  1.21      matt 		else if (fpexc & VFP_FPEXC_IOF)
    475  1.21      matt 			ksi.ksi_code = FPE_FLTINV;
    476  1.21      matt 		ksi.ksi_addr = (uint32_t *)address;
    477  1.21      matt 		ksi.ksi_trap = 0;
    478  1.21      matt 		trapsignal(curlwp, &ksi);
    479  1.21      matt 		return 0;
    480  1.21      matt 	}
    481  1.21      matt 
    482   1.4      matt 	/* Need to restart the faulted instruction.  */
    483   1.4      matt //	frame->tf_pc -= INSN_SIZE;
    484   1.4      matt 	return 0;
    485   1.4      matt }
    486   1.1  rearnsha 
    487  1.13      matt #ifdef CPU_CORTEX
    488  1.13      matt /* The real handler for NEON bounces.  */
    489  1.13      matt static int
    490  1.21      matt neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    491  1.13      matt {
    492  1.13      matt 	struct cpu_info * const ci = curcpu();
    493  1.13      matt 
    494  1.13      matt 	if (ci->ci_vfp_id == 0)
    495  1.13      matt 		/* No VFP detected, just fault.  */
    496  1.13      matt 		return 1;
    497  1.13      matt 
    498  1.13      matt 	if ((insn & 0xfe000000) != 0xf2000000
    499  1.13      matt 	    && (insn & 0xfe000000) != 0xf4000000)
    500  1.13      matt 		/* Not NEON instruction, just fault.  */
    501  1.13      matt 		return 1;
    502  1.13      matt 
    503  1.13      matt 	/* This shouldn't ever happen.  */
    504  1.13      matt 	if (fault_code != FAULT_USER)
    505  1.13      matt 		panic("NEON fault in non-user mode");
    506  1.13      matt 
    507  1.45      matt 	/* if we already own the FPU and it's enabled, raise SIGILL */
    508  1.45      matt 	if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
    509  1.45      matt 	    && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
    510  1.47      matt 		return 1;
    511  1.43      matt 
    512  1.13      matt 	pcu_load(&arm_vfp_ops);
    513  1.13      matt 
    514  1.13      matt 	/* Need to restart the faulted instruction.  */
    515  1.13      matt //	frame->tf_pc -= INSN_SIZE;
    516  1.13      matt 	return 0;
    517  1.13      matt }
    518  1.13      matt #endif
    519  1.13      matt 
    520   1.4      matt static void
    521  1.13      matt vfp_state_load(lwp_t *l, u_int flags)
    522   1.4      matt {
    523   1.4      matt 	struct pcb * const pcb = lwp_getpcb(l);
    524   1.4      matt 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    525   1.1  rearnsha 
    526   1.1  rearnsha 	/*
    527   1.1  rearnsha 	 * Instrument VFP usage -- if a process has not previously
    528   1.1  rearnsha 	 * used the VFP, mark it as having used VFP for the first time,
    529   1.1  rearnsha 	 * and count this event.
    530   1.1  rearnsha 	 *
    531   1.1  rearnsha 	 * If a process has used the VFP, count a "used VFP, and took
    532   1.1  rearnsha 	 * a trap to use it again" event.
    533   1.1  rearnsha 	 */
    534  1.39     rmind 	if (__predict_false((flags & PCU_VALID) == 0)) {
    535  1.37      matt 		curcpu()->ci_vfp_evs[0].ev_count++;
    536  1.34      matt 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
    537   1.4      matt 	} else {
    538  1.37      matt 		curcpu()->ci_vfp_evs[1].ev_count++;
    539   1.4      matt 	}
    540   1.1  rearnsha 
    541  1.54    bouyer 	KASSERT((armreg_fpexc_read() & VFP_FPEXC_EN) == 0);
    542  1.39     rmind 	/*
    543  1.39     rmind 	 * If the VFP is already enabled we must be bouncing an instruction.
    544  1.39     rmind 	 */
    545  1.39     rmind 	if (flags & PCU_REENABLE) {
    546  1.39     rmind 		uint32_t fpexc = armreg_fpexc_read();
    547  1.39     rmind 		armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
    548  1.54    bouyer 		fregs->vfp_fpexc |= VFP_FPEXC_EN;
    549  1.39     rmind 		return;
    550  1.39     rmind 	}
    551  1.54    bouyer 	KASSERT((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0);
    552  1.33     skrll 
    553  1.39     rmind 	/*
    554  1.39     rmind 	 * Load and Enable the VFP (so that we can write the registers).
    555  1.39     rmind 	 */
    556  1.39     rmind 	fregs->vfp_fpexc |= VFP_FPEXC_EN;
    557  1.39     rmind 	armreg_fpexc_write(fregs->vfp_fpexc);
    558  1.54    bouyer 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == NULL);
    559  1.54    bouyer 	KASSERT(l->l_pcu_cpu[PCU_FPU] == NULL);
    560  1.13      matt 
    561  1.39     rmind 	load_vfpregs(fregs);
    562  1.39     rmind 	armreg_fpscr_write(fregs->vfp_fpscr);
    563  1.13      matt 
    564  1.39     rmind 	if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
    565  1.39     rmind 		/* Need to restore the exception handling state.  */
    566  1.52       chs 		armreg_fpinst_write(fregs->vfp_fpinst);
    567  1.39     rmind 		if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
    568  1.52       chs 			armreg_fpinst2_write(fregs->vfp_fpinst2);
    569   1.1  rearnsha 	}
    570   1.1  rearnsha }
    571   1.1  rearnsha 
    572   1.1  rearnsha void
    573  1.39     rmind vfp_state_save(lwp_t *l)
    574   1.1  rearnsha {
    575   1.4      matt 	struct pcb * const pcb = lwp_getpcb(l);
    576  1.39     rmind 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    577  1.21      matt 	uint32_t fpexc = armreg_fpexc_read();
    578  1.33     skrll 
    579  1.54    bouyer 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == l);
    580  1.54    bouyer 	KASSERT(curcpu() == l->l_pcu_cpu[PCU_FPU]);
    581  1.54    bouyer 	KASSERT(curlwp == l || curlwp->l_pcu_cpu[PCU_FPU] != curcpu());
    582  1.33     skrll 	/*
    583  1.33     skrll 	 * Enable the VFP (so we can read the registers).
    584  1.33     skrll 	 * Make sure the exception bit is cleared so that we can
    585  1.33     skrll 	 * safely dump the registers.
    586  1.33     skrll 	 */
    587  1.21      matt 	armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
    588   1.1  rearnsha 
    589   1.4      matt 	fregs->vfp_fpexc = fpexc;
    590   1.4      matt 	if (fpexc & VFP_FPEXC_EX) {
    591   1.4      matt 		/* Need to save the exception handling state */
    592  1.21      matt 		fregs->vfp_fpinst = armreg_fpinst_read();
    593  1.21      matt 		if (fpexc & VFP_FPEXC_FP2V)
    594  1.21      matt 			fregs->vfp_fpinst2 = armreg_fpinst2_read();
    595   1.1  rearnsha 	}
    596  1.21      matt 	fregs->vfp_fpscr = armreg_fpscr_read();
    597  1.13      matt 	save_vfpregs(fregs);
    598   1.4      matt 
    599   1.1  rearnsha 	/* Disable the VFP.  */
    600  1.33     skrll 	armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
    601   1.1  rearnsha }
    602   1.1  rearnsha 
    603   1.1  rearnsha void
    604  1.39     rmind vfp_state_release(lwp_t *l)
    605   1.1  rearnsha {
    606   1.4      matt 	struct pcb * const pcb = lwp_getpcb(l);
    607   1.1  rearnsha 
    608  1.39     rmind 	/*
    609  1.39     rmind 	 * Now mark the VFP as disabled (and our state
    610  1.39     rmind 	 * has been already saved or is being discarded).
    611  1.39     rmind 	 */
    612  1.39     rmind 	pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
    613   1.1  rearnsha 
    614   1.1  rearnsha 	/*
    615   1.4      matt 	 * Turn off the FPU so the next time a VFP instruction is issued
    616   1.4      matt 	 * an exception happens.  We don't know if this LWP's state was
    617   1.4      matt 	 * loaded but if we turned off the FPU for some other LWP, when
    618   1.4      matt 	 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
    619  1.13      matt 	 * is still set so it just restore fpexc and return since its
    620   1.4      matt 	 * contents are still sitting in the VFP.
    621   1.1  rearnsha 	 */
    622  1.21      matt 	armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
    623   1.1  rearnsha }
    624   1.1  rearnsha 
    625   1.1  rearnsha void
    626  1.51       chs vfp_savecontext(lwp_t *l)
    627   1.1  rearnsha {
    628  1.51       chs 	pcu_save(&arm_vfp_ops, l);
    629   1.1  rearnsha }
    630   1.1  rearnsha 
    631   1.1  rearnsha void
    632  1.51       chs vfp_discardcontext(lwp_t *l, bool used_p)
    633   1.1  rearnsha {
    634  1.51       chs 	pcu_discard(&arm_vfp_ops, l, used_p);
    635  1.25      matt }
    636  1.25      matt 
    637  1.25      matt bool
    638  1.51       chs vfp_used_p(const lwp_t *l)
    639  1.25      matt {
    640  1.51       chs 	return pcu_valid_p(&arm_vfp_ops, l);
    641  1.13      matt }
    642  1.13      matt 
    643  1.13      matt void
    644   1.8      matt vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
    645   1.8      matt {
    646  1.51       chs 	if (vfp_used_p(l)) {
    647   1.8      matt 		const struct pcb * const pcb = lwp_getpcb(l);
    648  1.51       chs 
    649  1.51       chs 		pcu_save(&arm_vfp_ops, l);
    650   1.8      matt 		mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
    651   1.8      matt 		memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
    652   1.8      matt 		    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    653  1.10      matt 		*flagsp |= _UC_FPU|_UC_ARM_VFP;
    654   1.8      matt 	}
    655   1.8      matt }
    656   1.8      matt 
    657   1.8      matt void
    658   1.8      matt vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
    659   1.8      matt {
    660   1.8      matt 	struct pcb * const pcb = lwp_getpcb(l);
    661  1.51       chs 
    662  1.51       chs 	pcu_discard(&arm_vfp_ops, l, true);
    663   1.8      matt 	pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
    664   1.8      matt 	memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
    665   1.8      matt 	    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    666   1.8      matt }
    667   1.8      matt 
    668  1.65  riastrad void
    669  1.65  riastrad fpu_kern_enter(void)
    670  1.65  riastrad {
    671  1.65  riastrad 	struct lwp *l = curlwp;
    672  1.65  riastrad 	struct cpu_info *ci;
    673  1.65  riastrad 	uint32_t fpexc;
    674  1.65  riastrad 	int s;
    675  1.65  riastrad 
    676  1.65  riastrad 	/*
    677  1.67  riastrad 	 * Block interrupts up to IPL_VM.  We must block preemption
    678  1.67  riastrad 	 * since -- if this is a user thread -- there is nowhere to
    679  1.67  riastrad 	 * save the kernel fpu state, and if we want this to be usable
    680  1.67  riastrad 	 * in interrupts, we can't let interrupts interfere with the
    681  1.67  riastrad 	 * fpu state in use since there's nowhere for them to save it.
    682  1.65  riastrad 	 */
    683  1.67  riastrad 	s = splvm();
    684  1.65  riastrad 	ci = curcpu();
    685  1.67  riastrad 	KASSERTMSG(ci->ci_cpl <= IPL_VM, "cpl=%d", ci->ci_cpl);
    686  1.65  riastrad 	KASSERT(ci->ci_kfpu_spl == -1);
    687  1.65  riastrad 	ci->ci_kfpu_spl = s;
    688  1.65  riastrad 
    689  1.65  riastrad 	/*
    690  1.65  riastrad 	 * If we are in a softint and have a pinned lwp, the fpu state
    691  1.65  riastrad 	 * is that of the pinned lwp, so save it there.
    692  1.65  riastrad 	 */
    693  1.65  riastrad 	if ((l->l_pflag & LP_INTR) && (l->l_switchto != NULL))
    694  1.65  riastrad 		l = l->l_switchto;
    695  1.65  riastrad 	if (vfp_used_p(l))
    696  1.65  riastrad 		vfp_savecontext(l);
    697  1.65  riastrad 
    698  1.65  riastrad 	/* Enable the fpu.  */
    699  1.65  riastrad 	fpexc = armreg_fpexc_read();
    700  1.65  riastrad 	fpexc |= VFP_FPEXC_EN;
    701  1.65  riastrad 	fpexc &= ~VFP_FPEXC_EX;
    702  1.65  riastrad 	armreg_fpexc_write(fpexc);
    703  1.65  riastrad }
    704  1.65  riastrad 
    705  1.65  riastrad void
    706  1.65  riastrad fpu_kern_leave(void)
    707  1.65  riastrad {
    708  1.65  riastrad 	static const struct vfpreg zero_vfpreg;
    709  1.65  riastrad 	struct cpu_info *ci = curcpu();
    710  1.65  riastrad 	int s;
    711  1.65  riastrad 	uint32_t fpexc;
    712  1.65  riastrad 
    713  1.67  riastrad 	KASSERT(ci->ci_cpl == IPL_VM);
    714  1.65  riastrad 	KASSERT(ci->ci_kfpu_spl != -1);
    715  1.65  riastrad 
    716  1.65  riastrad 	/*
    717  1.65  riastrad 	 * Zero the fpu registers; otherwise we might leak secrets
    718  1.65  riastrad 	 * through Spectre-class attacks to userland, even if there are
    719  1.65  riastrad 	 * no bugs in fpu state management.
    720  1.65  riastrad 	 */
    721  1.65  riastrad 	load_vfpregs(&zero_vfpreg);
    722  1.65  riastrad 
    723  1.65  riastrad 	/*
    724  1.65  riastrad 	 * Disable the fpu so that the kernel can't accidentally use
    725  1.65  riastrad 	 * it again.
    726  1.65  riastrad 	 */
    727  1.65  riastrad 	fpexc = armreg_fpexc_read();
    728  1.65  riastrad 	fpexc &= ~VFP_FPEXC_EN;
    729  1.65  riastrad 	armreg_fpexc_write(fpexc);
    730  1.65  riastrad 
    731  1.65  riastrad 	/* Restore interrupts.  */
    732  1.65  riastrad 	s = ci->ci_kfpu_spl;
    733  1.65  riastrad 	ci->ci_kfpu_spl = -1;
    734  1.65  riastrad 	splx(s);
    735  1.65  riastrad }
    736  1.65  riastrad 
    737   1.4      matt #endif /* FPU_VFP */
    738