vfp_init.c revision 1.7 1 1.7 matt /* $NetBSD: vfp_init.c,v 1.7 2012/09/22 19:45:54 matt Exp $ */
2 1.1 rearnsha
3 1.1 rearnsha /*
4 1.1 rearnsha * Copyright (c) 2008 ARM Ltd
5 1.1 rearnsha * All rights reserved.
6 1.1 rearnsha *
7 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
8 1.1 rearnsha * modification, are permitted provided that the following conditions
9 1.1 rearnsha * are met:
10 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
11 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
12 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
14 1.1 rearnsha * documentation and/or other materials provided with the distribution.
15 1.1 rearnsha * 3. The name of the company may not be used to endorse or promote
16 1.1 rearnsha * products derived from this software without specific prior written
17 1.1 rearnsha * permission.
18 1.1 rearnsha *
19 1.1 rearnsha * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 1.1 rearnsha * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 rearnsha * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 rearnsha * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 1.1 rearnsha * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 rearnsha * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 1.1 rearnsha * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rearnsha * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 1.1 rearnsha * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 1.1 rearnsha * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 1.1 rearnsha * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 1.1 rearnsha */
31 1.1 rearnsha
32 1.1 rearnsha #include <sys/param.h>
33 1.1 rearnsha #include <sys/types.h>
34 1.1 rearnsha #include <sys/systm.h>
35 1.1 rearnsha #include <sys/device.h>
36 1.1 rearnsha #include <sys/proc.h>
37 1.4 matt #include <sys/cpu.h>
38 1.1 rearnsha
39 1.5 matt #include <arm/pcb.h>
40 1.1 rearnsha #include <arm/undefined.h>
41 1.1 rearnsha #include <arm/vfpreg.h>
42 1.1 rearnsha
43 1.1 rearnsha /*
44 1.1 rearnsha * Use generic co-processor instructions to avoid assembly problems.
45 1.1 rearnsha */
46 1.1 rearnsha
47 1.1 rearnsha /* FMRX <X>, fpsid */
48 1.4 matt static inline uint32_t
49 1.4 matt read_fpsid(void)
50 1.4 matt {
51 1.4 matt uint32_t rv;
52 1.4 matt __asm __volatile("mrc p10, 7, %0, c0, c0, 0" : "=r" (rv));
53 1.4 matt return rv;
54 1.4 matt }
55 1.4 matt
56 1.4 matt /* FMRX <X>, fpexc */
57 1.4 matt static inline uint32_t
58 1.4 matt read_fpscr(void)
59 1.4 matt {
60 1.4 matt uint32_t rv;
61 1.4 matt __asm __volatile("mrc p10, 7, %0, c1, c0, 0" : "=r" (rv));
62 1.4 matt return rv;
63 1.4 matt }
64 1.4 matt
65 1.1 rearnsha /* FMRX <X>, fpexc */
66 1.4 matt static inline uint32_t
67 1.4 matt read_fpexc(void)
68 1.4 matt {
69 1.4 matt uint32_t rv;
70 1.4 matt __asm __volatile("mrc p10, 7, %0, c8, c0, 0" : "=r" (rv));
71 1.4 matt return rv;
72 1.4 matt }
73 1.4 matt
74 1.1 rearnsha /* FMRX <X>, fpinst */
75 1.4 matt static inline uint32_t
76 1.4 matt read_fpinst(void)
77 1.4 matt {
78 1.4 matt uint32_t rv;
79 1.4 matt __asm __volatile("mrc p10, 7, %0, c9, c0, 0" : "=r" (rv));
80 1.4 matt return rv;
81 1.4 matt }
82 1.4 matt
83 1.1 rearnsha /* FMRX <X>, fpinst2 */
84 1.4 matt static inline uint32_t
85 1.4 matt read_fpinst2(void)
86 1.4 matt {
87 1.4 matt uint32_t rv;
88 1.4 matt __asm __volatile("mrc p10, 7, %0, c10, c0, 0" : "=r" (rv));
89 1.4 matt return rv;
90 1.4 matt }
91 1.4 matt
92 1.1 rearnsha /* FSTMD <X>, {d0-d15} */
93 1.1 rearnsha #define save_vfpregs(X) __asm __volatile("stc p11, c0, [%0], {32}" : \
94 1.1 rearnsha : "r" (X) : "memory")
95 1.1 rearnsha
96 1.1 rearnsha /* FMXR <X>, fpscr */
97 1.1 rearnsha #define write_fpscr(X) __asm __volatile("mcr p10, 7, %0, c1, c0, 0" : \
98 1.1 rearnsha : "r" (X))
99 1.1 rearnsha /* FMXR <X>, fpexc */
100 1.1 rearnsha #define write_fpexc(X) __asm __volatile("mcr p10, 7, %0, c8, c0, 0" : \
101 1.1 rearnsha : "r" (X))
102 1.1 rearnsha /* FMXR <X>, fpinst */
103 1.1 rearnsha #define write_fpinst(X) __asm __volatile("mcr p10, 7, %0, c9, c0, 0" : \
104 1.1 rearnsha : "r" (X))
105 1.1 rearnsha /* FMXR <X>, fpinst2 */
106 1.1 rearnsha #define write_fpinst2(X) __asm __volatile("mcr p10, 7, %0, c10, c0, 0" : \
107 1.1 rearnsha : "r" (X))
108 1.1 rearnsha /* FLDMD <X>, {d0-d15} */
109 1.1 rearnsha #define load_vfpregs(X) __asm __volatile("ldc p11, c0, [%0], {32}" : \
110 1.1 rearnsha : "r" (X) : "memory");
111 1.1 rearnsha
112 1.4 matt #ifdef FPU_VFP
113 1.4 matt
114 1.1 rearnsha /* The real handler for VFP bounces. */
115 1.1 rearnsha static int vfp_handler(u_int, u_int, trapframe_t *, int);
116 1.4 matt static int vfp_handler(u_int, u_int, trapframe_t *, int);
117 1.1 rearnsha
118 1.4 matt static void vfp_state_load(lwp_t *, bool);
119 1.4 matt static void vfp_state_save(lwp_t *);
120 1.4 matt static void vfp_state_release(lwp_t *);
121 1.4 matt
122 1.4 matt const pcu_ops_t arm_vfp_ops = {
123 1.4 matt .pcu_id = PCU_FPU,
124 1.4 matt .pcu_state_load = vfp_state_load,
125 1.4 matt .pcu_state_save = vfp_state_save,
126 1.4 matt .pcu_state_release = vfp_state_release,
127 1.4 matt };
128 1.1 rearnsha
129 1.1 rearnsha struct evcnt vfpevent_use;
130 1.1 rearnsha struct evcnt vfpevent_reuse;
131 1.1 rearnsha
132 1.1 rearnsha /*
133 1.1 rearnsha * Used to test for a VFP. The following function is installed as a coproc10
134 1.1 rearnsha * handler on the undefined instruction vector and then we issue a VFP
135 1.1 rearnsha * instruction. If undefined_test is non zero then the VFP did not handle
136 1.1 rearnsha * the instruction so must be absent, or disabled.
137 1.1 rearnsha */
138 1.1 rearnsha
139 1.1 rearnsha static int undefined_test;
140 1.1 rearnsha
141 1.1 rearnsha static int
142 1.4 matt vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
143 1.1 rearnsha {
144 1.1 rearnsha
145 1.1 rearnsha frame->tf_pc += INSN_SIZE;
146 1.1 rearnsha ++undefined_test;
147 1.4 matt return 0;
148 1.4 matt }
149 1.4 matt
150 1.4 matt #endif /* FPU_VFP */
151 1.4 matt
152 1.4 matt struct evcnt vfp_fpscr_ev =
153 1.4 matt EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "VFP", "FPSCR traps");
154 1.4 matt EVCNT_ATTACH_STATIC(vfp_fpscr_ev);
155 1.4 matt
156 1.4 matt static int
157 1.4 matt vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
158 1.4 matt {
159 1.4 matt struct lwp * const l = curlwp;
160 1.4 matt const u_int regno = (insn >> 12) & 0xf;
161 1.4 matt /*
162 1.4 matt * Only match move to/from the FPSCR register and we
163 1.4 matt * can't be using the SP,LR,PC as a source.
164 1.4 matt */
165 1.4 matt if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
166 1.4 matt return 1;
167 1.4 matt
168 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
169 1.4 matt
170 1.4 matt #ifdef FPU_VFP
171 1.4 matt /*
172 1.4 matt * If FPU is valid somewhere, let's just reenable VFP and
173 1.4 matt * retry the instruction (only safe thing to do since the
174 1.4 matt * pcb has a stale copy).
175 1.4 matt */
176 1.4 matt if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
177 1.4 matt return 1;
178 1.4 matt #endif
179 1.4 matt
180 1.4 matt if (__predict_false((l->l_md.md_flags & MDLWP_VFPUSED) == 0)) {
181 1.4 matt l->l_md.md_flags |= MDLWP_VFPUSED;
182 1.4 matt pcb->pcb_vfp.vfp_fpscr =
183 1.4 matt (VFP_FPSCR_DN | VFP_FPSCR_FZ); /* Runfast */
184 1.4 matt }
185 1.4 matt
186 1.4 matt /*
187 1.4 matt * We know know the pcb has the saved copy.
188 1.4 matt */
189 1.4 matt register_t * const regp = &frame->tf_r0 + regno;
190 1.4 matt if (insn & 0x00100000) {
191 1.4 matt *regp = pcb->pcb_vfp.vfp_fpscr;
192 1.4 matt } else {
193 1.4 matt pcb->pcb_vfp.vfp_fpscr = *regp;
194 1.4 matt }
195 1.4 matt
196 1.4 matt vfp_fpscr_ev.ev_count++;
197 1.4 matt
198 1.4 matt frame->tf_pc += INSN_SIZE;
199 1.4 matt return 0;
200 1.1 rearnsha }
201 1.1 rearnsha
202 1.4 matt #ifndef FPU_VFP
203 1.4 matt /*
204 1.4 matt * If we don't want VFP support, we still need to handle emulating VFP FPSCR
205 1.4 matt * instructions.
206 1.4 matt */
207 1.4 matt void
208 1.4 matt vfp_attach(void)
209 1.4 matt {
210 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
211 1.4 matt }
212 1.4 matt
213 1.4 matt #else
214 1.1 rearnsha void
215 1.2 cegger vfp_attach(void)
216 1.1 rearnsha {
217 1.4 matt struct cpu_info * const ci = curcpu();
218 1.4 matt const char *model = NULL;
219 1.7 matt bool vfp_p = false;
220 1.1 rearnsha
221 1.7 matt #ifdef FPU_VFP
222 1.7 matt if (CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid)
223 1.7 matt || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
224 1.7 matt const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
225 1.7 matt const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
226 1.1 rearnsha
227 1.7 matt /*
228 1.7 matt * We first need to enable access to the coprocessors.
229 1.7 matt */
230 1.7 matt uint32_t cpacr = armreg_cpacr_read();
231 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
232 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
233 1.7 matt armreg_cpacr_write(cpacr);
234 1.1 rearnsha
235 1.7 matt /*
236 1.7 matt * If we could enable them, then they exist.
237 1.7 matt */
238 1.7 matt cpacr = armreg_cpacr_read();
239 1.7 matt vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) != CPACR_NOACCESS
240 1.7 matt || __SHIFTOUT(cpacr, cpacr_vfp) != CPACR_NOACCESS;
241 1.6 matt }
242 1.6 matt #endif
243 1.6 matt
244 1.7 matt void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
245 1.7 matt
246 1.7 matt undefined_test = 0;
247 1.7 matt
248 1.4 matt const uint32_t fpsid = read_fpsid();
249 1.1 rearnsha
250 1.1 rearnsha remove_coproc_handler(uh);
251 1.1 rearnsha
252 1.1 rearnsha if (undefined_test != 0) {
253 1.4 matt aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
254 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
255 1.4 matt ci->ci_vfp_id = 0;
256 1.1 rearnsha return;
257 1.1 rearnsha }
258 1.1 rearnsha
259 1.4 matt ci->ci_vfp_id = fpsid;
260 1.4 matt switch (fpsid & ~ VFP_FPSID_REV_MSK) {
261 1.4 matt case FPU_VFP10_ARM10E:
262 1.4 matt model = "VFP10 R1";
263 1.4 matt break;
264 1.4 matt case FPU_VFP11_ARM11:
265 1.4 matt model = "VFP11";
266 1.4 matt break;
267 1.7 matt case FPU_VFP_CORTEXA5:
268 1.7 matt case FPU_VFP_CORTEXA7:
269 1.7 matt case FPU_VFP_CORTEXA8:
270 1.7 matt case FPU_VFP_CORTEXA9:
271 1.7 matt model = "NEON MPE (VFP 3.0+)";
272 1.6 matt break;
273 1.4 matt default:
274 1.4 matt aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %x\n",
275 1.4 matt fpsid);
276 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
277 1.4 matt return;
278 1.4 matt }
279 1.1 rearnsha
280 1.1 rearnsha if (fpsid != 0) {
281 1.1 rearnsha aprint_normal("vfp%d at %s: %s\n",
282 1.6 matt device_unit(curcpu()->ci_dev), device_xname(curcpu()->ci_dev),
283 1.1 rearnsha model);
284 1.1 rearnsha }
285 1.1 rearnsha evcnt_attach_dynamic(&vfpevent_use, EVCNT_TYPE_MISC, NULL,
286 1.1 rearnsha "VFP", "proc use");
287 1.1 rearnsha evcnt_attach_dynamic(&vfpevent_reuse, EVCNT_TYPE_MISC, NULL,
288 1.1 rearnsha "VFP", "proc re-use");
289 1.1 rearnsha install_coproc_handler(VFP_COPROC, vfp_handler);
290 1.1 rearnsha install_coproc_handler(VFP_COPROC2, vfp_handler);
291 1.1 rearnsha }
292 1.1 rearnsha
293 1.1 rearnsha /* The real handler for VFP bounces. */
294 1.4 matt static int
295 1.4 matt vfp_handler(u_int address, u_int insn, trapframe_t *frame,
296 1.1 rearnsha int fault_code)
297 1.1 rearnsha {
298 1.4 matt struct cpu_info * const ci = curcpu();
299 1.1 rearnsha
300 1.1 rearnsha /* This shouldn't ever happen. */
301 1.1 rearnsha if (fault_code != FAULT_USER)
302 1.1 rearnsha panic("VFP fault in non-user mode");
303 1.1 rearnsha
304 1.4 matt if (ci->ci_vfp_id == 0)
305 1.1 rearnsha /* No VFP detected, just fault. */
306 1.1 rearnsha return 1;
307 1.1 rearnsha
308 1.4 matt /*
309 1.4 matt * If we are just changing/fetching FPSCR, don't bother loading it.
310 1.4 matt */
311 1.4 matt if (!vfp_fpscr_handler(address, insn, frame, fault_code))
312 1.4 matt return 0;
313 1.1 rearnsha
314 1.4 matt pcu_load(&arm_vfp_ops);
315 1.3 rmind
316 1.4 matt /* Need to restart the faulted instruction. */
317 1.4 matt // frame->tf_pc -= INSN_SIZE;
318 1.4 matt return 0;
319 1.4 matt }
320 1.1 rearnsha
321 1.4 matt static void
322 1.4 matt vfp_state_load(lwp_t *l, bool used)
323 1.4 matt {
324 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
325 1.4 matt struct vfpreg * const fregs = &pcb->pcb_vfp;
326 1.1 rearnsha
327 1.1 rearnsha /*
328 1.1 rearnsha * Instrument VFP usage -- if a process has not previously
329 1.1 rearnsha * used the VFP, mark it as having used VFP for the first time,
330 1.1 rearnsha * and count this event.
331 1.1 rearnsha *
332 1.1 rearnsha * If a process has used the VFP, count a "used VFP, and took
333 1.1 rearnsha * a trap to use it again" event.
334 1.1 rearnsha */
335 1.4 matt if (__predict_false((l->l_md.md_flags & MDLWP_VFPUSED) == 0)) {
336 1.1 rearnsha vfpevent_use.ev_count++;
337 1.4 matt l->l_md.md_flags |= MDLWP_VFPUSED;
338 1.3 rmind pcb->pcb_vfp.vfp_fpscr =
339 1.1 rearnsha (VFP_FPSCR_DN | VFP_FPSCR_FZ); /* Runfast */
340 1.4 matt } else {
341 1.1 rearnsha vfpevent_reuse.ev_count++;
342 1.4 matt }
343 1.1 rearnsha
344 1.4 matt if (fregs->vfp_fpexc & VFP_FPEXC_EN) {
345 1.4 matt /*
346 1.4 matt * If we think the VFP is enabled, it must have be disabled by
347 1.4 matt * vfp_state_release for another LWP so we can just restore
348 1.4 matt * FPEXC and return since our VFP state is still loaded.
349 1.4 matt */
350 1.4 matt write_fpexc(fregs->vfp_fpexc);
351 1.4 matt return;
352 1.4 matt }
353 1.1 rearnsha
354 1.1 rearnsha /* Enable the VFP (so that we can write the registers). */
355 1.4 matt uint32_t fpexc = read_fpexc();
356 1.1 rearnsha KDASSERT((fpexc & VFP_FPEXC_EX) == 0);
357 1.1 rearnsha write_fpexc(fpexc | VFP_FPEXC_EN);
358 1.1 rearnsha
359 1.1 rearnsha load_vfpregs(fregs->vfp_regs);
360 1.1 rearnsha write_fpscr(fregs->vfp_fpscr);
361 1.4 matt
362 1.1 rearnsha if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
363 1.4 matt struct cpu_info * const ci = curcpu();
364 1.1 rearnsha /* Need to restore the exception handling state. */
365 1.4 matt switch (ci->ci_vfp_id) {
366 1.1 rearnsha case FPU_VFP10_ARM10E:
367 1.1 rearnsha case FPU_VFP11_ARM11:
368 1.1 rearnsha write_fpinst2(fregs->vfp_fpinst2);
369 1.1 rearnsha write_fpinst(fregs->vfp_fpinst);
370 1.1 rearnsha break;
371 1.1 rearnsha default:
372 1.4 matt panic("%s: Unsupported VFP %#x",
373 1.4 matt __func__, ci->ci_vfp_id);
374 1.1 rearnsha }
375 1.1 rearnsha }
376 1.4 matt
377 1.4 matt /* Finally, restore the FPEXC but don't enable the VFP. */
378 1.4 matt fregs->vfp_fpexc |= VFP_FPEXC_EN;
379 1.4 matt write_fpexc(fregs->vfp_fpexc);
380 1.1 rearnsha }
381 1.1 rearnsha
382 1.1 rearnsha void
383 1.4 matt vfp_state_save(lwp_t *l)
384 1.1 rearnsha {
385 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
386 1.4 matt struct vfpreg * const fregs = &pcb->pcb_vfp;
387 1.1 rearnsha
388 1.4 matt /*
389 1.4 matt * If it's already disabled, then the state has been saved
390 1.4 matt * (or discarded).
391 1.4 matt */
392 1.4 matt if ((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0)
393 1.1 rearnsha return;
394 1.1 rearnsha
395 1.4 matt /*
396 1.4 matt * Enable the VFP (so we can read the registers).
397 1.4 matt * Make sure the exception bit is cleared so that we can
398 1.4 matt * safely dump the registers.
399 1.4 matt */
400 1.4 matt uint32_t fpexc = read_fpexc();
401 1.4 matt write_fpexc((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
402 1.1 rearnsha
403 1.4 matt fregs->vfp_fpexc = fpexc;
404 1.4 matt if (fpexc & VFP_FPEXC_EX) {
405 1.4 matt struct cpu_info * const ci = curcpu();
406 1.4 matt /* Need to save the exception handling state */
407 1.4 matt switch (ci->ci_vfp_id) {
408 1.4 matt case FPU_VFP10_ARM10E:
409 1.4 matt case FPU_VFP11_ARM11:
410 1.4 matt fregs->vfp_fpinst = read_fpinst();
411 1.4 matt fregs->vfp_fpinst2 = read_fpinst2();
412 1.4 matt break;
413 1.4 matt default:
414 1.4 matt panic("%s: Unsupported VFP %#x",
415 1.4 matt __func__, ci->ci_vfp_id);
416 1.1 rearnsha }
417 1.1 rearnsha }
418 1.4 matt fregs->vfp_fpscr = read_fpscr();
419 1.4 matt save_vfpregs(fregs->vfp_regs);
420 1.4 matt
421 1.1 rearnsha /* Disable the VFP. */
422 1.4 matt write_fpexc(fpexc);
423 1.1 rearnsha }
424 1.1 rearnsha
425 1.1 rearnsha void
426 1.4 matt vfp_state_release(lwp_t *l)
427 1.1 rearnsha {
428 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
429 1.1 rearnsha
430 1.4 matt /*
431 1.4 matt * Now mark the VFP as disabled (and our state has been already
432 1.4 matt * saved or is being discarded).
433 1.4 matt */
434 1.4 matt pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
435 1.1 rearnsha
436 1.1 rearnsha /*
437 1.4 matt * Turn off the FPU so the next time a VFP instruction is issued
438 1.4 matt * an exception happens. We don't know if this LWP's state was
439 1.4 matt * loaded but if we turned off the FPU for some other LWP, when
440 1.4 matt * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
441 1.4 matt * is still set so it just restroe fpexc and return since its
442 1.4 matt * contents are still sitting in the VFP.
443 1.1 rearnsha */
444 1.4 matt write_fpexc(read_fpexc() & ~VFP_FPEXC_EN);
445 1.1 rearnsha }
446 1.1 rearnsha
447 1.1 rearnsha void
448 1.2 cegger vfp_savecontext(void)
449 1.1 rearnsha {
450 1.4 matt pcu_save(&arm_vfp_ops);
451 1.1 rearnsha }
452 1.1 rearnsha
453 1.1 rearnsha void
454 1.4 matt vfp_discardcontext(void)
455 1.1 rearnsha {
456 1.4 matt pcu_discard(&arm_vfp_ops);
457 1.4 matt }
458 1.1 rearnsha
459 1.4 matt #endif /* FPU_VFP */
460