vfp_init.c revision 1.71 1 1.71 riastrad /* $NetBSD: vfp_init.c,v 1.71 2020/08/01 02:13:04 riastradh Exp $ */
2 1.1 rearnsha
3 1.1 rearnsha /*
4 1.1 rearnsha * Copyright (c) 2008 ARM Ltd
5 1.1 rearnsha * All rights reserved.
6 1.1 rearnsha *
7 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
8 1.1 rearnsha * modification, are permitted provided that the following conditions
9 1.1 rearnsha * are met:
10 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
11 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
12 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
14 1.1 rearnsha * documentation and/or other materials provided with the distribution.
15 1.1 rearnsha * 3. The name of the company may not be used to endorse or promote
16 1.1 rearnsha * products derived from this software without specific prior written
17 1.1 rearnsha * permission.
18 1.1 rearnsha *
19 1.1 rearnsha * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 1.1 rearnsha * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 rearnsha * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 rearnsha * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 1.1 rearnsha * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 rearnsha * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 1.1 rearnsha * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rearnsha * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 1.1 rearnsha * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 1.1 rearnsha * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 1.1 rearnsha * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 1.1 rearnsha */
31 1.1 rearnsha
32 1.59 skrll #include "opt_cputypes.h"
33 1.59 skrll
34 1.58 skrll #include <sys/cdefs.h>
35 1.71 riastrad __KERNEL_RCSID(0, "$NetBSD: vfp_init.c,v 1.71 2020/08/01 02:13:04 riastradh Exp $");
36 1.58 skrll
37 1.1 rearnsha #include <sys/param.h>
38 1.1 rearnsha #include <sys/types.h>
39 1.1 rearnsha #include <sys/systm.h>
40 1.1 rearnsha #include <sys/device.h>
41 1.71 riastrad #include <sys/kthread.h>
42 1.1 rearnsha #include <sys/proc.h>
43 1.4 matt #include <sys/cpu.h>
44 1.1 rearnsha
45 1.23 matt #include <arm/locore.h>
46 1.5 matt #include <arm/pcb.h>
47 1.1 rearnsha #include <arm/undefined.h>
48 1.1 rearnsha #include <arm/vfpreg.h>
49 1.8 matt #include <arm/mcontext.h>
50 1.65 riastrad #include <arm/fpu.h>
51 1.1 rearnsha
52 1.12 matt #include <uvm/uvm_extern.h> /* for pmap.h */
53 1.12 matt
54 1.69 riastrad #include <crypto/aes/aes_impl.h>
55 1.66 riastrad #include <crypto/aes/arch/arm/aes_neon.h>
56 1.70 riastrad #include <crypto/chacha/arch/arm/chacha_neon.h>
57 1.70 riastrad #include <crypto/chacha/chacha_impl.h>
58 1.66 riastrad
59 1.11 matt #ifdef FPU_VFP
60 1.11 matt
61 1.29 matt #ifdef CPU_CORTEX
62 1.56 christos #define SETFPU __asm(".fpu\tvfpv4")
63 1.29 matt #else
64 1.56 christos #define SETFPU __asm(".fpu\tvfp")
65 1.29 matt #endif
66 1.56 christos SETFPU;
67 1.29 matt
68 1.1 rearnsha /* FLDMD <X>, {d0-d15} */
69 1.11 matt static inline void
70 1.13 matt load_vfpregs_lo(const uint64_t *p)
71 1.10 matt {
72 1.56 christos SETFPU;
73 1.64 joerg __asm __volatile(".fpu vfp\n vldmia\t%0, {d0-d15}" :: "r" (p) : "memory");
74 1.10 matt }
75 1.10 matt
76 1.10 matt /* FSTMD <X>, {d0-d15} */
77 1.11 matt static inline void
78 1.10 matt save_vfpregs_lo(uint64_t *p)
79 1.10 matt {
80 1.56 christos SETFPU;
81 1.64 joerg __asm __volatile(".fpu vfp\n vstmia\t%0, {d0-d15}" :: "r" (p) : "memory");
82 1.10 matt }
83 1.10 matt
84 1.10 matt #ifdef CPU_CORTEX
85 1.10 matt /* FLDMD <X>, {d16-d31} */
86 1.11 matt static inline void
87 1.13 matt load_vfpregs_hi(const uint64_t *p)
88 1.10 matt {
89 1.56 christos SETFPU;
90 1.64 joerg __asm __volatile(".fpu neon-vfpv4\n vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
91 1.10 matt }
92 1.10 matt
93 1.10 matt /* FLDMD <X>, {d16-d31} */
94 1.11 matt static inline void
95 1.10 matt save_vfpregs_hi(uint64_t *p)
96 1.10 matt {
97 1.56 christos SETFPU;
98 1.64 joerg __asm __volatile(".fpu neon-vfpv4\nvstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
99 1.10 matt }
100 1.10 matt #endif
101 1.1 rearnsha
102 1.13 matt static inline void
103 1.13 matt load_vfpregs(const struct vfpreg *fregs)
104 1.13 matt {
105 1.13 matt load_vfpregs_lo(fregs->vfp_regs);
106 1.13 matt #ifdef CPU_CORTEX
107 1.13 matt #ifdef CPU_ARM11
108 1.13 matt switch (curcpu()->ci_vfp_id) {
109 1.13 matt case FPU_VFP_CORTEXA5:
110 1.13 matt case FPU_VFP_CORTEXA7:
111 1.13 matt case FPU_VFP_CORTEXA8:
112 1.13 matt case FPU_VFP_CORTEXA9:
113 1.20 matt case FPU_VFP_CORTEXA15:
114 1.42 slp case FPU_VFP_CORTEXA15_QEMU:
115 1.50 skrll case FPU_VFP_CORTEXA53:
116 1.53 jmcneill case FPU_VFP_CORTEXA57:
117 1.13 matt #endif
118 1.13 matt load_vfpregs_hi(fregs->vfp_regs);
119 1.13 matt #ifdef CPU_ARM11
120 1.13 matt break;
121 1.13 matt }
122 1.13 matt #endif
123 1.13 matt #endif
124 1.13 matt }
125 1.13 matt
126 1.13 matt static inline void
127 1.13 matt save_vfpregs(struct vfpreg *fregs)
128 1.13 matt {
129 1.13 matt save_vfpregs_lo(fregs->vfp_regs);
130 1.13 matt #ifdef CPU_CORTEX
131 1.13 matt #ifdef CPU_ARM11
132 1.13 matt switch (curcpu()->ci_vfp_id) {
133 1.13 matt case FPU_VFP_CORTEXA5:
134 1.13 matt case FPU_VFP_CORTEXA7:
135 1.13 matt case FPU_VFP_CORTEXA8:
136 1.13 matt case FPU_VFP_CORTEXA9:
137 1.20 matt case FPU_VFP_CORTEXA15:
138 1.42 slp case FPU_VFP_CORTEXA15_QEMU:
139 1.50 skrll case FPU_VFP_CORTEXA53:
140 1.53 jmcneill case FPU_VFP_CORTEXA57:
141 1.13 matt #endif
142 1.13 matt save_vfpregs_hi(fregs->vfp_regs);
143 1.13 matt #ifdef CPU_ARM11
144 1.13 matt break;
145 1.13 matt }
146 1.13 matt #endif
147 1.13 matt #endif
148 1.13 matt }
149 1.13 matt
150 1.1 rearnsha /* The real handler for VFP bounces. */
151 1.1 rearnsha static int vfp_handler(u_int, u_int, trapframe_t *, int);
152 1.13 matt #ifdef CPU_CORTEX
153 1.13 matt static int neon_handler(u_int, u_int, trapframe_t *, int);
154 1.13 matt #endif
155 1.1 rearnsha
156 1.13 matt static void vfp_state_load(lwp_t *, u_int);
157 1.39 rmind static void vfp_state_save(lwp_t *);
158 1.39 rmind static void vfp_state_release(lwp_t *);
159 1.4 matt
160 1.4 matt const pcu_ops_t arm_vfp_ops = {
161 1.4 matt .pcu_id = PCU_FPU,
162 1.13 matt .pcu_state_save = vfp_state_save,
163 1.4 matt .pcu_state_load = vfp_state_load,
164 1.4 matt .pcu_state_release = vfp_state_release,
165 1.4 matt };
166 1.1 rearnsha
167 1.34 matt /* determine what bits can be changed */
168 1.34 matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
169 1.34 matt /* default to run fast */
170 1.34 matt uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
171 1.34 matt
172 1.1 rearnsha /*
173 1.1 rearnsha * Used to test for a VFP. The following function is installed as a coproc10
174 1.1 rearnsha * handler on the undefined instruction vector and then we issue a VFP
175 1.1 rearnsha * instruction. If undefined_test is non zero then the VFP did not handle
176 1.1 rearnsha * the instruction so must be absent, or disabled.
177 1.1 rearnsha */
178 1.1 rearnsha
179 1.1 rearnsha static int undefined_test;
180 1.1 rearnsha
181 1.1 rearnsha static int
182 1.4 matt vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
183 1.1 rearnsha {
184 1.1 rearnsha
185 1.1 rearnsha frame->tf_pc += INSN_SIZE;
186 1.1 rearnsha ++undefined_test;
187 1.4 matt return 0;
188 1.4 matt }
189 1.4 matt
190 1.35 matt #else
191 1.35 matt /* determine what bits can be changed */
192 1.35 matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
193 1.4 matt #endif /* FPU_VFP */
194 1.4 matt
195 1.4 matt static int
196 1.4 matt vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
197 1.4 matt {
198 1.4 matt struct lwp * const l = curlwp;
199 1.4 matt const u_int regno = (insn >> 12) & 0xf;
200 1.4 matt /*
201 1.4 matt * Only match move to/from the FPSCR register and we
202 1.4 matt * can't be using the SP,LR,PC as a source.
203 1.4 matt */
204 1.4 matt if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
205 1.4 matt return 1;
206 1.4 matt
207 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
208 1.4 matt
209 1.4 matt #ifdef FPU_VFP
210 1.4 matt /*
211 1.4 matt * If FPU is valid somewhere, let's just reenable VFP and
212 1.4 matt * retry the instruction (only safe thing to do since the
213 1.4 matt * pcb has a stale copy).
214 1.4 matt */
215 1.4 matt if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
216 1.4 matt return 1;
217 1.4 matt
218 1.51 chs if (__predict_false(!vfp_used_p(l))) {
219 1.35 matt pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
220 1.4 matt }
221 1.26 matt #endif
222 1.4 matt
223 1.4 matt /*
224 1.30 skrll * We now know the pcb has the saved copy.
225 1.4 matt */
226 1.4 matt register_t * const regp = &frame->tf_r0 + regno;
227 1.4 matt if (insn & 0x00100000) {
228 1.4 matt *regp = pcb->pcb_vfp.vfp_fpscr;
229 1.4 matt } else {
230 1.34 matt pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
231 1.34 matt pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
232 1.4 matt }
233 1.4 matt
234 1.37 matt curcpu()->ci_vfp_evs[0].ev_count++;
235 1.61 skrll
236 1.4 matt frame->tf_pc += INSN_SIZE;
237 1.4 matt return 0;
238 1.1 rearnsha }
239 1.1 rearnsha
240 1.4 matt #ifndef FPU_VFP
241 1.4 matt /*
242 1.4 matt * If we don't want VFP support, we still need to handle emulating VFP FPSCR
243 1.4 matt * instructions.
244 1.4 matt */
245 1.4 matt void
246 1.37 matt vfp_attach(struct cpu_info *ci)
247 1.4 matt {
248 1.37 matt if (CPU_IS_PRIMARY(ci)) {
249 1.37 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
250 1.37 matt }
251 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
252 1.37 matt ci->ci_cpuname, "vfp fpscr traps");
253 1.4 matt }
254 1.4 matt
255 1.4 matt #else
256 1.1 rearnsha void
257 1.37 matt vfp_attach(struct cpu_info *ci)
258 1.1 rearnsha {
259 1.4 matt const char *model = NULL;
260 1.1 rearnsha
261 1.37 matt if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
262 1.37 matt || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
263 1.37 matt || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
264 1.37 matt #if 0
265 1.37 matt const uint32_t nsacr = armreg_nsacr_read();
266 1.37 matt const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
267 1.37 matt if ((nsacr & nsacr_vfp) != nsacr_vfp) {
268 1.40 matt aprint_normal_dev(ci->ci_dev,
269 1.40 matt "VFP access denied (NSACR=%#x)\n", nsacr);
270 1.62 skrll if (CPU_IS_PRIMARY(ci))
271 1.62 skrll install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
272 1.37 matt ci->ci_vfp_id = 0;
273 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
274 1.37 matt EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
275 1.37 matt "vfp fpscr traps");
276 1.37 matt return;
277 1.37 matt }
278 1.37 matt #endif
279 1.7 matt const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
280 1.7 matt const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
281 1.1 rearnsha
282 1.7 matt /*
283 1.7 matt * We first need to enable access to the coprocessors.
284 1.7 matt */
285 1.7 matt uint32_t cpacr = armreg_cpacr_read();
286 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
287 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
288 1.7 matt armreg_cpacr_write(cpacr);
289 1.1 rearnsha
290 1.48 jmcneill arm_isb();
291 1.48 jmcneill
292 1.7 matt /*
293 1.7 matt * If we could enable them, then they exist.
294 1.7 matt */
295 1.7 matt cpacr = armreg_cpacr_read();
296 1.40 matt bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
297 1.40 matt && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
298 1.28 matt if (!vfp_p) {
299 1.40 matt aprint_normal_dev(ci->ci_dev,
300 1.40 matt "VFP access denied (CPACR=%#x)\n", cpacr);
301 1.62 skrll if (CPU_IS_PRIMARY(ci))
302 1.62 skrll install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
303 1.28 matt ci->ci_vfp_id = 0;
304 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
305 1.37 matt EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
306 1.37 matt "vfp fpscr traps");
307 1.28 matt return;
308 1.28 matt }
309 1.6 matt }
310 1.6 matt
311 1.7 matt void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
312 1.7 matt
313 1.7 matt undefined_test = 0;
314 1.7 matt
315 1.21 matt const uint32_t fpsid = armreg_fpsid_read();
316 1.1 rearnsha
317 1.1 rearnsha remove_coproc_handler(uh);
318 1.1 rearnsha
319 1.1 rearnsha if (undefined_test != 0) {
320 1.4 matt aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
321 1.62 skrll if (CPU_IS_PRIMARY(ci))
322 1.62 skrll install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
323 1.4 matt ci->ci_vfp_id = 0;
324 1.1 rearnsha return;
325 1.1 rearnsha }
326 1.1 rearnsha
327 1.4 matt ci->ci_vfp_id = fpsid;
328 1.4 matt switch (fpsid & ~ VFP_FPSID_REV_MSK) {
329 1.4 matt case FPU_VFP10_ARM10E:
330 1.4 matt model = "VFP10 R1";
331 1.4 matt break;
332 1.4 matt case FPU_VFP11_ARM11:
333 1.4 matt model = "VFP11";
334 1.4 matt break;
335 1.36 matt case FPU_VFP_MV88SV58XX:
336 1.36 matt model = "VFP3";
337 1.36 matt break;
338 1.7 matt case FPU_VFP_CORTEXA5:
339 1.7 matt case FPU_VFP_CORTEXA7:
340 1.7 matt case FPU_VFP_CORTEXA8:
341 1.7 matt case FPU_VFP_CORTEXA9:
342 1.63 tnn case FPU_VFP_CORTEXA12:
343 1.20 matt case FPU_VFP_CORTEXA15:
344 1.42 slp case FPU_VFP_CORTEXA15_QEMU:
345 1.63 tnn case FPU_VFP_CORTEXA17:
346 1.50 skrll case FPU_VFP_CORTEXA53:
347 1.53 jmcneill case FPU_VFP_CORTEXA57:
348 1.37 matt if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
349 1.37 matt model = "VFP 4.0+";
350 1.37 matt } else {
351 1.37 matt model = "NEON MPE (VFP 3.0+)";
352 1.37 matt cpu_neon_present = 1;
353 1.37 matt }
354 1.6 matt break;
355 1.4 matt default:
356 1.36 matt aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
357 1.4 matt fpsid);
358 1.62 skrll if (CPU_IS_PRIMARY(ci))
359 1.62 skrll install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
360 1.35 matt vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
361 1.35 matt |VFP_FPSCR_RMODE;
362 1.35 matt vfp_fpscr_default = 0;
363 1.4 matt return;
364 1.4 matt }
365 1.1 rearnsha
366 1.17 matt cpu_fpu_present = 1;
367 1.21 matt cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
368 1.21 matt cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
369 1.1 rearnsha if (fpsid != 0) {
370 1.34 matt uint32_t f0 = armreg_mvfr0_read();
371 1.41 matt uint32_t f1 = armreg_mvfr1_read();
372 1.34 matt aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
373 1.37 matt device_unit(ci->ci_dev),
374 1.37 matt device_xname(ci->ci_dev),
375 1.34 matt model,
376 1.34 matt ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
377 1.34 matt ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
378 1.38 matt ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
379 1.34 matt ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
380 1.49 jmcneill aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
381 1.37 matt device_unit(ci->ci_dev), f0, f1);
382 1.37 matt if (CPU_IS_PRIMARY(ci)) {
383 1.37 matt if (f0 & ARM_MVFR0_ROUNDING_MASK) {
384 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_RMODE;
385 1.37 matt }
386 1.37 matt if (f1 & ARM_MVFR0_EXCEPT_MASK) {
387 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_ESUM;
388 1.37 matt }
389 1.38 matt // If hardware supports propagation of NaNs, select it.
390 1.37 matt if (f1 & ARM_MVFR1_D_NAN_MASK) {
391 1.37 matt vfp_fpscr_default &= ~VFP_FPSCR_DN;
392 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_DN;
393 1.37 matt }
394 1.37 matt // If hardware supports denormalized numbers, use it.
395 1.37 matt if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
396 1.37 matt vfp_fpscr_default &= ~VFP_FPSCR_FZ;
397 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_FZ;
398 1.37 matt }
399 1.37 matt }
400 1.37 matt }
401 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
402 1.37 matt ci->ci_cpuname, "vfp coproc use");
403 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
404 1.37 matt ci->ci_cpuname, "vfp coproc re-use");
405 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
406 1.37 matt ci->ci_cpuname, "vfp coproc fault");
407 1.62 skrll if (CPU_IS_PRIMARY(ci)) {
408 1.62 skrll install_coproc_handler(VFP_COPROC, vfp_handler);
409 1.62 skrll install_coproc_handler(VFP_COPROC2, vfp_handler);
410 1.13 matt #ifdef CPU_CORTEX
411 1.66 riastrad if (cpu_neon_present) {
412 1.66 riastrad install_coproc_handler(CORE_UNKNOWN_HANDLER,
413 1.66 riastrad neon_handler);
414 1.66 riastrad aes_md_init(&aes_neon_impl);
415 1.70 riastrad chacha_md_init(&chacha_neon_impl);
416 1.66 riastrad }
417 1.13 matt #endif
418 1.62 skrll }
419 1.1 rearnsha }
420 1.1 rearnsha
421 1.1 rearnsha /* The real handler for VFP bounces. */
422 1.4 matt static int
423 1.21 matt vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
424 1.1 rearnsha {
425 1.4 matt struct cpu_info * const ci = curcpu();
426 1.1 rearnsha
427 1.1 rearnsha /* This shouldn't ever happen. */
428 1.71 riastrad if (fault_code != FAULT_USER &&
429 1.71 riastrad (curlwp->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) == LW_SYSTEM)
430 1.14 matt panic("VFP fault at %#x in non-user mode", frame->tf_pc);
431 1.1 rearnsha
432 1.27 matt if (ci->ci_vfp_id == 0) {
433 1.1 rearnsha /* No VFP detected, just fault. */
434 1.1 rearnsha return 1;
435 1.27 matt }
436 1.27 matt
437 1.47 matt /*
438 1.47 matt * If we already own the FPU and it's enabled (and no exception), raise
439 1.47 matt * SIGILL. If there is an exception, drop through to raise a SIGFPE.
440 1.47 matt */
441 1.46 matt if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
442 1.47 matt && (armreg_fpexc_read() & (VFP_FPEXC_EX|VFP_FPEXC_EN)) == VFP_FPEXC_EN)
443 1.47 matt return 1;
444 1.44 matt
445 1.27 matt /*
446 1.27 matt * Make sure we own the FP.
447 1.27 matt */
448 1.27 matt pcu_load(&arm_vfp_ops);
449 1.1 rearnsha
450 1.21 matt uint32_t fpexc = armreg_fpexc_read();
451 1.21 matt if (fpexc & VFP_FPEXC_EX) {
452 1.21 matt ksiginfo_t ksi;
453 1.21 matt KASSERT(fpexc & VFP_FPEXC_EN);
454 1.21 matt
455 1.37 matt curcpu()->ci_vfp_evs[2].ev_count++;
456 1.21 matt
457 1.21 matt /*
458 1.21 matt * Need the clear the exception condition so any signal
459 1.33 skrll * and future use can proceed.
460 1.21 matt */
461 1.31 skrll armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
462 1.21 matt
463 1.51 chs pcu_save(&arm_vfp_ops, curlwp);
464 1.33 skrll
465 1.33 skrll /*
466 1.33 skrll * XXX Need to emulate bounce instructions here to get correct
467 1.33 skrll * XXX exception codes, etc.
468 1.33 skrll */
469 1.21 matt KSI_INIT_TRAP(&ksi);
470 1.21 matt ksi.ksi_signo = SIGFPE;
471 1.21 matt if (fpexc & VFP_FPEXC_IXF)
472 1.21 matt ksi.ksi_code = FPE_FLTRES;
473 1.21 matt else if (fpexc & VFP_FPEXC_UFF)
474 1.21 matt ksi.ksi_code = FPE_FLTUND;
475 1.21 matt else if (fpexc & VFP_FPEXC_OFF)
476 1.21 matt ksi.ksi_code = FPE_FLTOVF;
477 1.21 matt else if (fpexc & VFP_FPEXC_DZF)
478 1.21 matt ksi.ksi_code = FPE_FLTDIV;
479 1.21 matt else if (fpexc & VFP_FPEXC_IOF)
480 1.21 matt ksi.ksi_code = FPE_FLTINV;
481 1.21 matt ksi.ksi_addr = (uint32_t *)address;
482 1.21 matt ksi.ksi_trap = 0;
483 1.21 matt trapsignal(curlwp, &ksi);
484 1.21 matt return 0;
485 1.21 matt }
486 1.21 matt
487 1.4 matt /* Need to restart the faulted instruction. */
488 1.4 matt // frame->tf_pc -= INSN_SIZE;
489 1.4 matt return 0;
490 1.4 matt }
491 1.1 rearnsha
492 1.13 matt #ifdef CPU_CORTEX
493 1.13 matt /* The real handler for NEON bounces. */
494 1.13 matt static int
495 1.21 matt neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
496 1.13 matt {
497 1.13 matt struct cpu_info * const ci = curcpu();
498 1.13 matt
499 1.13 matt if (ci->ci_vfp_id == 0)
500 1.13 matt /* No VFP detected, just fault. */
501 1.13 matt return 1;
502 1.13 matt
503 1.13 matt if ((insn & 0xfe000000) != 0xf2000000
504 1.13 matt && (insn & 0xfe000000) != 0xf4000000)
505 1.13 matt /* Not NEON instruction, just fault. */
506 1.13 matt return 1;
507 1.13 matt
508 1.13 matt /* This shouldn't ever happen. */
509 1.71 riastrad if (fault_code != FAULT_USER &&
510 1.71 riastrad (curlwp->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) == LW_SYSTEM)
511 1.13 matt panic("NEON fault in non-user mode");
512 1.13 matt
513 1.45 matt /* if we already own the FPU and it's enabled, raise SIGILL */
514 1.45 matt if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
515 1.45 matt && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
516 1.47 matt return 1;
517 1.43 matt
518 1.13 matt pcu_load(&arm_vfp_ops);
519 1.13 matt
520 1.13 matt /* Need to restart the faulted instruction. */
521 1.13 matt // frame->tf_pc -= INSN_SIZE;
522 1.13 matt return 0;
523 1.13 matt }
524 1.13 matt #endif
525 1.13 matt
526 1.4 matt static void
527 1.13 matt vfp_state_load(lwp_t *l, u_int flags)
528 1.4 matt {
529 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
530 1.4 matt struct vfpreg * const fregs = &pcb->pcb_vfp;
531 1.1 rearnsha
532 1.1 rearnsha /*
533 1.1 rearnsha * Instrument VFP usage -- if a process has not previously
534 1.1 rearnsha * used the VFP, mark it as having used VFP for the first time,
535 1.1 rearnsha * and count this event.
536 1.1 rearnsha *
537 1.1 rearnsha * If a process has used the VFP, count a "used VFP, and took
538 1.1 rearnsha * a trap to use it again" event.
539 1.1 rearnsha */
540 1.39 rmind if (__predict_false((flags & PCU_VALID) == 0)) {
541 1.37 matt curcpu()->ci_vfp_evs[0].ev_count++;
542 1.34 matt pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
543 1.4 matt } else {
544 1.37 matt curcpu()->ci_vfp_evs[1].ev_count++;
545 1.4 matt }
546 1.1 rearnsha
547 1.54 bouyer KASSERT((armreg_fpexc_read() & VFP_FPEXC_EN) == 0);
548 1.39 rmind /*
549 1.39 rmind * If the VFP is already enabled we must be bouncing an instruction.
550 1.39 rmind */
551 1.39 rmind if (flags & PCU_REENABLE) {
552 1.39 rmind uint32_t fpexc = armreg_fpexc_read();
553 1.39 rmind armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
554 1.54 bouyer fregs->vfp_fpexc |= VFP_FPEXC_EN;
555 1.39 rmind return;
556 1.39 rmind }
557 1.54 bouyer KASSERT((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0);
558 1.33 skrll
559 1.39 rmind /*
560 1.39 rmind * Load and Enable the VFP (so that we can write the registers).
561 1.39 rmind */
562 1.39 rmind fregs->vfp_fpexc |= VFP_FPEXC_EN;
563 1.39 rmind armreg_fpexc_write(fregs->vfp_fpexc);
564 1.54 bouyer KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == NULL);
565 1.54 bouyer KASSERT(l->l_pcu_cpu[PCU_FPU] == NULL);
566 1.13 matt
567 1.39 rmind load_vfpregs(fregs);
568 1.39 rmind armreg_fpscr_write(fregs->vfp_fpscr);
569 1.13 matt
570 1.39 rmind if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
571 1.39 rmind /* Need to restore the exception handling state. */
572 1.52 chs armreg_fpinst_write(fregs->vfp_fpinst);
573 1.39 rmind if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
574 1.52 chs armreg_fpinst2_write(fregs->vfp_fpinst2);
575 1.1 rearnsha }
576 1.1 rearnsha }
577 1.1 rearnsha
578 1.1 rearnsha void
579 1.39 rmind vfp_state_save(lwp_t *l)
580 1.1 rearnsha {
581 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
582 1.39 rmind struct vfpreg * const fregs = &pcb->pcb_vfp;
583 1.21 matt uint32_t fpexc = armreg_fpexc_read();
584 1.33 skrll
585 1.54 bouyer KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == l);
586 1.54 bouyer KASSERT(curcpu() == l->l_pcu_cpu[PCU_FPU]);
587 1.54 bouyer KASSERT(curlwp == l || curlwp->l_pcu_cpu[PCU_FPU] != curcpu());
588 1.33 skrll /*
589 1.33 skrll * Enable the VFP (so we can read the registers).
590 1.33 skrll * Make sure the exception bit is cleared so that we can
591 1.33 skrll * safely dump the registers.
592 1.33 skrll */
593 1.21 matt armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
594 1.1 rearnsha
595 1.4 matt fregs->vfp_fpexc = fpexc;
596 1.4 matt if (fpexc & VFP_FPEXC_EX) {
597 1.4 matt /* Need to save the exception handling state */
598 1.21 matt fregs->vfp_fpinst = armreg_fpinst_read();
599 1.21 matt if (fpexc & VFP_FPEXC_FP2V)
600 1.21 matt fregs->vfp_fpinst2 = armreg_fpinst2_read();
601 1.1 rearnsha }
602 1.21 matt fregs->vfp_fpscr = armreg_fpscr_read();
603 1.13 matt save_vfpregs(fregs);
604 1.4 matt
605 1.1 rearnsha /* Disable the VFP. */
606 1.33 skrll armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
607 1.1 rearnsha }
608 1.1 rearnsha
609 1.1 rearnsha void
610 1.39 rmind vfp_state_release(lwp_t *l)
611 1.1 rearnsha {
612 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
613 1.1 rearnsha
614 1.39 rmind /*
615 1.39 rmind * Now mark the VFP as disabled (and our state
616 1.39 rmind * has been already saved or is being discarded).
617 1.39 rmind */
618 1.39 rmind pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
619 1.1 rearnsha
620 1.1 rearnsha /*
621 1.4 matt * Turn off the FPU so the next time a VFP instruction is issued
622 1.4 matt * an exception happens. We don't know if this LWP's state was
623 1.4 matt * loaded but if we turned off the FPU for some other LWP, when
624 1.4 matt * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
625 1.13 matt * is still set so it just restore fpexc and return since its
626 1.4 matt * contents are still sitting in the VFP.
627 1.1 rearnsha */
628 1.21 matt armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
629 1.1 rearnsha }
630 1.1 rearnsha
631 1.1 rearnsha void
632 1.51 chs vfp_savecontext(lwp_t *l)
633 1.1 rearnsha {
634 1.51 chs pcu_save(&arm_vfp_ops, l);
635 1.1 rearnsha }
636 1.1 rearnsha
637 1.1 rearnsha void
638 1.51 chs vfp_discardcontext(lwp_t *l, bool used_p)
639 1.1 rearnsha {
640 1.51 chs pcu_discard(&arm_vfp_ops, l, used_p);
641 1.25 matt }
642 1.25 matt
643 1.25 matt bool
644 1.51 chs vfp_used_p(const lwp_t *l)
645 1.25 matt {
646 1.51 chs return pcu_valid_p(&arm_vfp_ops, l);
647 1.13 matt }
648 1.13 matt
649 1.13 matt void
650 1.8 matt vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
651 1.8 matt {
652 1.51 chs if (vfp_used_p(l)) {
653 1.8 matt const struct pcb * const pcb = lwp_getpcb(l);
654 1.51 chs
655 1.51 chs pcu_save(&arm_vfp_ops, l);
656 1.8 matt mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
657 1.8 matt memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
658 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
659 1.10 matt *flagsp |= _UC_FPU|_UC_ARM_VFP;
660 1.8 matt }
661 1.8 matt }
662 1.8 matt
663 1.8 matt void
664 1.8 matt vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
665 1.8 matt {
666 1.8 matt struct pcb * const pcb = lwp_getpcb(l);
667 1.51 chs
668 1.51 chs pcu_discard(&arm_vfp_ops, l, true);
669 1.8 matt pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
670 1.8 matt memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
671 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
672 1.8 matt }
673 1.8 matt
674 1.71 riastrad /*
675 1.71 riastrad * True if this is a system thread with its own private FPU state.
676 1.71 riastrad */
677 1.71 riastrad static inline bool
678 1.71 riastrad lwp_system_fpu_p(struct lwp *l)
679 1.71 riastrad {
680 1.71 riastrad
681 1.71 riastrad return (l->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) ==
682 1.71 riastrad (LW_SYSTEM|LW_SYSTEM_FPU);
683 1.71 riastrad }
684 1.71 riastrad
685 1.71 riastrad static const struct vfpreg zero_vfpreg;
686 1.71 riastrad
687 1.65 riastrad void
688 1.65 riastrad fpu_kern_enter(void)
689 1.65 riastrad {
690 1.65 riastrad struct cpu_info *ci;
691 1.65 riastrad uint32_t fpexc;
692 1.65 riastrad int s;
693 1.65 riastrad
694 1.71 riastrad if (lwp_system_fpu_p(curlwp) && !cpu_intr_p()) {
695 1.71 riastrad KASSERT(!cpu_softintr_p());
696 1.71 riastrad return;
697 1.71 riastrad }
698 1.71 riastrad
699 1.65 riastrad /*
700 1.67 riastrad * Block interrupts up to IPL_VM. We must block preemption
701 1.67 riastrad * since -- if this is a user thread -- there is nowhere to
702 1.67 riastrad * save the kernel fpu state, and if we want this to be usable
703 1.67 riastrad * in interrupts, we can't let interrupts interfere with the
704 1.67 riastrad * fpu state in use since there's nowhere for them to save it.
705 1.65 riastrad */
706 1.67 riastrad s = splvm();
707 1.65 riastrad ci = curcpu();
708 1.67 riastrad KASSERTMSG(ci->ci_cpl <= IPL_VM, "cpl=%d", ci->ci_cpl);
709 1.65 riastrad KASSERT(ci->ci_kfpu_spl == -1);
710 1.65 riastrad ci->ci_kfpu_spl = s;
711 1.65 riastrad
712 1.68 riastrad /* Save any fpu state on the current CPU. */
713 1.68 riastrad pcu_save_all_on_cpu();
714 1.65 riastrad
715 1.65 riastrad /* Enable the fpu. */
716 1.65 riastrad fpexc = armreg_fpexc_read();
717 1.65 riastrad fpexc |= VFP_FPEXC_EN;
718 1.65 riastrad fpexc &= ~VFP_FPEXC_EX;
719 1.65 riastrad armreg_fpexc_write(fpexc);
720 1.65 riastrad }
721 1.65 riastrad
722 1.65 riastrad void
723 1.65 riastrad fpu_kern_leave(void)
724 1.65 riastrad {
725 1.65 riastrad struct cpu_info *ci = curcpu();
726 1.65 riastrad int s;
727 1.65 riastrad uint32_t fpexc;
728 1.65 riastrad
729 1.71 riastrad if (lwp_system_fpu_p(curlwp) && !cpu_intr_p()) {
730 1.71 riastrad KASSERT(!cpu_softintr_p());
731 1.71 riastrad return;
732 1.71 riastrad }
733 1.71 riastrad
734 1.67 riastrad KASSERT(ci->ci_cpl == IPL_VM);
735 1.65 riastrad KASSERT(ci->ci_kfpu_spl != -1);
736 1.65 riastrad
737 1.65 riastrad /*
738 1.65 riastrad * Zero the fpu registers; otherwise we might leak secrets
739 1.65 riastrad * through Spectre-class attacks to userland, even if there are
740 1.65 riastrad * no bugs in fpu state management.
741 1.65 riastrad */
742 1.65 riastrad load_vfpregs(&zero_vfpreg);
743 1.65 riastrad
744 1.65 riastrad /*
745 1.65 riastrad * Disable the fpu so that the kernel can't accidentally use
746 1.65 riastrad * it again.
747 1.65 riastrad */
748 1.65 riastrad fpexc = armreg_fpexc_read();
749 1.65 riastrad fpexc &= ~VFP_FPEXC_EN;
750 1.65 riastrad armreg_fpexc_write(fpexc);
751 1.65 riastrad
752 1.65 riastrad /* Restore interrupts. */
753 1.65 riastrad s = ci->ci_kfpu_spl;
754 1.65 riastrad ci->ci_kfpu_spl = -1;
755 1.65 riastrad splx(s);
756 1.65 riastrad }
757 1.65 riastrad
758 1.71 riastrad void
759 1.71 riastrad kthread_fpu_enter_md(void)
760 1.71 riastrad {
761 1.71 riastrad
762 1.71 riastrad pcu_load(&arm_vfp_ops);
763 1.71 riastrad }
764 1.71 riastrad
765 1.71 riastrad void
766 1.71 riastrad kthread_fpu_exit_md(void)
767 1.71 riastrad {
768 1.71 riastrad
769 1.71 riastrad /* XXX Should vfp_state_release zero the registers itself? */
770 1.71 riastrad load_vfpregs(&zero_vfpreg);
771 1.71 riastrad vfp_discardcontext(curlwp, 0);
772 1.71 riastrad }
773 1.71 riastrad
774 1.4 matt #endif /* FPU_VFP */
775