Home | History | Annotate | Line # | Download | only in vfp
vfp_init.c revision 1.75
      1  1.75     skrll /*      $NetBSD: vfp_init.c,v 1.75 2021/10/17 08:47:21 skrll Exp $ */
      2   1.1  rearnsha 
      3   1.1  rearnsha /*
      4   1.1  rearnsha  * Copyright (c) 2008 ARM Ltd
      5   1.1  rearnsha  * All rights reserved.
      6   1.1  rearnsha  *
      7   1.1  rearnsha  * Redistribution and use in source and binary forms, with or without
      8   1.1  rearnsha  * modification, are permitted provided that the following conditions
      9   1.1  rearnsha  * are met:
     10   1.1  rearnsha  * 1. Redistributions of source code must retain the above copyright
     11   1.1  rearnsha  *    notice, this list of conditions and the following disclaimer.
     12   1.1  rearnsha  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1  rearnsha  *    notice, this list of conditions and the following disclaimer in the
     14   1.1  rearnsha  *    documentation and/or other materials provided with the distribution.
     15   1.1  rearnsha  * 3. The name of the company may not be used to endorse or promote
     16   1.1  rearnsha  *    products derived from this software without specific prior written
     17   1.1  rearnsha  *    permission.
     18   1.1  rearnsha  *
     19   1.1  rearnsha  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
     20   1.1  rearnsha  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21   1.1  rearnsha  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22   1.1  rearnsha  * ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
     23   1.1  rearnsha  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24   1.1  rearnsha  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     25   1.1  rearnsha  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1  rearnsha  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     27   1.1  rearnsha  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28   1.1  rearnsha  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29   1.1  rearnsha  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30   1.1  rearnsha  */
     31   1.1  rearnsha 
     32  1.59     skrll #include "opt_cputypes.h"
     33  1.59     skrll 
     34  1.58     skrll #include <sys/cdefs.h>
     35  1.75     skrll __KERNEL_RCSID(0, "$NetBSD: vfp_init.c,v 1.75 2021/10/17 08:47:21 skrll Exp $");
     36  1.58     skrll 
     37   1.1  rearnsha #include <sys/param.h>
     38   1.1  rearnsha #include <sys/types.h>
     39   1.1  rearnsha #include <sys/systm.h>
     40   1.1  rearnsha #include <sys/device.h>
     41  1.71  riastrad #include <sys/kthread.h>
     42   1.1  rearnsha #include <sys/proc.h>
     43   1.4      matt #include <sys/cpu.h>
     44   1.1  rearnsha 
     45  1.23      matt #include <arm/locore.h>
     46   1.5      matt #include <arm/pcb.h>
     47   1.1  rearnsha #include <arm/undefined.h>
     48   1.1  rearnsha #include <arm/vfpreg.h>
     49   1.8      matt #include <arm/mcontext.h>
     50  1.65  riastrad #include <arm/fpu.h>
     51   1.1  rearnsha 
     52  1.12      matt #include <uvm/uvm_extern.h>		/* for pmap.h */
     53  1.12      matt 
     54  1.69  riastrad #include <crypto/aes/aes_impl.h>
     55  1.66  riastrad #include <crypto/aes/arch/arm/aes_neon.h>
     56  1.70  riastrad #include <crypto/chacha/arch/arm/chacha_neon.h>
     57  1.70  riastrad #include <crypto/chacha/chacha_impl.h>
     58  1.66  riastrad 
     59  1.11      matt #ifdef FPU_VFP
     60  1.11      matt 
     61  1.29      matt #ifdef CPU_CORTEX
     62  1.56  christos #define SETFPU __asm(".fpu\tvfpv4")
     63  1.29      matt #else
     64  1.56  christos #define SETFPU __asm(".fpu\tvfp")
     65  1.29      matt #endif
     66  1.56  christos SETFPU;
     67  1.29      matt 
     68   1.1  rearnsha /* FLDMD <X>, {d0-d15} */
     69  1.11      matt static inline void
     70  1.13      matt load_vfpregs_lo(const uint64_t *p)
     71  1.10      matt {
     72  1.56  christos 	SETFPU;
     73  1.64     joerg 	__asm __volatile(".fpu vfp\n vldmia\t%0, {d0-d15}" :: "r" (p) : "memory");
     74  1.10      matt }
     75  1.10      matt 
     76  1.10      matt /* FSTMD <X>, {d0-d15} */
     77  1.11      matt static inline void
     78  1.10      matt save_vfpregs_lo(uint64_t *p)
     79  1.10      matt {
     80  1.56  christos 	SETFPU;
     81  1.64     joerg 	__asm __volatile(".fpu vfp\n vstmia\t%0, {d0-d15}" :: "r" (p) : "memory");
     82  1.10      matt }
     83  1.10      matt 
     84  1.10      matt #ifdef CPU_CORTEX
     85  1.10      matt /* FLDMD <X>, {d16-d31} */
     86  1.11      matt static inline void
     87  1.13      matt load_vfpregs_hi(const uint64_t *p)
     88  1.10      matt {
     89  1.56  christos 	SETFPU;
     90  1.64     joerg 	__asm __volatile(".fpu neon-vfpv4\n vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
     91  1.10      matt }
     92  1.10      matt 
     93  1.10      matt /* FLDMD <X>, {d16-d31} */
     94  1.11      matt static inline void
     95  1.10      matt save_vfpregs_hi(uint64_t *p)
     96  1.10      matt {
     97  1.56  christos 	SETFPU;
     98  1.64     joerg 	__asm __volatile(".fpu neon-vfpv4\nvstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
     99  1.10      matt }
    100  1.10      matt #endif
    101   1.1  rearnsha 
    102  1.13      matt static inline void
    103  1.13      matt load_vfpregs(const struct vfpreg *fregs)
    104  1.13      matt {
    105  1.13      matt 	load_vfpregs_lo(fregs->vfp_regs);
    106  1.13      matt #ifdef CPU_CORTEX
    107  1.13      matt #ifdef CPU_ARM11
    108  1.13      matt 	switch (curcpu()->ci_vfp_id) {
    109  1.13      matt 	case FPU_VFP_CORTEXA5:
    110  1.13      matt 	case FPU_VFP_CORTEXA7:
    111  1.13      matt 	case FPU_VFP_CORTEXA8:
    112  1.13      matt 	case FPU_VFP_CORTEXA9:
    113  1.20      matt 	case FPU_VFP_CORTEXA15:
    114  1.42       slp 	case FPU_VFP_CORTEXA15_QEMU:
    115  1.50     skrll 	case FPU_VFP_CORTEXA53:
    116  1.53  jmcneill 	case FPU_VFP_CORTEXA57:
    117  1.13      matt #endif
    118  1.13      matt 		load_vfpregs_hi(fregs->vfp_regs);
    119  1.13      matt #ifdef CPU_ARM11
    120  1.13      matt 		break;
    121  1.13      matt 	}
    122  1.13      matt #endif
    123  1.13      matt #endif
    124  1.13      matt }
    125  1.13      matt 
    126  1.13      matt static inline void
    127  1.13      matt save_vfpregs(struct vfpreg *fregs)
    128  1.13      matt {
    129  1.13      matt 	save_vfpregs_lo(fregs->vfp_regs);
    130  1.13      matt #ifdef CPU_CORTEX
    131  1.13      matt #ifdef CPU_ARM11
    132  1.13      matt 	switch (curcpu()->ci_vfp_id) {
    133  1.13      matt 	case FPU_VFP_CORTEXA5:
    134  1.13      matt 	case FPU_VFP_CORTEXA7:
    135  1.13      matt 	case FPU_VFP_CORTEXA8:
    136  1.13      matt 	case FPU_VFP_CORTEXA9:
    137  1.20      matt 	case FPU_VFP_CORTEXA15:
    138  1.42       slp 	case FPU_VFP_CORTEXA15_QEMU:
    139  1.50     skrll 	case FPU_VFP_CORTEXA53:
    140  1.53  jmcneill 	case FPU_VFP_CORTEXA57:
    141  1.13      matt #endif
    142  1.13      matt 		save_vfpregs_hi(fregs->vfp_regs);
    143  1.13      matt #ifdef CPU_ARM11
    144  1.13      matt 		break;
    145  1.13      matt 	}
    146  1.13      matt #endif
    147  1.13      matt #endif
    148  1.13      matt }
    149  1.13      matt 
    150   1.1  rearnsha /* The real handler for VFP bounces.  */
    151   1.1  rearnsha static int vfp_handler(u_int, u_int, trapframe_t *, int);
    152  1.13      matt #ifdef CPU_CORTEX
    153  1.13      matt static int neon_handler(u_int, u_int, trapframe_t *, int);
    154  1.13      matt #endif
    155   1.1  rearnsha 
    156  1.13      matt static void vfp_state_load(lwp_t *, u_int);
    157  1.39     rmind static void vfp_state_save(lwp_t *);
    158  1.39     rmind static void vfp_state_release(lwp_t *);
    159   1.4      matt 
    160   1.4      matt const pcu_ops_t arm_vfp_ops = {
    161   1.4      matt 	.pcu_id = PCU_FPU,
    162  1.13      matt 	.pcu_state_save = vfp_state_save,
    163   1.4      matt 	.pcu_state_load = vfp_state_load,
    164   1.4      matt 	.pcu_state_release = vfp_state_release,
    165   1.4      matt };
    166   1.1  rearnsha 
    167  1.34      matt /* determine what bits can be changed */
    168  1.34      matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
    169  1.34      matt /* default to run fast */
    170  1.34      matt uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
    171  1.34      matt 
    172   1.1  rearnsha /*
    173   1.1  rearnsha  * Used to test for a VFP. The following function is installed as a coproc10
    174   1.1  rearnsha  * handler on the undefined instruction vector and then we issue a VFP
    175   1.1  rearnsha  * instruction. If undefined_test is non zero then the VFP did not handle
    176   1.1  rearnsha  * the instruction so must be absent, or disabled.
    177   1.1  rearnsha  */
    178   1.1  rearnsha 
    179   1.1  rearnsha static int undefined_test;
    180   1.1  rearnsha 
    181   1.1  rearnsha static int
    182   1.4      matt vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    183   1.1  rearnsha {
    184   1.1  rearnsha 
    185   1.1  rearnsha 	frame->tf_pc += INSN_SIZE;
    186   1.1  rearnsha 	++undefined_test;
    187   1.4      matt 	return 0;
    188   1.4      matt }
    189   1.4      matt 
    190  1.35      matt #else
    191  1.35      matt /* determine what bits can be changed */
    192  1.35      matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
    193   1.4      matt #endif /* FPU_VFP */
    194   1.4      matt 
    195   1.4      matt static int
    196   1.4      matt vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    197   1.4      matt {
    198   1.4      matt 	struct lwp * const l = curlwp;
    199   1.4      matt 	const u_int regno = (insn >> 12) & 0xf;
    200   1.4      matt 	/*
    201   1.4      matt 	 * Only match move to/from the FPSCR register and we
    202   1.4      matt 	 * can't be using the SP,LR,PC as a source.
    203   1.4      matt 	 */
    204   1.4      matt 	if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
    205   1.4      matt 		return 1;
    206   1.4      matt 
    207   1.4      matt 	struct pcb * const pcb = lwp_getpcb(l);
    208   1.4      matt 
    209   1.4      matt #ifdef FPU_VFP
    210   1.4      matt 	/*
    211   1.4      matt 	 * If FPU is valid somewhere, let's just reenable VFP and
    212   1.4      matt 	 * retry the instruction (only safe thing to do since the
    213   1.4      matt 	 * pcb has a stale copy).
    214   1.4      matt 	 */
    215   1.4      matt 	if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
    216   1.4      matt 		return 1;
    217   1.4      matt 
    218  1.51       chs 	if (__predict_false(!vfp_used_p(l))) {
    219  1.35      matt 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
    220   1.4      matt 	}
    221  1.26      matt #endif
    222   1.4      matt 
    223   1.4      matt 	/*
    224  1.30     skrll 	 * We now know the pcb has the saved copy.
    225   1.4      matt 	 */
    226   1.4      matt 	register_t * const regp = &frame->tf_r0 + regno;
    227   1.4      matt 	if (insn & 0x00100000) {
    228   1.4      matt 		*regp = pcb->pcb_vfp.vfp_fpscr;
    229   1.4      matt 	} else {
    230  1.34      matt 		pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
    231  1.34      matt 		pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
    232   1.4      matt 	}
    233   1.4      matt 
    234  1.37      matt 	curcpu()->ci_vfp_evs[0].ev_count++;
    235  1.61     skrll 
    236   1.4      matt 	frame->tf_pc += INSN_SIZE;
    237   1.4      matt 	return 0;
    238   1.1  rearnsha }
    239   1.1  rearnsha 
    240   1.4      matt #ifndef FPU_VFP
    241   1.4      matt /*
    242   1.4      matt  * If we don't want VFP support, we still need to handle emulating VFP FPSCR
    243   1.4      matt  * instructions.
    244   1.4      matt  */
    245   1.4      matt void
    246  1.37      matt vfp_attach(struct cpu_info *ci)
    247   1.4      matt {
    248  1.37      matt 	if (CPU_IS_PRIMARY(ci)) {
    249  1.37      matt 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    250  1.37      matt 	}
    251  1.37      matt 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
    252  1.37      matt 	    ci->ci_cpuname, "vfp fpscr traps");
    253   1.4      matt }
    254   1.4      matt 
    255   1.4      matt #else
    256   1.1  rearnsha void
    257  1.37      matt vfp_attach(struct cpu_info *ci)
    258   1.1  rearnsha {
    259   1.4      matt 	const char *model = NULL;
    260   1.1  rearnsha 
    261  1.37      matt 	if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
    262  1.37      matt 	    || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
    263  1.37      matt 	    || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
    264  1.37      matt #if 0
    265  1.37      matt 		const uint32_t nsacr = armreg_nsacr_read();
    266  1.37      matt 		const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
    267  1.37      matt 		if ((nsacr & nsacr_vfp) != nsacr_vfp) {
    268  1.40      matt 			aprint_normal_dev(ci->ci_dev,
    269  1.40      matt 			    "VFP access denied (NSACR=%#x)\n", nsacr);
    270  1.62     skrll 			if (CPU_IS_PRIMARY(ci))
    271  1.62     skrll 				install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    272  1.37      matt 			ci->ci_vfp_id = 0;
    273  1.37      matt 			evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
    274  1.37      matt 			    EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
    275  1.37      matt 			    "vfp fpscr traps");
    276  1.37      matt 			return;
    277  1.37      matt 		}
    278  1.37      matt #endif
    279   1.7      matt 		const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
    280   1.7      matt 		const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
    281   1.1  rearnsha 
    282   1.7      matt 		/*
    283   1.7      matt 		 * We first need to enable access to the coprocessors.
    284   1.7      matt 		 */
    285   1.7      matt 		uint32_t cpacr = armreg_cpacr_read();
    286   1.7      matt 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
    287   1.7      matt 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
    288   1.7      matt 		armreg_cpacr_write(cpacr);
    289   1.1  rearnsha 
    290  1.72     skrll 		isb();
    291  1.48  jmcneill 
    292   1.7      matt 		/*
    293   1.7      matt 		 * If we could enable them, then they exist.
    294   1.7      matt 		 */
    295   1.7      matt 		cpacr = armreg_cpacr_read();
    296  1.40      matt 		bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
    297  1.40      matt 		    && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
    298  1.28      matt 		if (!vfp_p) {
    299  1.40      matt 			aprint_normal_dev(ci->ci_dev,
    300  1.40      matt 			    "VFP access denied (CPACR=%#x)\n", cpacr);
    301  1.62     skrll 			if (CPU_IS_PRIMARY(ci))
    302  1.62     skrll 				install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    303  1.28      matt 			ci->ci_vfp_id = 0;
    304  1.37      matt 			evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
    305  1.37      matt 			    EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
    306  1.37      matt 			    "vfp fpscr traps");
    307  1.28      matt 			return;
    308  1.28      matt 		}
    309   1.6      matt 	}
    310   1.6      matt 
    311   1.7      matt 	void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
    312   1.7      matt 
    313   1.7      matt 	undefined_test = 0;
    314   1.7      matt 
    315  1.21      matt 	const uint32_t fpsid = armreg_fpsid_read();
    316   1.1  rearnsha 
    317   1.1  rearnsha 	remove_coproc_handler(uh);
    318   1.1  rearnsha 
    319   1.1  rearnsha 	if (undefined_test != 0) {
    320   1.4      matt 		aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
    321  1.62     skrll 		if (CPU_IS_PRIMARY(ci))
    322  1.62     skrll 			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    323   1.4      matt 		ci->ci_vfp_id = 0;
    324   1.1  rearnsha 		return;
    325   1.1  rearnsha 	}
    326   1.1  rearnsha 
    327   1.4      matt 	ci->ci_vfp_id = fpsid;
    328   1.4      matt 	switch (fpsid & ~ VFP_FPSID_REV_MSK) {
    329   1.4      matt 	case FPU_VFP10_ARM10E:
    330   1.4      matt 		model = "VFP10 R1";
    331   1.4      matt 		break;
    332   1.4      matt 	case FPU_VFP11_ARM11:
    333   1.4      matt 		model = "VFP11";
    334   1.4      matt 		break;
    335  1.36      matt 	case FPU_VFP_MV88SV58XX:
    336  1.36      matt 		model = "VFP3";
    337  1.36      matt 		break;
    338   1.7      matt 	case FPU_VFP_CORTEXA5:
    339   1.7      matt 	case FPU_VFP_CORTEXA7:
    340   1.7      matt 	case FPU_VFP_CORTEXA8:
    341   1.7      matt 	case FPU_VFP_CORTEXA9:
    342  1.63       tnn 	case FPU_VFP_CORTEXA12:
    343  1.20      matt 	case FPU_VFP_CORTEXA15:
    344  1.42       slp 	case FPU_VFP_CORTEXA15_QEMU:
    345  1.63       tnn 	case FPU_VFP_CORTEXA17:
    346  1.50     skrll 	case FPU_VFP_CORTEXA53:
    347  1.53  jmcneill 	case FPU_VFP_CORTEXA57:
    348  1.37      matt 		if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
    349  1.37      matt 			model = "VFP 4.0+";
    350  1.37      matt 		} else {
    351  1.37      matt 			model = "NEON MPE (VFP 3.0+)";
    352  1.37      matt 			cpu_neon_present = 1;
    353  1.37      matt 		}
    354   1.6      matt 		break;
    355   1.4      matt 	default:
    356  1.36      matt 		aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
    357   1.4      matt 		    fpsid);
    358  1.62     skrll 		if (CPU_IS_PRIMARY(ci))
    359  1.62     skrll 			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    360  1.35      matt 		vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
    361  1.35      matt 		    |VFP_FPSCR_RMODE;
    362  1.35      matt 		vfp_fpscr_default = 0;
    363   1.4      matt 		return;
    364   1.4      matt 	}
    365   1.1  rearnsha 
    366  1.17      matt 	cpu_fpu_present = 1;
    367  1.21      matt 	cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
    368  1.21      matt 	cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
    369   1.1  rearnsha 	if (fpsid != 0) {
    370  1.34      matt 		uint32_t f0 = armreg_mvfr0_read();
    371  1.41      matt 		uint32_t f1 = armreg_mvfr1_read();
    372  1.34      matt 		aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
    373  1.37      matt 		    device_unit(ci->ci_dev),
    374  1.37      matt 		    device_xname(ci->ci_dev),
    375  1.34      matt 		    model,
    376  1.34      matt 		    ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
    377  1.34      matt 		    ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
    378  1.38      matt 		    ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
    379  1.34      matt 		    ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
    380  1.49  jmcneill 		aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
    381  1.37      matt 		    device_unit(ci->ci_dev), f0, f1);
    382  1.37      matt 		if (CPU_IS_PRIMARY(ci)) {
    383  1.37      matt 			if (f0 & ARM_MVFR0_ROUNDING_MASK) {
    384  1.37      matt 				vfp_fpscr_changable |= VFP_FPSCR_RMODE;
    385  1.37      matt 			}
    386  1.37      matt 			if (f1 & ARM_MVFR0_EXCEPT_MASK) {
    387  1.37      matt 				vfp_fpscr_changable |= VFP_FPSCR_ESUM;
    388  1.37      matt 			}
    389  1.38      matt 			// If hardware supports propagation of NaNs, select it.
    390  1.37      matt 			if (f1 & ARM_MVFR1_D_NAN_MASK) {
    391  1.37      matt 				vfp_fpscr_default &= ~VFP_FPSCR_DN;
    392  1.37      matt 				vfp_fpscr_changable |= VFP_FPSCR_DN;
    393  1.37      matt 			}
    394  1.37      matt 			// If hardware supports denormalized numbers, use it.
    395  1.37      matt 			if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
    396  1.37      matt 				vfp_fpscr_default &= ~VFP_FPSCR_FZ;
    397  1.37      matt 				vfp_fpscr_changable |= VFP_FPSCR_FZ;
    398  1.37      matt 			}
    399  1.37      matt 		}
    400  1.37      matt 	}
    401  1.37      matt 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
    402  1.37      matt 	    ci->ci_cpuname, "vfp coproc use");
    403  1.37      matt 	evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
    404  1.37      matt 	    ci->ci_cpuname, "vfp coproc re-use");
    405  1.37      matt 	evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
    406  1.37      matt 	    ci->ci_cpuname, "vfp coproc fault");
    407  1.62     skrll 	if (CPU_IS_PRIMARY(ci)) {
    408  1.62     skrll 		install_coproc_handler(VFP_COPROC, vfp_handler);
    409  1.62     skrll 		install_coproc_handler(VFP_COPROC2, vfp_handler);
    410  1.13      matt #ifdef CPU_CORTEX
    411  1.66  riastrad 		if (cpu_neon_present) {
    412  1.66  riastrad 			install_coproc_handler(CORE_UNKNOWN_HANDLER,
    413  1.66  riastrad 			    neon_handler);
    414  1.66  riastrad 			aes_md_init(&aes_neon_impl);
    415  1.70  riastrad 			chacha_md_init(&chacha_neon_impl);
    416  1.66  riastrad 		}
    417  1.13      matt #endif
    418  1.62     skrll 	}
    419   1.1  rearnsha }
    420   1.1  rearnsha 
    421   1.1  rearnsha /* The real handler for VFP bounces.  */
    422   1.4      matt static int
    423  1.21      matt vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    424   1.1  rearnsha {
    425   1.4      matt 	struct cpu_info * const ci = curcpu();
    426  1.74       rin 	uint32_t fpexc;
    427   1.1  rearnsha 
    428   1.1  rearnsha 	/* This shouldn't ever happen.  */
    429  1.71  riastrad 	if (fault_code != FAULT_USER &&
    430  1.71  riastrad 	    (curlwp->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) == LW_SYSTEM)
    431  1.14      matt 		panic("VFP fault at %#x in non-user mode", frame->tf_pc);
    432   1.1  rearnsha 
    433  1.27      matt 	if (ci->ci_vfp_id == 0) {
    434   1.1  rearnsha 		/* No VFP detected, just fault.  */
    435   1.1  rearnsha 		return 1;
    436  1.27      matt 	}
    437  1.27      matt 
    438  1.75     skrll 	/*
    439  1.47      matt 	 * If we already own the FPU and it's enabled (and no exception), raise
    440  1.74       rin 	 * SIGILL.  If there is an exception, raise SIGFPE.
    441  1.47      matt 	 */
    442  1.74       rin 	if (curlwp->l_pcu_cpu[PCU_FPU] == ci) {
    443  1.73       rin 		KASSERT(ci->ci_pcu_curlwp[PCU_FPU] == curlwp);
    444  1.74       rin 
    445  1.74       rin 		fpexc = armreg_fpexc_read();
    446  1.74       rin 		if (fpexc & VFP_FPEXC_EN) {
    447  1.74       rin 			if ((fpexc & VFP_FPEXC_EX) == 0) {
    448  1.74       rin 				return 1;	/* SIGILL */
    449  1.74       rin 			} else {
    450  1.74       rin 				goto fpe;	/* SIGFPE; skip pcu_load(9) */
    451  1.74       rin 			}
    452  1.74       rin 		}
    453  1.73       rin 	}
    454  1.44      matt 
    455  1.27      matt 	/*
    456  1.27      matt 	 * Make sure we own the FP.
    457  1.27      matt 	 */
    458  1.27      matt 	pcu_load(&arm_vfp_ops);
    459   1.1  rearnsha 
    460  1.74       rin 	fpexc = armreg_fpexc_read();
    461  1.21      matt 	if (fpexc & VFP_FPEXC_EX) {
    462  1.21      matt 		ksiginfo_t ksi;
    463  1.21      matt 		KASSERT(fpexc & VFP_FPEXC_EN);
    464  1.21      matt 
    465  1.74       rin fpe:
    466  1.37      matt 		curcpu()->ci_vfp_evs[2].ev_count++;
    467  1.21      matt 
    468  1.21      matt 		/*
    469  1.21      matt 		 * Need the clear the exception condition so any signal
    470  1.33     skrll 		 * and future use can proceed.
    471  1.21      matt 		 */
    472  1.31     skrll 		armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
    473  1.21      matt 
    474  1.51       chs 		pcu_save(&arm_vfp_ops, curlwp);
    475  1.33     skrll 
    476  1.33     skrll 		/*
    477  1.33     skrll 		 * XXX Need to emulate bounce instructions here to get correct
    478  1.33     skrll 		 * XXX exception codes, etc.
    479  1.33     skrll 		 */
    480  1.21      matt 		KSI_INIT_TRAP(&ksi);
    481  1.21      matt 		ksi.ksi_signo = SIGFPE;
    482  1.21      matt 		if (fpexc & VFP_FPEXC_IXF)
    483  1.21      matt 			ksi.ksi_code = FPE_FLTRES;
    484  1.21      matt 		else if (fpexc & VFP_FPEXC_UFF)
    485  1.21      matt 			ksi.ksi_code = FPE_FLTUND;
    486  1.21      matt 		else if (fpexc & VFP_FPEXC_OFF)
    487  1.21      matt 			ksi.ksi_code = FPE_FLTOVF;
    488  1.21      matt 		else if (fpexc & VFP_FPEXC_DZF)
    489  1.21      matt 			ksi.ksi_code = FPE_FLTDIV;
    490  1.21      matt 		else if (fpexc & VFP_FPEXC_IOF)
    491  1.21      matt 			ksi.ksi_code = FPE_FLTINV;
    492  1.21      matt 		ksi.ksi_addr = (uint32_t *)address;
    493  1.21      matt 		ksi.ksi_trap = 0;
    494  1.21      matt 		trapsignal(curlwp, &ksi);
    495  1.21      matt 		return 0;
    496  1.21      matt 	}
    497  1.21      matt 
    498   1.4      matt 	/* Need to restart the faulted instruction.  */
    499   1.4      matt //	frame->tf_pc -= INSN_SIZE;
    500   1.4      matt 	return 0;
    501   1.4      matt }
    502   1.1  rearnsha 
    503  1.13      matt #ifdef CPU_CORTEX
    504  1.13      matt /* The real handler for NEON bounces.  */
    505  1.13      matt static int
    506  1.21      matt neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    507  1.13      matt {
    508  1.13      matt 	struct cpu_info * const ci = curcpu();
    509  1.13      matt 
    510  1.13      matt 	if (ci->ci_vfp_id == 0)
    511  1.13      matt 		/* No VFP detected, just fault.  */
    512  1.13      matt 		return 1;
    513  1.13      matt 
    514  1.13      matt 	if ((insn & 0xfe000000) != 0xf2000000
    515  1.13      matt 	    && (insn & 0xfe000000) != 0xf4000000)
    516  1.13      matt 		/* Not NEON instruction, just fault.  */
    517  1.13      matt 		return 1;
    518  1.13      matt 
    519  1.13      matt 	/* This shouldn't ever happen.  */
    520  1.71  riastrad 	if (fault_code != FAULT_USER &&
    521  1.71  riastrad 	    (curlwp->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) == LW_SYSTEM)
    522  1.13      matt 		panic("NEON fault in non-user mode");
    523  1.13      matt 
    524  1.45      matt 	/* if we already own the FPU and it's enabled, raise SIGILL */
    525  1.45      matt 	if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
    526  1.45      matt 	    && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
    527  1.47      matt 		return 1;
    528  1.43      matt 
    529  1.13      matt 	pcu_load(&arm_vfp_ops);
    530  1.13      matt 
    531  1.13      matt 	/* Need to restart the faulted instruction.  */
    532  1.13      matt //	frame->tf_pc -= INSN_SIZE;
    533  1.13      matt 	return 0;
    534  1.13      matt }
    535  1.13      matt #endif
    536  1.13      matt 
    537   1.4      matt static void
    538  1.13      matt vfp_state_load(lwp_t *l, u_int flags)
    539   1.4      matt {
    540   1.4      matt 	struct pcb * const pcb = lwp_getpcb(l);
    541   1.4      matt 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    542   1.1  rearnsha 
    543   1.1  rearnsha 	/*
    544   1.1  rearnsha 	 * Instrument VFP usage -- if a process has not previously
    545   1.1  rearnsha 	 * used the VFP, mark it as having used VFP for the first time,
    546   1.1  rearnsha 	 * and count this event.
    547   1.1  rearnsha 	 *
    548   1.1  rearnsha 	 * If a process has used the VFP, count a "used VFP, and took
    549   1.1  rearnsha 	 * a trap to use it again" event.
    550   1.1  rearnsha 	 */
    551  1.39     rmind 	if (__predict_false((flags & PCU_VALID) == 0)) {
    552  1.37      matt 		curcpu()->ci_vfp_evs[0].ev_count++;
    553  1.34      matt 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
    554   1.4      matt 	} else {
    555  1.37      matt 		curcpu()->ci_vfp_evs[1].ev_count++;
    556   1.4      matt 	}
    557   1.1  rearnsha 
    558  1.54    bouyer 	KASSERT((armreg_fpexc_read() & VFP_FPEXC_EN) == 0);
    559  1.39     rmind 	/*
    560  1.39     rmind 	 * If the VFP is already enabled we must be bouncing an instruction.
    561  1.39     rmind 	 */
    562  1.39     rmind 	if (flags & PCU_REENABLE) {
    563  1.39     rmind 		uint32_t fpexc = armreg_fpexc_read();
    564  1.39     rmind 		armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
    565  1.54    bouyer 		fregs->vfp_fpexc |= VFP_FPEXC_EN;
    566  1.39     rmind 		return;
    567  1.39     rmind 	}
    568  1.54    bouyer 	KASSERT((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0);
    569  1.33     skrll 
    570  1.39     rmind 	/*
    571  1.39     rmind 	 * Load and Enable the VFP (so that we can write the registers).
    572  1.39     rmind 	 */
    573  1.39     rmind 	fregs->vfp_fpexc |= VFP_FPEXC_EN;
    574  1.39     rmind 	armreg_fpexc_write(fregs->vfp_fpexc);
    575  1.54    bouyer 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == NULL);
    576  1.54    bouyer 	KASSERT(l->l_pcu_cpu[PCU_FPU] == NULL);
    577  1.13      matt 
    578  1.39     rmind 	load_vfpregs(fregs);
    579  1.39     rmind 	armreg_fpscr_write(fregs->vfp_fpscr);
    580  1.13      matt 
    581  1.39     rmind 	if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
    582  1.39     rmind 		/* Need to restore the exception handling state.  */
    583  1.52       chs 		armreg_fpinst_write(fregs->vfp_fpinst);
    584  1.39     rmind 		if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
    585  1.52       chs 			armreg_fpinst2_write(fregs->vfp_fpinst2);
    586   1.1  rearnsha 	}
    587   1.1  rearnsha }
    588   1.1  rearnsha 
    589   1.1  rearnsha void
    590  1.39     rmind vfp_state_save(lwp_t *l)
    591   1.1  rearnsha {
    592   1.4      matt 	struct pcb * const pcb = lwp_getpcb(l);
    593  1.39     rmind 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    594  1.21      matt 	uint32_t fpexc = armreg_fpexc_read();
    595  1.33     skrll 
    596  1.54    bouyer 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == l);
    597  1.54    bouyer 	KASSERT(curcpu() == l->l_pcu_cpu[PCU_FPU]);
    598  1.54    bouyer 	KASSERT(curlwp == l || curlwp->l_pcu_cpu[PCU_FPU] != curcpu());
    599  1.33     skrll 	/*
    600  1.33     skrll 	 * Enable the VFP (so we can read the registers).
    601  1.33     skrll 	 * Make sure the exception bit is cleared so that we can
    602  1.33     skrll 	 * safely dump the registers.
    603  1.33     skrll 	 */
    604  1.21      matt 	armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
    605   1.1  rearnsha 
    606   1.4      matt 	fregs->vfp_fpexc = fpexc;
    607   1.4      matt 	if (fpexc & VFP_FPEXC_EX) {
    608   1.4      matt 		/* Need to save the exception handling state */
    609  1.21      matt 		fregs->vfp_fpinst = armreg_fpinst_read();
    610  1.21      matt 		if (fpexc & VFP_FPEXC_FP2V)
    611  1.21      matt 			fregs->vfp_fpinst2 = armreg_fpinst2_read();
    612   1.1  rearnsha 	}
    613  1.21      matt 	fregs->vfp_fpscr = armreg_fpscr_read();
    614  1.13      matt 	save_vfpregs(fregs);
    615   1.4      matt 
    616   1.1  rearnsha 	/* Disable the VFP.  */
    617  1.33     skrll 	armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
    618   1.1  rearnsha }
    619   1.1  rearnsha 
    620   1.1  rearnsha void
    621  1.39     rmind vfp_state_release(lwp_t *l)
    622   1.1  rearnsha {
    623   1.4      matt 	struct pcb * const pcb = lwp_getpcb(l);
    624   1.1  rearnsha 
    625  1.39     rmind 	/*
    626  1.39     rmind 	 * Now mark the VFP as disabled (and our state
    627  1.39     rmind 	 * has been already saved or is being discarded).
    628  1.39     rmind 	 */
    629  1.39     rmind 	pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
    630   1.1  rearnsha 
    631   1.1  rearnsha 	/*
    632   1.4      matt 	 * Turn off the FPU so the next time a VFP instruction is issued
    633   1.4      matt 	 * an exception happens.  We don't know if this LWP's state was
    634   1.4      matt 	 * loaded but if we turned off the FPU for some other LWP, when
    635   1.4      matt 	 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
    636  1.13      matt 	 * is still set so it just restore fpexc and return since its
    637   1.4      matt 	 * contents are still sitting in the VFP.
    638   1.1  rearnsha 	 */
    639  1.21      matt 	armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
    640   1.1  rearnsha }
    641   1.1  rearnsha 
    642   1.1  rearnsha void
    643  1.51       chs vfp_savecontext(lwp_t *l)
    644   1.1  rearnsha {
    645  1.51       chs 	pcu_save(&arm_vfp_ops, l);
    646   1.1  rearnsha }
    647   1.1  rearnsha 
    648   1.1  rearnsha void
    649  1.51       chs vfp_discardcontext(lwp_t *l, bool used_p)
    650   1.1  rearnsha {
    651  1.51       chs 	pcu_discard(&arm_vfp_ops, l, used_p);
    652  1.25      matt }
    653  1.25      matt 
    654  1.25      matt bool
    655  1.51       chs vfp_used_p(const lwp_t *l)
    656  1.25      matt {
    657  1.51       chs 	return pcu_valid_p(&arm_vfp_ops, l);
    658  1.13      matt }
    659  1.13      matt 
    660  1.13      matt void
    661   1.8      matt vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
    662   1.8      matt {
    663  1.51       chs 	if (vfp_used_p(l)) {
    664   1.8      matt 		const struct pcb * const pcb = lwp_getpcb(l);
    665  1.51       chs 
    666  1.51       chs 		pcu_save(&arm_vfp_ops, l);
    667   1.8      matt 		mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
    668   1.8      matt 		memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
    669   1.8      matt 		    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    670  1.10      matt 		*flagsp |= _UC_FPU|_UC_ARM_VFP;
    671   1.8      matt 	}
    672   1.8      matt }
    673   1.8      matt 
    674   1.8      matt void
    675   1.8      matt vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
    676   1.8      matt {
    677   1.8      matt 	struct pcb * const pcb = lwp_getpcb(l);
    678  1.51       chs 
    679  1.51       chs 	pcu_discard(&arm_vfp_ops, l, true);
    680   1.8      matt 	pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
    681   1.8      matt 	memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
    682   1.8      matt 	    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    683   1.8      matt }
    684   1.8      matt 
    685  1.71  riastrad /*
    686  1.71  riastrad  * True if this is a system thread with its own private FPU state.
    687  1.71  riastrad  */
    688  1.71  riastrad static inline bool
    689  1.71  riastrad lwp_system_fpu_p(struct lwp *l)
    690  1.71  riastrad {
    691  1.71  riastrad 
    692  1.71  riastrad 	return (l->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) ==
    693  1.71  riastrad 	    (LW_SYSTEM|LW_SYSTEM_FPU);
    694  1.71  riastrad }
    695  1.71  riastrad 
    696  1.71  riastrad static const struct vfpreg zero_vfpreg;
    697  1.71  riastrad 
    698  1.65  riastrad void
    699  1.65  riastrad fpu_kern_enter(void)
    700  1.65  riastrad {
    701  1.65  riastrad 	struct cpu_info *ci;
    702  1.65  riastrad 	uint32_t fpexc;
    703  1.65  riastrad 	int s;
    704  1.65  riastrad 
    705  1.71  riastrad 	if (lwp_system_fpu_p(curlwp) && !cpu_intr_p()) {
    706  1.71  riastrad 		KASSERT(!cpu_softintr_p());
    707  1.71  riastrad 		return;
    708  1.71  riastrad 	}
    709  1.71  riastrad 
    710  1.65  riastrad 	/*
    711  1.67  riastrad 	 * Block interrupts up to IPL_VM.  We must block preemption
    712  1.67  riastrad 	 * since -- if this is a user thread -- there is nowhere to
    713  1.67  riastrad 	 * save the kernel fpu state, and if we want this to be usable
    714  1.67  riastrad 	 * in interrupts, we can't let interrupts interfere with the
    715  1.67  riastrad 	 * fpu state in use since there's nowhere for them to save it.
    716  1.65  riastrad 	 */
    717  1.67  riastrad 	s = splvm();
    718  1.65  riastrad 	ci = curcpu();
    719  1.67  riastrad 	KASSERTMSG(ci->ci_cpl <= IPL_VM, "cpl=%d", ci->ci_cpl);
    720  1.65  riastrad 	KASSERT(ci->ci_kfpu_spl == -1);
    721  1.65  riastrad 	ci->ci_kfpu_spl = s;
    722  1.65  riastrad 
    723  1.68  riastrad 	/* Save any fpu state on the current CPU.  */
    724  1.68  riastrad 	pcu_save_all_on_cpu();
    725  1.65  riastrad 
    726  1.65  riastrad 	/* Enable the fpu.  */
    727  1.65  riastrad 	fpexc = armreg_fpexc_read();
    728  1.65  riastrad 	fpexc |= VFP_FPEXC_EN;
    729  1.65  riastrad 	fpexc &= ~VFP_FPEXC_EX;
    730  1.65  riastrad 	armreg_fpexc_write(fpexc);
    731  1.65  riastrad }
    732  1.65  riastrad 
    733  1.65  riastrad void
    734  1.65  riastrad fpu_kern_leave(void)
    735  1.65  riastrad {
    736  1.65  riastrad 	struct cpu_info *ci = curcpu();
    737  1.65  riastrad 	int s;
    738  1.65  riastrad 	uint32_t fpexc;
    739  1.65  riastrad 
    740  1.71  riastrad 	if (lwp_system_fpu_p(curlwp) && !cpu_intr_p()) {
    741  1.71  riastrad 		KASSERT(!cpu_softintr_p());
    742  1.71  riastrad 		return;
    743  1.71  riastrad 	}
    744  1.71  riastrad 
    745  1.67  riastrad 	KASSERT(ci->ci_cpl == IPL_VM);
    746  1.65  riastrad 	KASSERT(ci->ci_kfpu_spl != -1);
    747  1.65  riastrad 
    748  1.65  riastrad 	/*
    749  1.65  riastrad 	 * Zero the fpu registers; otherwise we might leak secrets
    750  1.65  riastrad 	 * through Spectre-class attacks to userland, even if there are
    751  1.65  riastrad 	 * no bugs in fpu state management.
    752  1.65  riastrad 	 */
    753  1.65  riastrad 	load_vfpregs(&zero_vfpreg);
    754  1.65  riastrad 
    755  1.65  riastrad 	/*
    756  1.65  riastrad 	 * Disable the fpu so that the kernel can't accidentally use
    757  1.65  riastrad 	 * it again.
    758  1.65  riastrad 	 */
    759  1.65  riastrad 	fpexc = armreg_fpexc_read();
    760  1.65  riastrad 	fpexc &= ~VFP_FPEXC_EN;
    761  1.65  riastrad 	armreg_fpexc_write(fpexc);
    762  1.65  riastrad 
    763  1.65  riastrad 	/* Restore interrupts.  */
    764  1.65  riastrad 	s = ci->ci_kfpu_spl;
    765  1.65  riastrad 	ci->ci_kfpu_spl = -1;
    766  1.65  riastrad 	splx(s);
    767  1.65  riastrad }
    768  1.65  riastrad 
    769  1.71  riastrad void
    770  1.71  riastrad kthread_fpu_enter_md(void)
    771  1.71  riastrad {
    772  1.71  riastrad 
    773  1.71  riastrad 	pcu_load(&arm_vfp_ops);
    774  1.71  riastrad }
    775  1.71  riastrad 
    776  1.71  riastrad void
    777  1.71  riastrad kthread_fpu_exit_md(void)
    778  1.71  riastrad {
    779  1.71  riastrad 
    780  1.71  riastrad 	/* XXX Should vfp_state_release zero the registers itself?  */
    781  1.71  riastrad 	load_vfpregs(&zero_vfpreg);
    782  1.71  riastrad 	vfp_discardcontext(curlwp, 0);
    783  1.71  riastrad }
    784  1.71  riastrad 
    785   1.4      matt #endif /* FPU_VFP */
    786