Home | History | Annotate | Line # | Download | only in vfp
vfp_init.c revision 1.78
      1  1.78  riastrad /*      $NetBSD: vfp_init.c,v 1.78 2022/08/20 11:34:08 riastradh Exp $ */
      2   1.1  rearnsha 
      3   1.1  rearnsha /*
      4   1.1  rearnsha  * Copyright (c) 2008 ARM Ltd
      5   1.1  rearnsha  * All rights reserved.
      6   1.1  rearnsha  *
      7   1.1  rearnsha  * Redistribution and use in source and binary forms, with or without
      8   1.1  rearnsha  * modification, are permitted provided that the following conditions
      9   1.1  rearnsha  * are met:
     10   1.1  rearnsha  * 1. Redistributions of source code must retain the above copyright
     11   1.1  rearnsha  *    notice, this list of conditions and the following disclaimer.
     12   1.1  rearnsha  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1  rearnsha  *    notice, this list of conditions and the following disclaimer in the
     14   1.1  rearnsha  *    documentation and/or other materials provided with the distribution.
     15   1.1  rearnsha  * 3. The name of the company may not be used to endorse or promote
     16   1.1  rearnsha  *    products derived from this software without specific prior written
     17   1.1  rearnsha  *    permission.
     18   1.1  rearnsha  *
     19   1.1  rearnsha  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
     20   1.1  rearnsha  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21   1.1  rearnsha  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22   1.1  rearnsha  * ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
     23   1.1  rearnsha  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24   1.1  rearnsha  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     25   1.1  rearnsha  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1  rearnsha  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     27   1.1  rearnsha  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28   1.1  rearnsha  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29   1.1  rearnsha  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30   1.1  rearnsha  */
     31   1.1  rearnsha 
     32  1.59     skrll #include "opt_cputypes.h"
     33  1.59     skrll 
     34  1.58     skrll #include <sys/cdefs.h>
     35  1.78  riastrad __KERNEL_RCSID(0, "$NetBSD: vfp_init.c,v 1.78 2022/08/20 11:34:08 riastradh Exp $");
     36  1.58     skrll 
     37   1.1  rearnsha #include <sys/param.h>
     38   1.1  rearnsha #include <sys/types.h>
     39   1.1  rearnsha #include <sys/systm.h>
     40   1.1  rearnsha #include <sys/device.h>
     41  1.77  riastrad #include <sys/kernel.h>
     42  1.71  riastrad #include <sys/kthread.h>
     43   1.1  rearnsha #include <sys/proc.h>
     44   1.4      matt #include <sys/cpu.h>
     45   1.1  rearnsha 
     46  1.23      matt #include <arm/locore.h>
     47   1.5      matt #include <arm/pcb.h>
     48   1.1  rearnsha #include <arm/undefined.h>
     49   1.1  rearnsha #include <arm/vfpreg.h>
     50   1.8      matt #include <arm/mcontext.h>
     51  1.65  riastrad #include <arm/fpu.h>
     52   1.1  rearnsha 
     53  1.12      matt #include <uvm/uvm_extern.h>		/* for pmap.h */
     54  1.12      matt 
     55  1.69  riastrad #include <crypto/aes/aes_impl.h>
     56  1.66  riastrad #include <crypto/aes/arch/arm/aes_neon.h>
     57  1.70  riastrad #include <crypto/chacha/arch/arm/chacha_neon.h>
     58  1.70  riastrad #include <crypto/chacha/chacha_impl.h>
     59  1.66  riastrad 
     60  1.11      matt #ifdef FPU_VFP
     61  1.11      matt 
     62  1.29      matt #ifdef CPU_CORTEX
     63  1.56  christos #define SETFPU __asm(".fpu\tvfpv4")
     64  1.29      matt #else
     65  1.56  christos #define SETFPU __asm(".fpu\tvfp")
     66  1.29      matt #endif
     67  1.56  christos SETFPU;
     68  1.29      matt 
     69   1.1  rearnsha /* FLDMD <X>, {d0-d15} */
     70  1.11      matt static inline void
     71  1.13      matt load_vfpregs_lo(const uint64_t *p)
     72  1.10      matt {
     73  1.56  christos 	SETFPU;
     74  1.64     joerg 	__asm __volatile(".fpu vfp\n vldmia\t%0, {d0-d15}" :: "r" (p) : "memory");
     75  1.10      matt }
     76  1.10      matt 
     77  1.10      matt /* FSTMD <X>, {d0-d15} */
     78  1.11      matt static inline void
     79  1.10      matt save_vfpregs_lo(uint64_t *p)
     80  1.10      matt {
     81  1.56  christos 	SETFPU;
     82  1.64     joerg 	__asm __volatile(".fpu vfp\n vstmia\t%0, {d0-d15}" :: "r" (p) : "memory");
     83  1.10      matt }
     84  1.10      matt 
     85  1.10      matt #ifdef CPU_CORTEX
     86  1.10      matt /* FLDMD <X>, {d16-d31} */
     87  1.11      matt static inline void
     88  1.13      matt load_vfpregs_hi(const uint64_t *p)
     89  1.10      matt {
     90  1.56  christos 	SETFPU;
     91  1.64     joerg 	__asm __volatile(".fpu neon-vfpv4\n vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
     92  1.10      matt }
     93  1.10      matt 
     94  1.10      matt /* FLDMD <X>, {d16-d31} */
     95  1.11      matt static inline void
     96  1.10      matt save_vfpregs_hi(uint64_t *p)
     97  1.10      matt {
     98  1.56  christos 	SETFPU;
     99  1.64     joerg 	__asm __volatile(".fpu neon-vfpv4\nvstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
    100  1.10      matt }
    101  1.10      matt #endif
    102   1.1  rearnsha 
    103  1.13      matt static inline void
    104  1.13      matt load_vfpregs(const struct vfpreg *fregs)
    105  1.13      matt {
    106  1.13      matt 	load_vfpregs_lo(fregs->vfp_regs);
    107  1.13      matt #ifdef CPU_CORTEX
    108  1.13      matt #ifdef CPU_ARM11
    109  1.13      matt 	switch (curcpu()->ci_vfp_id) {
    110  1.13      matt 	case FPU_VFP_CORTEXA5:
    111  1.13      matt 	case FPU_VFP_CORTEXA7:
    112  1.13      matt 	case FPU_VFP_CORTEXA8:
    113  1.13      matt 	case FPU_VFP_CORTEXA9:
    114  1.20      matt 	case FPU_VFP_CORTEXA15:
    115  1.42       slp 	case FPU_VFP_CORTEXA15_QEMU:
    116  1.50     skrll 	case FPU_VFP_CORTEXA53:
    117  1.53  jmcneill 	case FPU_VFP_CORTEXA57:
    118  1.13      matt #endif
    119  1.13      matt 		load_vfpregs_hi(fregs->vfp_regs);
    120  1.13      matt #ifdef CPU_ARM11
    121  1.13      matt 		break;
    122  1.13      matt 	}
    123  1.13      matt #endif
    124  1.13      matt #endif
    125  1.13      matt }
    126  1.13      matt 
    127  1.13      matt static inline void
    128  1.13      matt save_vfpregs(struct vfpreg *fregs)
    129  1.13      matt {
    130  1.13      matt 	save_vfpregs_lo(fregs->vfp_regs);
    131  1.13      matt #ifdef CPU_CORTEX
    132  1.13      matt #ifdef CPU_ARM11
    133  1.13      matt 	switch (curcpu()->ci_vfp_id) {
    134  1.13      matt 	case FPU_VFP_CORTEXA5:
    135  1.13      matt 	case FPU_VFP_CORTEXA7:
    136  1.13      matt 	case FPU_VFP_CORTEXA8:
    137  1.13      matt 	case FPU_VFP_CORTEXA9:
    138  1.20      matt 	case FPU_VFP_CORTEXA15:
    139  1.42       slp 	case FPU_VFP_CORTEXA15_QEMU:
    140  1.50     skrll 	case FPU_VFP_CORTEXA53:
    141  1.53  jmcneill 	case FPU_VFP_CORTEXA57:
    142  1.13      matt #endif
    143  1.13      matt 		save_vfpregs_hi(fregs->vfp_regs);
    144  1.13      matt #ifdef CPU_ARM11
    145  1.13      matt 		break;
    146  1.13      matt 	}
    147  1.13      matt #endif
    148  1.13      matt #endif
    149  1.13      matt }
    150  1.13      matt 
    151   1.1  rearnsha /* The real handler for VFP bounces.  */
    152   1.1  rearnsha static int vfp_handler(u_int, u_int, trapframe_t *, int);
    153  1.13      matt #ifdef CPU_CORTEX
    154  1.13      matt static int neon_handler(u_int, u_int, trapframe_t *, int);
    155  1.13      matt #endif
    156   1.1  rearnsha 
    157  1.13      matt static void vfp_state_load(lwp_t *, u_int);
    158  1.39     rmind static void vfp_state_save(lwp_t *);
    159  1.39     rmind static void vfp_state_release(lwp_t *);
    160   1.4      matt 
    161   1.4      matt const pcu_ops_t arm_vfp_ops = {
    162   1.4      matt 	.pcu_id = PCU_FPU,
    163  1.13      matt 	.pcu_state_save = vfp_state_save,
    164   1.4      matt 	.pcu_state_load = vfp_state_load,
    165   1.4      matt 	.pcu_state_release = vfp_state_release,
    166   1.4      matt };
    167   1.1  rearnsha 
    168  1.34      matt /* determine what bits can be changed */
    169  1.34      matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
    170  1.34      matt /* default to run fast */
    171  1.34      matt uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
    172  1.34      matt 
    173  1.35      matt #else
    174  1.35      matt /* determine what bits can be changed */
    175  1.35      matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
    176   1.4      matt #endif /* FPU_VFP */
    177   1.4      matt 
    178   1.4      matt static int
    179   1.4      matt vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    180   1.4      matt {
    181   1.4      matt 	struct lwp * const l = curlwp;
    182   1.4      matt 	const u_int regno = (insn >> 12) & 0xf;
    183   1.4      matt 	/*
    184   1.4      matt 	 * Only match move to/from the FPSCR register and we
    185   1.4      matt 	 * can't be using the SP,LR,PC as a source.
    186   1.4      matt 	 */
    187   1.4      matt 	if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
    188   1.4      matt 		return 1;
    189   1.4      matt 
    190   1.4      matt 	struct pcb * const pcb = lwp_getpcb(l);
    191   1.4      matt 
    192   1.4      matt #ifdef FPU_VFP
    193   1.4      matt 	/*
    194   1.4      matt 	 * If FPU is valid somewhere, let's just reenable VFP and
    195   1.4      matt 	 * retry the instruction (only safe thing to do since the
    196   1.4      matt 	 * pcb has a stale copy).
    197   1.4      matt 	 */
    198   1.4      matt 	if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
    199   1.4      matt 		return 1;
    200   1.4      matt 
    201  1.51       chs 	if (__predict_false(!vfp_used_p(l))) {
    202  1.35      matt 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
    203   1.4      matt 	}
    204  1.26      matt #endif
    205   1.4      matt 
    206   1.4      matt 	/*
    207  1.30     skrll 	 * We now know the pcb has the saved copy.
    208   1.4      matt 	 */
    209   1.4      matt 	register_t * const regp = &frame->tf_r0 + regno;
    210   1.4      matt 	if (insn & 0x00100000) {
    211   1.4      matt 		*regp = pcb->pcb_vfp.vfp_fpscr;
    212   1.4      matt 	} else {
    213  1.34      matt 		pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
    214  1.34      matt 		pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
    215   1.4      matt 	}
    216   1.4      matt 
    217  1.37      matt 	curcpu()->ci_vfp_evs[0].ev_count++;
    218  1.61     skrll 
    219   1.4      matt 	frame->tf_pc += INSN_SIZE;
    220   1.4      matt 	return 0;
    221   1.1  rearnsha }
    222   1.1  rearnsha 
    223   1.4      matt #ifndef FPU_VFP
    224  1.76     skrll void
    225  1.76     skrll vfp_detect(struct cpu_info *ci)
    226  1.76     skrll {
    227  1.76     skrll 	ci->ci_vfp_id = 0;
    228  1.76     skrll 	return;
    229  1.76     skrll }
    230   1.4      matt /*
    231   1.4      matt  * If we don't want VFP support, we still need to handle emulating VFP FPSCR
    232   1.4      matt  * instructions.
    233   1.4      matt  */
    234   1.4      matt void
    235  1.37      matt vfp_attach(struct cpu_info *ci)
    236   1.4      matt {
    237  1.37      matt 	if (CPU_IS_PRIMARY(ci)) {
    238  1.76     skrll 		replace_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    239  1.37      matt 	}
    240  1.37      matt 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
    241  1.37      matt 	    ci->ci_cpuname, "vfp fpscr traps");
    242   1.4      matt }
    243   1.4      matt 
    244   1.4      matt #else
    245   1.1  rearnsha void
    246  1.76     skrll vfp_detect(struct cpu_info *ci)
    247   1.1  rearnsha {
    248   1.1  rearnsha 
    249  1.37      matt 	if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
    250  1.37      matt 	    || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
    251  1.37      matt 	    || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
    252  1.37      matt #if 0
    253  1.37      matt 		const uint32_t nsacr = armreg_nsacr_read();
    254  1.37      matt 		const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
    255  1.37      matt 		if ((nsacr & nsacr_vfp) != nsacr_vfp) {
    256  1.76     skrll 			ci->ci_fp_id = 0;
    257  1.37      matt 			return;
    258  1.37      matt 		}
    259  1.37      matt #endif
    260   1.7      matt 		const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
    261   1.7      matt 		const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
    262   1.1  rearnsha 
    263   1.7      matt 		/*
    264   1.7      matt 		 * We first need to enable access to the coprocessors.
    265   1.7      matt 		 */
    266   1.7      matt 		uint32_t cpacr = armreg_cpacr_read();
    267   1.7      matt 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
    268   1.7      matt 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
    269   1.7      matt 		armreg_cpacr_write(cpacr);
    270   1.1  rearnsha 
    271  1.72     skrll 		isb();
    272  1.48  jmcneill 
    273   1.7      matt 		/*
    274   1.7      matt 		 * If we could enable them, then they exist.
    275   1.7      matt 		 */
    276   1.7      matt 		cpacr = armreg_cpacr_read();
    277  1.40      matt 		bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
    278  1.40      matt 		    && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
    279  1.28      matt 		if (!vfp_p) {
    280  1.28      matt 			ci->ci_vfp_id = 0;
    281  1.28      matt 			return;
    282  1.28      matt 		}
    283   1.6      matt 	}
    284   1.6      matt 
    285  1.76     skrll 	/* borrow the ci_vfd_id field for VFP detection */
    286  1.76     skrll 	ci->ci_vfp_id = -1;
    287   1.7      matt 
    288  1.21      matt 	const uint32_t fpsid = armreg_fpsid_read();
    289  1.76     skrll 	if (ci->ci_vfp_id == 0) {
    290   1.1  rearnsha 		return;
    291   1.1  rearnsha 	}
    292   1.1  rearnsha 
    293   1.4      matt 	ci->ci_vfp_id = fpsid;
    294  1.76     skrll 
    295  1.76     skrll 	ci->ci_mvfr[0] = armreg_mvfr0_read();
    296  1.76     skrll 	ci->ci_mvfr[1] = armreg_mvfr1_read();
    297  1.76     skrll 
    298  1.76     skrll }
    299  1.76     skrll 
    300  1.76     skrll void
    301  1.76     skrll vfp_attach(struct cpu_info *ci)
    302  1.76     skrll {
    303  1.76     skrll 	const char *model = NULL;
    304  1.76     skrll 
    305  1.76     skrll 	switch (ci->ci_vfp_id & ~ VFP_FPSID_REV_MSK) {
    306   1.4      matt 	case FPU_VFP10_ARM10E:
    307   1.4      matt 		model = "VFP10 R1";
    308   1.4      matt 		break;
    309   1.4      matt 	case FPU_VFP11_ARM11:
    310   1.4      matt 		model = "VFP11";
    311   1.4      matt 		break;
    312  1.36      matt 	case FPU_VFP_MV88SV58XX:
    313  1.36      matt 		model = "VFP3";
    314  1.36      matt 		break;
    315   1.7      matt 	case FPU_VFP_CORTEXA5:
    316   1.7      matt 	case FPU_VFP_CORTEXA7:
    317   1.7      matt 	case FPU_VFP_CORTEXA8:
    318   1.7      matt 	case FPU_VFP_CORTEXA9:
    319  1.63       tnn 	case FPU_VFP_CORTEXA12:
    320  1.20      matt 	case FPU_VFP_CORTEXA15:
    321  1.42       slp 	case FPU_VFP_CORTEXA15_QEMU:
    322  1.63       tnn 	case FPU_VFP_CORTEXA17:
    323  1.50     skrll 	case FPU_VFP_CORTEXA53:
    324  1.53  jmcneill 	case FPU_VFP_CORTEXA57:
    325  1.37      matt 		if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
    326  1.37      matt 			model = "VFP 4.0+";
    327  1.37      matt 		} else {
    328  1.37      matt 			model = "NEON MPE (VFP 3.0+)";
    329  1.37      matt 			cpu_neon_present = 1;
    330  1.37      matt 		}
    331   1.6      matt 		break;
    332   1.4      matt 	default:
    333  1.36      matt 		aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
    334  1.76     skrll 		    ci->ci_vfp_id);
    335  1.62     skrll 		if (CPU_IS_PRIMARY(ci))
    336  1.76     skrll 			replace_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    337  1.35      matt 		vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
    338  1.35      matt 		    |VFP_FPSCR_RMODE;
    339  1.35      matt 		vfp_fpscr_default = 0;
    340   1.4      matt 		return;
    341   1.4      matt 	}
    342   1.1  rearnsha 
    343  1.17      matt 	cpu_fpu_present = 1;
    344  1.76     skrll 
    345  1.76     skrll 	const uint32_t f0 = ci->ci_mvfr[0];
    346  1.76     skrll 	const uint32_t f1 = ci->ci_mvfr[1];
    347  1.76     skrll 	aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
    348  1.76     skrll 	    device_unit(ci->ci_dev),
    349  1.76     skrll 	    device_xname(ci->ci_dev),
    350  1.76     skrll 	    model,
    351  1.76     skrll 	    ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
    352  1.76     skrll 	    ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
    353  1.76     skrll 	    ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
    354  1.76     skrll 	    ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
    355  1.76     skrll 
    356  1.76     skrll 	aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
    357  1.76     skrll 	    device_unit(ci->ci_dev), f0, f1);
    358  1.76     skrll 
    359  1.76     skrll 	if (CPU_IS_PRIMARY(ci)) {
    360  1.76     skrll 		cpu_media_and_vfp_features[0] = f0;
    361  1.76     skrll 		cpu_media_and_vfp_features[1] = f1;
    362  1.76     skrll 
    363  1.76     skrll 		if (f0 & ARM_MVFR0_ROUNDING_MASK) {
    364  1.76     skrll 			vfp_fpscr_changable |= VFP_FPSCR_RMODE;
    365  1.76     skrll 		}
    366  1.76     skrll 		if (f1 & ARM_MVFR0_EXCEPT_MASK) {
    367  1.76     skrll 			vfp_fpscr_changable |= VFP_FPSCR_ESUM;
    368  1.76     skrll 		}
    369  1.76     skrll 		// If hardware supports propagation of NaNs, select it.
    370  1.76     skrll 		if (f1 & ARM_MVFR1_D_NAN_MASK) {
    371  1.76     skrll 			vfp_fpscr_default &= ~VFP_FPSCR_DN;
    372  1.76     skrll 			vfp_fpscr_changable |= VFP_FPSCR_DN;
    373  1.76     skrll 		}
    374  1.76     skrll 		// If hardware supports denormalized numbers, use it.
    375  1.76     skrll 		if (f1 & ARM_MVFR1_FTZ_MASK) {
    376  1.76     skrll 			vfp_fpscr_default &= ~VFP_FPSCR_FZ;
    377  1.76     skrll 			vfp_fpscr_changable |= VFP_FPSCR_FZ;
    378  1.37      matt 		}
    379  1.76     skrll 
    380  1.76     skrll 		replace_coproc_handler(VFP_COPROC, vfp_handler);
    381  1.62     skrll 		install_coproc_handler(VFP_COPROC2, vfp_handler);
    382  1.13      matt #ifdef CPU_CORTEX
    383  1.66  riastrad 		if (cpu_neon_present) {
    384  1.66  riastrad 			install_coproc_handler(CORE_UNKNOWN_HANDLER,
    385  1.66  riastrad 			    neon_handler);
    386  1.66  riastrad 			aes_md_init(&aes_neon_impl);
    387  1.70  riastrad 			chacha_md_init(&chacha_neon_impl);
    388  1.66  riastrad 		}
    389  1.13      matt #endif
    390  1.62     skrll 	}
    391  1.76     skrll 
    392  1.76     skrll 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
    393  1.76     skrll 	    ci->ci_cpuname, "vfp coproc use");
    394  1.76     skrll 	evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
    395  1.76     skrll 	    ci->ci_cpuname, "vfp coproc re-use");
    396  1.76     skrll 	evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
    397  1.76     skrll 	    ci->ci_cpuname, "vfp coproc fault");
    398   1.1  rearnsha }
    399   1.1  rearnsha 
    400   1.1  rearnsha /* The real handler for VFP bounces.  */
    401   1.4      matt static int
    402  1.21      matt vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    403   1.1  rearnsha {
    404   1.4      matt 	struct cpu_info * const ci = curcpu();
    405  1.74       rin 	uint32_t fpexc;
    406   1.1  rearnsha 
    407   1.1  rearnsha 	/* This shouldn't ever happen.  */
    408  1.71  riastrad 	if (fault_code != FAULT_USER &&
    409  1.71  riastrad 	    (curlwp->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) == LW_SYSTEM)
    410  1.14      matt 		panic("VFP fault at %#x in non-user mode", frame->tf_pc);
    411   1.1  rearnsha 
    412  1.27      matt 	if (ci->ci_vfp_id == 0) {
    413   1.1  rearnsha 		/* No VFP detected, just fault.  */
    414   1.1  rearnsha 		return 1;
    415  1.27      matt 	}
    416  1.27      matt 
    417  1.75     skrll 	/*
    418  1.47      matt 	 * If we already own the FPU and it's enabled (and no exception), raise
    419  1.74       rin 	 * SIGILL.  If there is an exception, raise SIGFPE.
    420  1.47      matt 	 */
    421  1.74       rin 	if (curlwp->l_pcu_cpu[PCU_FPU] == ci) {
    422  1.73       rin 		KASSERT(ci->ci_pcu_curlwp[PCU_FPU] == curlwp);
    423  1.74       rin 
    424  1.74       rin 		fpexc = armreg_fpexc_read();
    425  1.74       rin 		if (fpexc & VFP_FPEXC_EN) {
    426  1.74       rin 			if ((fpexc & VFP_FPEXC_EX) == 0) {
    427  1.74       rin 				return 1;	/* SIGILL */
    428  1.74       rin 			} else {
    429  1.74       rin 				goto fpe;	/* SIGFPE; skip pcu_load(9) */
    430  1.74       rin 			}
    431  1.74       rin 		}
    432  1.73       rin 	}
    433  1.44      matt 
    434  1.27      matt 	/*
    435  1.27      matt 	 * Make sure we own the FP.
    436  1.27      matt 	 */
    437  1.27      matt 	pcu_load(&arm_vfp_ops);
    438   1.1  rearnsha 
    439  1.74       rin 	fpexc = armreg_fpexc_read();
    440  1.21      matt 	if (fpexc & VFP_FPEXC_EX) {
    441  1.21      matt 		ksiginfo_t ksi;
    442  1.21      matt 		KASSERT(fpexc & VFP_FPEXC_EN);
    443  1.21      matt 
    444  1.74       rin fpe:
    445  1.37      matt 		curcpu()->ci_vfp_evs[2].ev_count++;
    446  1.21      matt 
    447  1.21      matt 		/*
    448  1.21      matt 		 * Need the clear the exception condition so any signal
    449  1.33     skrll 		 * and future use can proceed.
    450  1.21      matt 		 */
    451  1.31     skrll 		armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
    452  1.21      matt 
    453  1.51       chs 		pcu_save(&arm_vfp_ops, curlwp);
    454  1.33     skrll 
    455  1.33     skrll 		/*
    456  1.33     skrll 		 * XXX Need to emulate bounce instructions here to get correct
    457  1.33     skrll 		 * XXX exception codes, etc.
    458  1.33     skrll 		 */
    459  1.21      matt 		KSI_INIT_TRAP(&ksi);
    460  1.21      matt 		ksi.ksi_signo = SIGFPE;
    461  1.21      matt 		if (fpexc & VFP_FPEXC_IXF)
    462  1.21      matt 			ksi.ksi_code = FPE_FLTRES;
    463  1.21      matt 		else if (fpexc & VFP_FPEXC_UFF)
    464  1.21      matt 			ksi.ksi_code = FPE_FLTUND;
    465  1.21      matt 		else if (fpexc & VFP_FPEXC_OFF)
    466  1.21      matt 			ksi.ksi_code = FPE_FLTOVF;
    467  1.21      matt 		else if (fpexc & VFP_FPEXC_DZF)
    468  1.21      matt 			ksi.ksi_code = FPE_FLTDIV;
    469  1.21      matt 		else if (fpexc & VFP_FPEXC_IOF)
    470  1.21      matt 			ksi.ksi_code = FPE_FLTINV;
    471  1.21      matt 		ksi.ksi_addr = (uint32_t *)address;
    472  1.21      matt 		ksi.ksi_trap = 0;
    473  1.21      matt 		trapsignal(curlwp, &ksi);
    474  1.21      matt 		return 0;
    475  1.21      matt 	}
    476  1.21      matt 
    477   1.4      matt 	/* Need to restart the faulted instruction.  */
    478   1.4      matt //	frame->tf_pc -= INSN_SIZE;
    479   1.4      matt 	return 0;
    480   1.4      matt }
    481   1.1  rearnsha 
    482  1.13      matt #ifdef CPU_CORTEX
    483  1.13      matt /* The real handler for NEON bounces.  */
    484  1.13      matt static int
    485  1.21      matt neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    486  1.13      matt {
    487  1.13      matt 	struct cpu_info * const ci = curcpu();
    488  1.13      matt 
    489  1.13      matt 	if (ci->ci_vfp_id == 0)
    490  1.13      matt 		/* No VFP detected, just fault.  */
    491  1.13      matt 		return 1;
    492  1.13      matt 
    493  1.13      matt 	if ((insn & 0xfe000000) != 0xf2000000
    494  1.13      matt 	    && (insn & 0xfe000000) != 0xf4000000)
    495  1.13      matt 		/* Not NEON instruction, just fault.  */
    496  1.13      matt 		return 1;
    497  1.13      matt 
    498  1.13      matt 	/* This shouldn't ever happen.  */
    499  1.71  riastrad 	if (fault_code != FAULT_USER &&
    500  1.71  riastrad 	    (curlwp->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) == LW_SYSTEM)
    501  1.13      matt 		panic("NEON fault in non-user mode");
    502  1.13      matt 
    503  1.45      matt 	/* if we already own the FPU and it's enabled, raise SIGILL */
    504  1.45      matt 	if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
    505  1.45      matt 	    && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
    506  1.47      matt 		return 1;
    507  1.43      matt 
    508  1.13      matt 	pcu_load(&arm_vfp_ops);
    509  1.13      matt 
    510  1.13      matt 	/* Need to restart the faulted instruction.  */
    511  1.13      matt //	frame->tf_pc -= INSN_SIZE;
    512  1.13      matt 	return 0;
    513  1.13      matt }
    514  1.13      matt #endif
    515  1.13      matt 
    516   1.4      matt static void
    517  1.13      matt vfp_state_load(lwp_t *l, u_int flags)
    518   1.4      matt {
    519   1.4      matt 	struct pcb * const pcb = lwp_getpcb(l);
    520   1.4      matt 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    521   1.1  rearnsha 
    522   1.1  rearnsha 	/*
    523   1.1  rearnsha 	 * Instrument VFP usage -- if a process has not previously
    524   1.1  rearnsha 	 * used the VFP, mark it as having used VFP for the first time,
    525   1.1  rearnsha 	 * and count this event.
    526   1.1  rearnsha 	 *
    527   1.1  rearnsha 	 * If a process has used the VFP, count a "used VFP, and took
    528   1.1  rearnsha 	 * a trap to use it again" event.
    529   1.1  rearnsha 	 */
    530  1.39     rmind 	if (__predict_false((flags & PCU_VALID) == 0)) {
    531  1.37      matt 		curcpu()->ci_vfp_evs[0].ev_count++;
    532  1.34      matt 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
    533   1.4      matt 	} else {
    534  1.37      matt 		curcpu()->ci_vfp_evs[1].ev_count++;
    535   1.4      matt 	}
    536   1.1  rearnsha 
    537  1.54    bouyer 	KASSERT((armreg_fpexc_read() & VFP_FPEXC_EN) == 0);
    538  1.39     rmind 	/*
    539  1.39     rmind 	 * If the VFP is already enabled we must be bouncing an instruction.
    540  1.39     rmind 	 */
    541  1.39     rmind 	if (flags & PCU_REENABLE) {
    542  1.39     rmind 		uint32_t fpexc = armreg_fpexc_read();
    543  1.39     rmind 		armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
    544  1.54    bouyer 		fregs->vfp_fpexc |= VFP_FPEXC_EN;
    545  1.39     rmind 		return;
    546  1.39     rmind 	}
    547  1.54    bouyer 	KASSERT((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0);
    548  1.33     skrll 
    549  1.39     rmind 	/*
    550  1.39     rmind 	 * Load and Enable the VFP (so that we can write the registers).
    551  1.39     rmind 	 */
    552  1.39     rmind 	fregs->vfp_fpexc |= VFP_FPEXC_EN;
    553  1.39     rmind 	armreg_fpexc_write(fregs->vfp_fpexc);
    554  1.54    bouyer 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == NULL);
    555  1.54    bouyer 	KASSERT(l->l_pcu_cpu[PCU_FPU] == NULL);
    556  1.13      matt 
    557  1.39     rmind 	load_vfpregs(fregs);
    558  1.39     rmind 	armreg_fpscr_write(fregs->vfp_fpscr);
    559  1.13      matt 
    560  1.39     rmind 	if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
    561  1.39     rmind 		/* Need to restore the exception handling state.  */
    562  1.52       chs 		armreg_fpinst_write(fregs->vfp_fpinst);
    563  1.39     rmind 		if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
    564  1.52       chs 			armreg_fpinst2_write(fregs->vfp_fpinst2);
    565   1.1  rearnsha 	}
    566   1.1  rearnsha }
    567   1.1  rearnsha 
    568   1.1  rearnsha void
    569  1.39     rmind vfp_state_save(lwp_t *l)
    570   1.1  rearnsha {
    571   1.4      matt 	struct pcb * const pcb = lwp_getpcb(l);
    572  1.39     rmind 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    573  1.21      matt 	uint32_t fpexc = armreg_fpexc_read();
    574  1.33     skrll 
    575  1.54    bouyer 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == l);
    576  1.54    bouyer 	KASSERT(curcpu() == l->l_pcu_cpu[PCU_FPU]);
    577  1.54    bouyer 	KASSERT(curlwp == l || curlwp->l_pcu_cpu[PCU_FPU] != curcpu());
    578  1.33     skrll 	/*
    579  1.33     skrll 	 * Enable the VFP (so we can read the registers).
    580  1.33     skrll 	 * Make sure the exception bit is cleared so that we can
    581  1.33     skrll 	 * safely dump the registers.
    582  1.33     skrll 	 */
    583  1.21      matt 	armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
    584   1.1  rearnsha 
    585   1.4      matt 	fregs->vfp_fpexc = fpexc;
    586   1.4      matt 	if (fpexc & VFP_FPEXC_EX) {
    587   1.4      matt 		/* Need to save the exception handling state */
    588  1.21      matt 		fregs->vfp_fpinst = armreg_fpinst_read();
    589  1.21      matt 		if (fpexc & VFP_FPEXC_FP2V)
    590  1.21      matt 			fregs->vfp_fpinst2 = armreg_fpinst2_read();
    591   1.1  rearnsha 	}
    592  1.21      matt 	fregs->vfp_fpscr = armreg_fpscr_read();
    593  1.13      matt 	save_vfpregs(fregs);
    594   1.4      matt 
    595   1.1  rearnsha 	/* Disable the VFP.  */
    596  1.33     skrll 	armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
    597   1.1  rearnsha }
    598   1.1  rearnsha 
    599   1.1  rearnsha void
    600  1.39     rmind vfp_state_release(lwp_t *l)
    601   1.1  rearnsha {
    602   1.4      matt 	struct pcb * const pcb = lwp_getpcb(l);
    603   1.1  rearnsha 
    604  1.39     rmind 	/*
    605  1.39     rmind 	 * Now mark the VFP as disabled (and our state
    606  1.39     rmind 	 * has been already saved or is being discarded).
    607  1.39     rmind 	 */
    608  1.39     rmind 	pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
    609   1.1  rearnsha 
    610   1.1  rearnsha 	/*
    611   1.4      matt 	 * Turn off the FPU so the next time a VFP instruction is issued
    612   1.4      matt 	 * an exception happens.  We don't know if this LWP's state was
    613   1.4      matt 	 * loaded but if we turned off the FPU for some other LWP, when
    614   1.4      matt 	 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
    615  1.13      matt 	 * is still set so it just restore fpexc and return since its
    616   1.4      matt 	 * contents are still sitting in the VFP.
    617   1.1  rearnsha 	 */
    618  1.21      matt 	armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
    619   1.1  rearnsha }
    620   1.1  rearnsha 
    621   1.1  rearnsha void
    622  1.51       chs vfp_savecontext(lwp_t *l)
    623   1.1  rearnsha {
    624  1.51       chs 	pcu_save(&arm_vfp_ops, l);
    625   1.1  rearnsha }
    626   1.1  rearnsha 
    627   1.1  rearnsha void
    628  1.51       chs vfp_discardcontext(lwp_t *l, bool used_p)
    629   1.1  rearnsha {
    630  1.51       chs 	pcu_discard(&arm_vfp_ops, l, used_p);
    631  1.25      matt }
    632  1.25      matt 
    633  1.25      matt bool
    634  1.51       chs vfp_used_p(const lwp_t *l)
    635  1.25      matt {
    636  1.51       chs 	return pcu_valid_p(&arm_vfp_ops, l);
    637  1.13      matt }
    638  1.13      matt 
    639  1.13      matt void
    640   1.8      matt vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
    641   1.8      matt {
    642  1.51       chs 	if (vfp_used_p(l)) {
    643   1.8      matt 		const struct pcb * const pcb = lwp_getpcb(l);
    644  1.51       chs 
    645  1.51       chs 		pcu_save(&arm_vfp_ops, l);
    646   1.8      matt 		mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
    647   1.8      matt 		memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
    648   1.8      matt 		    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    649  1.10      matt 		*flagsp |= _UC_FPU|_UC_ARM_VFP;
    650   1.8      matt 	}
    651   1.8      matt }
    652   1.8      matt 
    653   1.8      matt void
    654   1.8      matt vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
    655   1.8      matt {
    656   1.8      matt 	struct pcb * const pcb = lwp_getpcb(l);
    657  1.51       chs 
    658  1.51       chs 	pcu_discard(&arm_vfp_ops, l, true);
    659   1.8      matt 	pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
    660   1.8      matt 	memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
    661   1.8      matt 	    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    662   1.8      matt }
    663   1.8      matt 
    664  1.71  riastrad /*
    665  1.71  riastrad  * True if this is a system thread with its own private FPU state.
    666  1.71  riastrad  */
    667  1.71  riastrad static inline bool
    668  1.71  riastrad lwp_system_fpu_p(struct lwp *l)
    669  1.71  riastrad {
    670  1.71  riastrad 
    671  1.71  riastrad 	return (l->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) ==
    672  1.71  riastrad 	    (LW_SYSTEM|LW_SYSTEM_FPU);
    673  1.71  riastrad }
    674  1.71  riastrad 
    675  1.71  riastrad static const struct vfpreg zero_vfpreg;
    676  1.71  riastrad 
    677  1.65  riastrad void
    678  1.65  riastrad fpu_kern_enter(void)
    679  1.65  riastrad {
    680  1.65  riastrad 	struct cpu_info *ci;
    681  1.65  riastrad 	uint32_t fpexc;
    682  1.65  riastrad 	int s;
    683  1.65  riastrad 
    684  1.71  riastrad 	if (lwp_system_fpu_p(curlwp) && !cpu_intr_p()) {
    685  1.71  riastrad 		KASSERT(!cpu_softintr_p());
    686  1.71  riastrad 		return;
    687  1.71  riastrad 	}
    688  1.71  riastrad 
    689  1.65  riastrad 	/*
    690  1.67  riastrad 	 * Block interrupts up to IPL_VM.  We must block preemption
    691  1.67  riastrad 	 * since -- if this is a user thread -- there is nowhere to
    692  1.67  riastrad 	 * save the kernel fpu state, and if we want this to be usable
    693  1.67  riastrad 	 * in interrupts, we can't let interrupts interfere with the
    694  1.67  riastrad 	 * fpu state in use since there's nowhere for them to save it.
    695  1.65  riastrad 	 */
    696  1.67  riastrad 	s = splvm();
    697  1.65  riastrad 	ci = curcpu();
    698  1.78  riastrad #if 0
    699  1.78  riastrad 	/*
    700  1.78  riastrad 	 * Can't assert this because if the caller holds a spin lock at
    701  1.78  riastrad 	 * IPL_VM, and previously held and released a spin lock at
    702  1.78  riastrad 	 * higher IPL, the IPL remains raised above IPL_VM.
    703  1.78  riastrad 	 */
    704  1.77  riastrad 	KASSERTMSG(ci->ci_cpl <= IPL_VM || cold, "cpl=%d", ci->ci_cpl);
    705  1.78  riastrad #endif
    706  1.65  riastrad 	KASSERT(ci->ci_kfpu_spl == -1);
    707  1.65  riastrad 	ci->ci_kfpu_spl = s;
    708  1.65  riastrad 
    709  1.68  riastrad 	/* Save any fpu state on the current CPU.  */
    710  1.68  riastrad 	pcu_save_all_on_cpu();
    711  1.65  riastrad 
    712  1.65  riastrad 	/* Enable the fpu.  */
    713  1.65  riastrad 	fpexc = armreg_fpexc_read();
    714  1.65  riastrad 	fpexc |= VFP_FPEXC_EN;
    715  1.65  riastrad 	fpexc &= ~VFP_FPEXC_EX;
    716  1.65  riastrad 	armreg_fpexc_write(fpexc);
    717  1.65  riastrad }
    718  1.65  riastrad 
    719  1.65  riastrad void
    720  1.65  riastrad fpu_kern_leave(void)
    721  1.65  riastrad {
    722  1.65  riastrad 	struct cpu_info *ci = curcpu();
    723  1.65  riastrad 	int s;
    724  1.65  riastrad 	uint32_t fpexc;
    725  1.65  riastrad 
    726  1.71  riastrad 	if (lwp_system_fpu_p(curlwp) && !cpu_intr_p()) {
    727  1.71  riastrad 		KASSERT(!cpu_softintr_p());
    728  1.71  riastrad 		return;
    729  1.71  riastrad 	}
    730  1.71  riastrad 
    731  1.78  riastrad #if 0
    732  1.78  riastrad 	/*
    733  1.78  riastrad 	 * Can't assert this because if the caller holds a spin lock at
    734  1.78  riastrad 	 * IPL_VM, and previously held and released a spin lock at
    735  1.78  riastrad 	 * higher IPL, the IPL remains raised above IPL_VM.
    736  1.78  riastrad 	 */
    737  1.77  riastrad 	KASSERT(ci->ci_cpl == IPL_VM || cold);
    738  1.78  riastrad #endif
    739  1.65  riastrad 	KASSERT(ci->ci_kfpu_spl != -1);
    740  1.65  riastrad 
    741  1.65  riastrad 	/*
    742  1.65  riastrad 	 * Zero the fpu registers; otherwise we might leak secrets
    743  1.65  riastrad 	 * through Spectre-class attacks to userland, even if there are
    744  1.65  riastrad 	 * no bugs in fpu state management.
    745  1.65  riastrad 	 */
    746  1.65  riastrad 	load_vfpregs(&zero_vfpreg);
    747  1.65  riastrad 
    748  1.65  riastrad 	/*
    749  1.65  riastrad 	 * Disable the fpu so that the kernel can't accidentally use
    750  1.65  riastrad 	 * it again.
    751  1.65  riastrad 	 */
    752  1.65  riastrad 	fpexc = armreg_fpexc_read();
    753  1.65  riastrad 	fpexc &= ~VFP_FPEXC_EN;
    754  1.65  riastrad 	armreg_fpexc_write(fpexc);
    755  1.65  riastrad 
    756  1.65  riastrad 	/* Restore interrupts.  */
    757  1.65  riastrad 	s = ci->ci_kfpu_spl;
    758  1.65  riastrad 	ci->ci_kfpu_spl = -1;
    759  1.65  riastrad 	splx(s);
    760  1.65  riastrad }
    761  1.65  riastrad 
    762  1.71  riastrad void
    763  1.71  riastrad kthread_fpu_enter_md(void)
    764  1.71  riastrad {
    765  1.71  riastrad 
    766  1.71  riastrad 	pcu_load(&arm_vfp_ops);
    767  1.71  riastrad }
    768  1.71  riastrad 
    769  1.71  riastrad void
    770  1.71  riastrad kthread_fpu_exit_md(void)
    771  1.71  riastrad {
    772  1.71  riastrad 
    773  1.71  riastrad 	/* XXX Should vfp_state_release zero the registers itself?  */
    774  1.71  riastrad 	load_vfpregs(&zero_vfpreg);
    775  1.71  riastrad 	vfp_discardcontext(curlwp, 0);
    776  1.71  riastrad }
    777  1.71  riastrad 
    778   1.4      matt #endif /* FPU_VFP */
    779