vfp_init.c revision 1.8 1 1.8 matt /* $NetBSD: vfp_init.c,v 1.8 2012/12/05 19:05:46 matt Exp $ */
2 1.1 rearnsha
3 1.1 rearnsha /*
4 1.1 rearnsha * Copyright (c) 2008 ARM Ltd
5 1.1 rearnsha * All rights reserved.
6 1.1 rearnsha *
7 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
8 1.1 rearnsha * modification, are permitted provided that the following conditions
9 1.1 rearnsha * are met:
10 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
11 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
12 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
14 1.1 rearnsha * documentation and/or other materials provided with the distribution.
15 1.1 rearnsha * 3. The name of the company may not be used to endorse or promote
16 1.1 rearnsha * products derived from this software without specific prior written
17 1.1 rearnsha * permission.
18 1.1 rearnsha *
19 1.1 rearnsha * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 1.1 rearnsha * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 rearnsha * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 rearnsha * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 1.1 rearnsha * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 rearnsha * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 1.1 rearnsha * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rearnsha * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 1.1 rearnsha * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 1.1 rearnsha * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 1.1 rearnsha * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 1.1 rearnsha */
31 1.1 rearnsha
32 1.1 rearnsha #include <sys/param.h>
33 1.1 rearnsha #include <sys/types.h>
34 1.1 rearnsha #include <sys/systm.h>
35 1.1 rearnsha #include <sys/device.h>
36 1.1 rearnsha #include <sys/proc.h>
37 1.4 matt #include <sys/cpu.h>
38 1.1 rearnsha
39 1.5 matt #include <arm/pcb.h>
40 1.1 rearnsha #include <arm/undefined.h>
41 1.1 rearnsha #include <arm/vfpreg.h>
42 1.8 matt #include <arm/mcontext.h>
43 1.1 rearnsha
44 1.1 rearnsha /*
45 1.1 rearnsha * Use generic co-processor instructions to avoid assembly problems.
46 1.1 rearnsha */
47 1.1 rearnsha
48 1.1 rearnsha /* FMRX <X>, fpsid */
49 1.4 matt static inline uint32_t
50 1.4 matt read_fpsid(void)
51 1.4 matt {
52 1.4 matt uint32_t rv;
53 1.4 matt __asm __volatile("mrc p10, 7, %0, c0, c0, 0" : "=r" (rv));
54 1.4 matt return rv;
55 1.4 matt }
56 1.4 matt
57 1.4 matt /* FMRX <X>, fpexc */
58 1.4 matt static inline uint32_t
59 1.4 matt read_fpscr(void)
60 1.4 matt {
61 1.4 matt uint32_t rv;
62 1.4 matt __asm __volatile("mrc p10, 7, %0, c1, c0, 0" : "=r" (rv));
63 1.4 matt return rv;
64 1.4 matt }
65 1.4 matt
66 1.1 rearnsha /* FMRX <X>, fpexc */
67 1.4 matt static inline uint32_t
68 1.4 matt read_fpexc(void)
69 1.4 matt {
70 1.4 matt uint32_t rv;
71 1.4 matt __asm __volatile("mrc p10, 7, %0, c8, c0, 0" : "=r" (rv));
72 1.4 matt return rv;
73 1.4 matt }
74 1.4 matt
75 1.1 rearnsha /* FMRX <X>, fpinst */
76 1.4 matt static inline uint32_t
77 1.4 matt read_fpinst(void)
78 1.4 matt {
79 1.4 matt uint32_t rv;
80 1.4 matt __asm __volatile("mrc p10, 7, %0, c9, c0, 0" : "=r" (rv));
81 1.4 matt return rv;
82 1.4 matt }
83 1.4 matt
84 1.1 rearnsha /* FMRX <X>, fpinst2 */
85 1.4 matt static inline uint32_t
86 1.4 matt read_fpinst2(void)
87 1.4 matt {
88 1.4 matt uint32_t rv;
89 1.4 matt __asm __volatile("mrc p10, 7, %0, c10, c0, 0" : "=r" (rv));
90 1.4 matt return rv;
91 1.4 matt }
92 1.4 matt
93 1.1 rearnsha /* FSTMD <X>, {d0-d15} */
94 1.1 rearnsha #define save_vfpregs(X) __asm __volatile("stc p11, c0, [%0], {32}" : \
95 1.1 rearnsha : "r" (X) : "memory")
96 1.1 rearnsha
97 1.1 rearnsha /* FMXR <X>, fpscr */
98 1.1 rearnsha #define write_fpscr(X) __asm __volatile("mcr p10, 7, %0, c1, c0, 0" : \
99 1.1 rearnsha : "r" (X))
100 1.1 rearnsha /* FMXR <X>, fpexc */
101 1.1 rearnsha #define write_fpexc(X) __asm __volatile("mcr p10, 7, %0, c8, c0, 0" : \
102 1.1 rearnsha : "r" (X))
103 1.1 rearnsha /* FMXR <X>, fpinst */
104 1.1 rearnsha #define write_fpinst(X) __asm __volatile("mcr p10, 7, %0, c9, c0, 0" : \
105 1.1 rearnsha : "r" (X))
106 1.1 rearnsha /* FMXR <X>, fpinst2 */
107 1.1 rearnsha #define write_fpinst2(X) __asm __volatile("mcr p10, 7, %0, c10, c0, 0" : \
108 1.1 rearnsha : "r" (X))
109 1.1 rearnsha /* FLDMD <X>, {d0-d15} */
110 1.1 rearnsha #define load_vfpregs(X) __asm __volatile("ldc p11, c0, [%0], {32}" : \
111 1.1 rearnsha : "r" (X) : "memory");
112 1.1 rearnsha
113 1.4 matt #ifdef FPU_VFP
114 1.4 matt
115 1.1 rearnsha /* The real handler for VFP bounces. */
116 1.1 rearnsha static int vfp_handler(u_int, u_int, trapframe_t *, int);
117 1.4 matt static int vfp_handler(u_int, u_int, trapframe_t *, int);
118 1.1 rearnsha
119 1.4 matt static void vfp_state_load(lwp_t *, bool);
120 1.4 matt static void vfp_state_save(lwp_t *);
121 1.4 matt static void vfp_state_release(lwp_t *);
122 1.4 matt
123 1.4 matt const pcu_ops_t arm_vfp_ops = {
124 1.4 matt .pcu_id = PCU_FPU,
125 1.4 matt .pcu_state_load = vfp_state_load,
126 1.4 matt .pcu_state_save = vfp_state_save,
127 1.4 matt .pcu_state_release = vfp_state_release,
128 1.4 matt };
129 1.1 rearnsha
130 1.1 rearnsha struct evcnt vfpevent_use;
131 1.1 rearnsha struct evcnt vfpevent_reuse;
132 1.1 rearnsha
133 1.1 rearnsha /*
134 1.1 rearnsha * Used to test for a VFP. The following function is installed as a coproc10
135 1.1 rearnsha * handler on the undefined instruction vector and then we issue a VFP
136 1.1 rearnsha * instruction. If undefined_test is non zero then the VFP did not handle
137 1.1 rearnsha * the instruction so must be absent, or disabled.
138 1.1 rearnsha */
139 1.1 rearnsha
140 1.1 rearnsha static int undefined_test;
141 1.1 rearnsha
142 1.1 rearnsha static int
143 1.4 matt vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
144 1.1 rearnsha {
145 1.1 rearnsha
146 1.1 rearnsha frame->tf_pc += INSN_SIZE;
147 1.1 rearnsha ++undefined_test;
148 1.4 matt return 0;
149 1.4 matt }
150 1.4 matt
151 1.4 matt #endif /* FPU_VFP */
152 1.4 matt
153 1.4 matt struct evcnt vfp_fpscr_ev =
154 1.4 matt EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "VFP", "FPSCR traps");
155 1.4 matt EVCNT_ATTACH_STATIC(vfp_fpscr_ev);
156 1.4 matt
157 1.4 matt static int
158 1.4 matt vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
159 1.4 matt {
160 1.4 matt struct lwp * const l = curlwp;
161 1.4 matt const u_int regno = (insn >> 12) & 0xf;
162 1.4 matt /*
163 1.4 matt * Only match move to/from the FPSCR register and we
164 1.4 matt * can't be using the SP,LR,PC as a source.
165 1.4 matt */
166 1.4 matt if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
167 1.4 matt return 1;
168 1.4 matt
169 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
170 1.4 matt
171 1.4 matt #ifdef FPU_VFP
172 1.4 matt /*
173 1.4 matt * If FPU is valid somewhere, let's just reenable VFP and
174 1.4 matt * retry the instruction (only safe thing to do since the
175 1.4 matt * pcb has a stale copy).
176 1.4 matt */
177 1.4 matt if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
178 1.4 matt return 1;
179 1.4 matt #endif
180 1.4 matt
181 1.4 matt if (__predict_false((l->l_md.md_flags & MDLWP_VFPUSED) == 0)) {
182 1.4 matt l->l_md.md_flags |= MDLWP_VFPUSED;
183 1.4 matt pcb->pcb_vfp.vfp_fpscr =
184 1.4 matt (VFP_FPSCR_DN | VFP_FPSCR_FZ); /* Runfast */
185 1.4 matt }
186 1.4 matt
187 1.4 matt /*
188 1.4 matt * We know know the pcb has the saved copy.
189 1.4 matt */
190 1.4 matt register_t * const regp = &frame->tf_r0 + regno;
191 1.4 matt if (insn & 0x00100000) {
192 1.4 matt *regp = pcb->pcb_vfp.vfp_fpscr;
193 1.4 matt } else {
194 1.4 matt pcb->pcb_vfp.vfp_fpscr = *regp;
195 1.4 matt }
196 1.4 matt
197 1.4 matt vfp_fpscr_ev.ev_count++;
198 1.4 matt
199 1.4 matt frame->tf_pc += INSN_SIZE;
200 1.4 matt return 0;
201 1.1 rearnsha }
202 1.1 rearnsha
203 1.4 matt #ifndef FPU_VFP
204 1.4 matt /*
205 1.4 matt * If we don't want VFP support, we still need to handle emulating VFP FPSCR
206 1.4 matt * instructions.
207 1.4 matt */
208 1.4 matt void
209 1.4 matt vfp_attach(void)
210 1.4 matt {
211 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
212 1.4 matt }
213 1.4 matt
214 1.4 matt #else
215 1.1 rearnsha void
216 1.2 cegger vfp_attach(void)
217 1.1 rearnsha {
218 1.4 matt struct cpu_info * const ci = curcpu();
219 1.4 matt const char *model = NULL;
220 1.7 matt bool vfp_p = false;
221 1.1 rearnsha
222 1.7 matt #ifdef FPU_VFP
223 1.7 matt if (CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid)
224 1.7 matt || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
225 1.7 matt const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
226 1.7 matt const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
227 1.1 rearnsha
228 1.7 matt /*
229 1.7 matt * We first need to enable access to the coprocessors.
230 1.7 matt */
231 1.7 matt uint32_t cpacr = armreg_cpacr_read();
232 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
233 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
234 1.7 matt armreg_cpacr_write(cpacr);
235 1.1 rearnsha
236 1.7 matt /*
237 1.7 matt * If we could enable them, then they exist.
238 1.7 matt */
239 1.7 matt cpacr = armreg_cpacr_read();
240 1.7 matt vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) != CPACR_NOACCESS
241 1.7 matt || __SHIFTOUT(cpacr, cpacr_vfp) != CPACR_NOACCESS;
242 1.6 matt }
243 1.6 matt #endif
244 1.6 matt
245 1.7 matt void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
246 1.7 matt
247 1.7 matt undefined_test = 0;
248 1.7 matt
249 1.4 matt const uint32_t fpsid = read_fpsid();
250 1.1 rearnsha
251 1.1 rearnsha remove_coproc_handler(uh);
252 1.1 rearnsha
253 1.1 rearnsha if (undefined_test != 0) {
254 1.4 matt aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
255 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
256 1.4 matt ci->ci_vfp_id = 0;
257 1.1 rearnsha return;
258 1.1 rearnsha }
259 1.1 rearnsha
260 1.4 matt ci->ci_vfp_id = fpsid;
261 1.4 matt switch (fpsid & ~ VFP_FPSID_REV_MSK) {
262 1.4 matt case FPU_VFP10_ARM10E:
263 1.4 matt model = "VFP10 R1";
264 1.4 matt break;
265 1.4 matt case FPU_VFP11_ARM11:
266 1.4 matt model = "VFP11";
267 1.4 matt break;
268 1.7 matt case FPU_VFP_CORTEXA5:
269 1.7 matt case FPU_VFP_CORTEXA7:
270 1.7 matt case FPU_VFP_CORTEXA8:
271 1.7 matt case FPU_VFP_CORTEXA9:
272 1.7 matt model = "NEON MPE (VFP 3.0+)";
273 1.6 matt break;
274 1.4 matt default:
275 1.4 matt aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %x\n",
276 1.4 matt fpsid);
277 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
278 1.4 matt return;
279 1.4 matt }
280 1.1 rearnsha
281 1.1 rearnsha if (fpsid != 0) {
282 1.1 rearnsha aprint_normal("vfp%d at %s: %s\n",
283 1.6 matt device_unit(curcpu()->ci_dev), device_xname(curcpu()->ci_dev),
284 1.1 rearnsha model);
285 1.1 rearnsha }
286 1.1 rearnsha evcnt_attach_dynamic(&vfpevent_use, EVCNT_TYPE_MISC, NULL,
287 1.1 rearnsha "VFP", "proc use");
288 1.1 rearnsha evcnt_attach_dynamic(&vfpevent_reuse, EVCNT_TYPE_MISC, NULL,
289 1.1 rearnsha "VFP", "proc re-use");
290 1.1 rearnsha install_coproc_handler(VFP_COPROC, vfp_handler);
291 1.1 rearnsha install_coproc_handler(VFP_COPROC2, vfp_handler);
292 1.1 rearnsha }
293 1.1 rearnsha
294 1.1 rearnsha /* The real handler for VFP bounces. */
295 1.4 matt static int
296 1.4 matt vfp_handler(u_int address, u_int insn, trapframe_t *frame,
297 1.1 rearnsha int fault_code)
298 1.1 rearnsha {
299 1.4 matt struct cpu_info * const ci = curcpu();
300 1.1 rearnsha
301 1.1 rearnsha /* This shouldn't ever happen. */
302 1.1 rearnsha if (fault_code != FAULT_USER)
303 1.1 rearnsha panic("VFP fault in non-user mode");
304 1.1 rearnsha
305 1.4 matt if (ci->ci_vfp_id == 0)
306 1.1 rearnsha /* No VFP detected, just fault. */
307 1.1 rearnsha return 1;
308 1.1 rearnsha
309 1.4 matt /*
310 1.4 matt * If we are just changing/fetching FPSCR, don't bother loading it.
311 1.4 matt */
312 1.4 matt if (!vfp_fpscr_handler(address, insn, frame, fault_code))
313 1.4 matt return 0;
314 1.1 rearnsha
315 1.4 matt pcu_load(&arm_vfp_ops);
316 1.3 rmind
317 1.4 matt /* Need to restart the faulted instruction. */
318 1.4 matt // frame->tf_pc -= INSN_SIZE;
319 1.4 matt return 0;
320 1.4 matt }
321 1.1 rearnsha
322 1.4 matt static void
323 1.4 matt vfp_state_load(lwp_t *l, bool used)
324 1.4 matt {
325 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
326 1.4 matt struct vfpreg * const fregs = &pcb->pcb_vfp;
327 1.1 rearnsha
328 1.1 rearnsha /*
329 1.1 rearnsha * Instrument VFP usage -- if a process has not previously
330 1.1 rearnsha * used the VFP, mark it as having used VFP for the first time,
331 1.1 rearnsha * and count this event.
332 1.1 rearnsha *
333 1.1 rearnsha * If a process has used the VFP, count a "used VFP, and took
334 1.1 rearnsha * a trap to use it again" event.
335 1.1 rearnsha */
336 1.4 matt if (__predict_false((l->l_md.md_flags & MDLWP_VFPUSED) == 0)) {
337 1.1 rearnsha vfpevent_use.ev_count++;
338 1.4 matt l->l_md.md_flags |= MDLWP_VFPUSED;
339 1.3 rmind pcb->pcb_vfp.vfp_fpscr =
340 1.1 rearnsha (VFP_FPSCR_DN | VFP_FPSCR_FZ); /* Runfast */
341 1.4 matt } else {
342 1.1 rearnsha vfpevent_reuse.ev_count++;
343 1.4 matt }
344 1.1 rearnsha
345 1.4 matt if (fregs->vfp_fpexc & VFP_FPEXC_EN) {
346 1.4 matt /*
347 1.4 matt * If we think the VFP is enabled, it must have be disabled by
348 1.4 matt * vfp_state_release for another LWP so we can just restore
349 1.4 matt * FPEXC and return since our VFP state is still loaded.
350 1.4 matt */
351 1.4 matt write_fpexc(fregs->vfp_fpexc);
352 1.4 matt return;
353 1.4 matt }
354 1.1 rearnsha
355 1.1 rearnsha /* Enable the VFP (so that we can write the registers). */
356 1.4 matt uint32_t fpexc = read_fpexc();
357 1.1 rearnsha KDASSERT((fpexc & VFP_FPEXC_EX) == 0);
358 1.1 rearnsha write_fpexc(fpexc | VFP_FPEXC_EN);
359 1.1 rearnsha
360 1.1 rearnsha load_vfpregs(fregs->vfp_regs);
361 1.1 rearnsha write_fpscr(fregs->vfp_fpscr);
362 1.4 matt
363 1.1 rearnsha if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
364 1.4 matt struct cpu_info * const ci = curcpu();
365 1.1 rearnsha /* Need to restore the exception handling state. */
366 1.4 matt switch (ci->ci_vfp_id) {
367 1.1 rearnsha case FPU_VFP10_ARM10E:
368 1.1 rearnsha case FPU_VFP11_ARM11:
369 1.8 matt case FPU_VFP_CORTEXA5:
370 1.8 matt case FPU_VFP_CORTEXA7:
371 1.8 matt case FPU_VFP_CORTEXA8:
372 1.8 matt case FPU_VFP_CORTEXA9:
373 1.1 rearnsha write_fpinst2(fregs->vfp_fpinst2);
374 1.1 rearnsha write_fpinst(fregs->vfp_fpinst);
375 1.1 rearnsha break;
376 1.1 rearnsha default:
377 1.4 matt panic("%s: Unsupported VFP %#x",
378 1.4 matt __func__, ci->ci_vfp_id);
379 1.1 rearnsha }
380 1.1 rearnsha }
381 1.4 matt
382 1.4 matt /* Finally, restore the FPEXC but don't enable the VFP. */
383 1.4 matt fregs->vfp_fpexc |= VFP_FPEXC_EN;
384 1.4 matt write_fpexc(fregs->vfp_fpexc);
385 1.1 rearnsha }
386 1.1 rearnsha
387 1.1 rearnsha void
388 1.4 matt vfp_state_save(lwp_t *l)
389 1.1 rearnsha {
390 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
391 1.4 matt struct vfpreg * const fregs = &pcb->pcb_vfp;
392 1.1 rearnsha
393 1.4 matt /*
394 1.4 matt * If it's already disabled, then the state has been saved
395 1.4 matt * (or discarded).
396 1.4 matt */
397 1.4 matt if ((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0)
398 1.1 rearnsha return;
399 1.1 rearnsha
400 1.4 matt /*
401 1.4 matt * Enable the VFP (so we can read the registers).
402 1.4 matt * Make sure the exception bit is cleared so that we can
403 1.4 matt * safely dump the registers.
404 1.4 matt */
405 1.4 matt uint32_t fpexc = read_fpexc();
406 1.4 matt write_fpexc((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
407 1.1 rearnsha
408 1.4 matt fregs->vfp_fpexc = fpexc;
409 1.4 matt if (fpexc & VFP_FPEXC_EX) {
410 1.4 matt struct cpu_info * const ci = curcpu();
411 1.4 matt /* Need to save the exception handling state */
412 1.4 matt switch (ci->ci_vfp_id) {
413 1.4 matt case FPU_VFP10_ARM10E:
414 1.4 matt case FPU_VFP11_ARM11:
415 1.8 matt case FPU_VFP_CORTEXA5:
416 1.8 matt case FPU_VFP_CORTEXA7:
417 1.8 matt case FPU_VFP_CORTEXA8:
418 1.8 matt case FPU_VFP_CORTEXA9:
419 1.4 matt fregs->vfp_fpinst = read_fpinst();
420 1.4 matt fregs->vfp_fpinst2 = read_fpinst2();
421 1.4 matt break;
422 1.4 matt default:
423 1.4 matt panic("%s: Unsupported VFP %#x",
424 1.4 matt __func__, ci->ci_vfp_id);
425 1.1 rearnsha }
426 1.1 rearnsha }
427 1.4 matt fregs->vfp_fpscr = read_fpscr();
428 1.4 matt save_vfpregs(fregs->vfp_regs);
429 1.4 matt
430 1.1 rearnsha /* Disable the VFP. */
431 1.4 matt write_fpexc(fpexc);
432 1.1 rearnsha }
433 1.1 rearnsha
434 1.1 rearnsha void
435 1.4 matt vfp_state_release(lwp_t *l)
436 1.1 rearnsha {
437 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
438 1.1 rearnsha
439 1.4 matt /*
440 1.4 matt * Now mark the VFP as disabled (and our state has been already
441 1.4 matt * saved or is being discarded).
442 1.4 matt */
443 1.4 matt pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
444 1.1 rearnsha
445 1.1 rearnsha /*
446 1.4 matt * Turn off the FPU so the next time a VFP instruction is issued
447 1.4 matt * an exception happens. We don't know if this LWP's state was
448 1.4 matt * loaded but if we turned off the FPU for some other LWP, when
449 1.4 matt * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
450 1.4 matt * is still set so it just restroe fpexc and return since its
451 1.4 matt * contents are still sitting in the VFP.
452 1.1 rearnsha */
453 1.4 matt write_fpexc(read_fpexc() & ~VFP_FPEXC_EN);
454 1.1 rearnsha }
455 1.1 rearnsha
456 1.1 rearnsha void
457 1.2 cegger vfp_savecontext(void)
458 1.1 rearnsha {
459 1.4 matt pcu_save(&arm_vfp_ops);
460 1.1 rearnsha }
461 1.1 rearnsha
462 1.1 rearnsha void
463 1.4 matt vfp_discardcontext(void)
464 1.1 rearnsha {
465 1.4 matt pcu_discard(&arm_vfp_ops);
466 1.4 matt }
467 1.1 rearnsha
468 1.8 matt void
469 1.8 matt vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
470 1.8 matt {
471 1.8 matt if (l->l_md.md_flags & MDLWP_VFPUSED) {
472 1.8 matt const struct pcb * const pcb = lwp_getpcb(l);
473 1.8 matt pcu_save(&arm_vfp_ops);
474 1.8 matt mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
475 1.8 matt memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
476 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
477 1.8 matt *flagsp |= _UC_FPU;
478 1.8 matt }
479 1.8 matt }
480 1.8 matt
481 1.8 matt void
482 1.8 matt vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
483 1.8 matt {
484 1.8 matt pcu_discard(&arm_vfp_ops);
485 1.8 matt struct pcb * const pcb = lwp_getpcb(l);
486 1.8 matt l->l_md.md_flags |= MDLWP_VFPUSED;
487 1.8 matt pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
488 1.8 matt memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
489 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
490 1.8 matt }
491 1.8 matt
492 1.4 matt #endif /* FPU_VFP */
493