Home | History | Annotate | Line # | Download | only in vfp
vfp_init.c revision 1.12
      1 /*      $NetBSD: vfp_init.c,v 1.12 2012/12/11 01:52:30 matt Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2008 ARM Ltd
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the company may not be used to endorse or promote
     16  *    products derived from this software without specific prior written
     17  *    permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
     20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
     23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     25  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     27  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/param.h>
     33 #include <sys/types.h>
     34 #include <sys/systm.h>
     35 #include <sys/device.h>
     36 #include <sys/proc.h>
     37 #include <sys/cpu.h>
     38 
     39 #include <arm/pcb.h>
     40 #include <arm/undefined.h>
     41 #include <arm/vfpreg.h>
     42 #include <arm/mcontext.h>
     43 
     44 #include <uvm/uvm_extern.h>		/* for pmap.h */
     45 
     46 /*
     47  * Use generic co-processor instructions to avoid assembly problems.
     48  */
     49 
     50 /* FMRX <X>, fpsid */
     51 static inline uint32_t
     52 read_fpsid(void)
     53 {
     54 	uint32_t rv;
     55 	__asm __volatile("mrc p10, 7, %0, c0, c0, 0" : "=r" (rv));
     56 	return rv;
     57 }
     58 
     59 /* FMRX <X>, fpexc */
     60 static inline uint32_t
     61 read_fpscr(void)
     62 {
     63 	uint32_t rv;
     64 	__asm __volatile("mrc p10, 7, %0, c1, c0, 0" : "=r" (rv));
     65 	return rv;
     66 }
     67 
     68 /* FMRX <X>, fpexc */
     69 static inline uint32_t
     70 read_fpexc(void)
     71 {
     72 	uint32_t rv;
     73 	__asm __volatile("mrc p10, 7, %0, c8, c0, 0" : "=r" (rv));
     74 	return rv;
     75 }
     76 
     77 /* FMRX <X>, fpinst */
     78 static inline uint32_t
     79 read_fpinst(void)
     80 {
     81 	uint32_t rv;
     82 	__asm __volatile("mrc p10, 7, %0, c9, c0, 0" : "=r" (rv));
     83 	return rv;
     84 }
     85 
     86 /* FMRX <X>, fpinst2 */
     87 static inline uint32_t
     88 read_fpinst2(void)
     89 {
     90 	uint32_t rv;
     91 	__asm __volatile("mrc p10, 7, %0, c10, c0, 0" : "=r" (rv));
     92 	return rv;
     93 }
     94 
     95 /* FMXR <X>, fpscr */
     96 #define write_fpscr(X)	__asm __volatile("mcr p10, 7, %0, c1, c0, 0" : \
     97 			    : "r" (X))
     98 /* FMXR <X>, fpexc */
     99 #define write_fpexc(X)	__asm __volatile("mcr p10, 7, %0, c8, c0, 0" : \
    100 			    : "r" (X))
    101 /* FMXR <X>, fpinst */
    102 #define write_fpinst(X)	__asm __volatile("mcr p10, 7, %0, c9, c0, 0" : \
    103 			    : "r" (X))
    104 /* FMXR <X>, fpinst2 */
    105 #define write_fpinst2(X) __asm __volatile("mcr p10, 7, %0, c10, c0, 0" : \
    106 			    : "r" (X))
    107 
    108 #ifdef FPU_VFP
    109 
    110 /* FLDMD <X>, {d0-d15} */
    111 static inline void
    112 load_vfpregs_lo(uint64_t *p)
    113 {
    114 	/* vldmia rN, {d0-d15} */
    115 	__asm __volatile("ldc\tp11, c0, [%0], {32}" :: "r" (p) : "memory");
    116 }
    117 
    118 /* FSTMD <X>, {d0-d15} */
    119 static inline void
    120 save_vfpregs_lo(uint64_t *p)
    121 {
    122 	__asm __volatile("stc\tp11, c0, [%0], {32}" :: "r" (p) : "memory");
    123 }
    124 
    125 #ifdef CPU_CORTEX
    126 /* FLDMD <X>, {d16-d31} */
    127 static inline void
    128 load_vfpregs_hi(uint64_t *p)
    129 {
    130 	__asm __volatile("ldcl\tp11, c0, [%0], {32}" :: "r" (&p[16]) : "memory");
    131 }
    132 
    133 /* FLDMD <X>, {d16-d31} */
    134 static inline void
    135 save_vfpregs_hi(uint64_t *p)
    136 {
    137 	__asm __volatile("stcl\tp11, c0, [%0], {32}" :: "r" (&p[16]) : "memory");
    138 }
    139 #endif
    140 
    141 /* The real handler for VFP bounces.  */
    142 static int vfp_handler(u_int, u_int, trapframe_t *, int);
    143 static int vfp_handler(u_int, u_int, trapframe_t *, int);
    144 
    145 static void vfp_state_load(lwp_t *, bool);
    146 static void vfp_state_save(lwp_t *);
    147 static void vfp_state_release(lwp_t *);
    148 
    149 const pcu_ops_t arm_vfp_ops = {
    150 	.pcu_id = PCU_FPU,
    151 	.pcu_state_load = vfp_state_load,
    152 	.pcu_state_save = vfp_state_save,
    153 	.pcu_state_release = vfp_state_release,
    154 };
    155 
    156 struct evcnt vfpevent_use;
    157 struct evcnt vfpevent_reuse;
    158 
    159 /*
    160  * Used to test for a VFP. The following function is installed as a coproc10
    161  * handler on the undefined instruction vector and then we issue a VFP
    162  * instruction. If undefined_test is non zero then the VFP did not handle
    163  * the instruction so must be absent, or disabled.
    164  */
    165 
    166 static int undefined_test;
    167 
    168 static int
    169 vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    170 {
    171 
    172 	frame->tf_pc += INSN_SIZE;
    173 	++undefined_test;
    174 	return 0;
    175 }
    176 
    177 #endif /* FPU_VFP */
    178 
    179 struct evcnt vfp_fpscr_ev =
    180     EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "VFP", "FPSCR traps");
    181 EVCNT_ATTACH_STATIC(vfp_fpscr_ev);
    182 
    183 static int
    184 vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    185 {
    186 	struct lwp * const l = curlwp;
    187 	const u_int regno = (insn >> 12) & 0xf;
    188 	/*
    189 	 * Only match move to/from the FPSCR register and we
    190 	 * can't be using the SP,LR,PC as a source.
    191 	 */
    192 	if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
    193 		return 1;
    194 
    195 	struct pcb * const pcb = lwp_getpcb(l);
    196 
    197 #ifdef FPU_VFP
    198 	/*
    199 	 * If FPU is valid somewhere, let's just reenable VFP and
    200 	 * retry the instruction (only safe thing to do since the
    201 	 * pcb has a stale copy).
    202 	 */
    203 	if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
    204 		return 1;
    205 #endif
    206 
    207 	if (__predict_false((l->l_md.md_flags & MDLWP_VFPUSED) == 0)) {
    208 		l->l_md.md_flags |= MDLWP_VFPUSED;
    209 		pcb->pcb_vfp.vfp_fpscr =
    210 		    (VFP_FPSCR_DN | VFP_FPSCR_FZ);	/* Runfast */
    211 	}
    212 
    213 	/*
    214 	 * We know know the pcb has the saved copy.
    215 	 */
    216 	register_t * const regp = &frame->tf_r0 + regno;
    217 	if (insn & 0x00100000) {
    218 		*regp = pcb->pcb_vfp.vfp_fpscr;
    219 	} else {
    220 		pcb->pcb_vfp.vfp_fpscr = *regp;
    221 	}
    222 
    223 	vfp_fpscr_ev.ev_count++;
    224 
    225 	frame->tf_pc += INSN_SIZE;
    226 	return 0;
    227 }
    228 
    229 #ifndef FPU_VFP
    230 /*
    231  * If we don't want VFP support, we still need to handle emulating VFP FPSCR
    232  * instructions.
    233  */
    234 void
    235 vfp_attach(void)
    236 {
    237 	install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    238 }
    239 
    240 #else
    241 static bool
    242 vfp_patch_branch(uintptr_t code, uintptr_t func, uintptr_t newfunc)
    243 {
    244 	for (;; code += sizeof(uint32_t)) {
    245 		uint32_t insn = *(uint32_t *)code;
    246 		if ((insn & 0xffd08000) == 0xe8908000)	/* ldm ... { pc } */
    247 			return false;
    248 		if ((insn & 0xfffffff0) == 0xe12fff10)	/* bx rN */
    249 			return false;
    250 		if ((insn & 0xf1a0f000) == 0xe1a0f000)	/* mov pc, ... */
    251 			return false;
    252 		if ((insn >> 25) != 0x75)		/* not b/bl insn */
    253 			continue;
    254 		intptr_t imm26 = ((int32_t)insn << 8) >> 6;
    255 		if (code + imm26 + 8 == func) {
    256 			int32_t imm24 = (newfunc - (code + 8)) >> 2;
    257 			uint32_t new_insn = (insn & 0xff000000)
    258 			   | (imm24 & 0xffffff);
    259 			KASSERTMSG((uint32_t)((imm24 >> 24) + 1) <= 1, "%x",
    260 			    ((imm24 >> 24) + 1));
    261 			*(uint32_t *)code = new_insn;
    262 			cpu_idcache_wbinv_range(code, sizeof(uint32_t));
    263 			return true;
    264 		}
    265 	}
    266 }
    267 
    268 void
    269 vfp_attach(void)
    270 {
    271 	struct cpu_info * const ci = curcpu();
    272 	const char *model = NULL;
    273 	bool vfp_p = false;
    274 
    275 	if (CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid)
    276 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
    277 		const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
    278 		const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
    279 
    280 		/*
    281 		 * We first need to enable access to the coprocessors.
    282 		 */
    283 		uint32_t cpacr = armreg_cpacr_read();
    284 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
    285 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
    286 #if 0
    287 		if (CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
    288 			/*
    289 			 * Disable access to the upper 16 FP registers and NEON.
    290 			 */
    291 			cpacr |= CPACR_V7_D32DIS;
    292 			cpacr |= CPACR_V7_ASEDIS;
    293 		}
    294 #endif
    295 		armreg_cpacr_write(cpacr);
    296 
    297 		/*
    298 		 * If we could enable them, then they exist.
    299 		 */
    300 		cpacr = armreg_cpacr_read();
    301 		vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) != CPACR_NOACCESS
    302 		    || __SHIFTOUT(cpacr, cpacr_vfp) != CPACR_NOACCESS;
    303 	}
    304 
    305 	void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
    306 
    307 	undefined_test = 0;
    308 
    309 	const uint32_t fpsid = read_fpsid();
    310 
    311 	remove_coproc_handler(uh);
    312 
    313 	if (undefined_test != 0) {
    314 		aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
    315 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    316 		ci->ci_vfp_id = 0;
    317 		return;
    318 	}
    319 
    320 	ci->ci_vfp_id = fpsid;
    321 	switch (fpsid & ~ VFP_FPSID_REV_MSK) {
    322 	case FPU_VFP10_ARM10E:
    323 		model = "VFP10 R1";
    324 		break;
    325 	case FPU_VFP11_ARM11:
    326 		model = "VFP11";
    327 		break;
    328 	case FPU_VFP_CORTEXA5:
    329 	case FPU_VFP_CORTEXA7:
    330 	case FPU_VFP_CORTEXA8:
    331 	case FPU_VFP_CORTEXA9:
    332 		model = "NEON MPE (VFP 3.0+)";
    333 		break;
    334 	default:
    335 		aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %x\n",
    336 		    fpsid);
    337 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    338 		return;
    339 	}
    340 
    341 	if (fpsid != 0) {
    342 		aprint_normal("vfp%d at %s: %s\n",
    343 		    device_unit(curcpu()->ci_dev), device_xname(curcpu()->ci_dev),
    344 		    model);
    345 	}
    346 	evcnt_attach_dynamic(&vfpevent_use, EVCNT_TYPE_MISC, NULL,
    347 	    "VFP", "coproc use");
    348 	evcnt_attach_dynamic(&vfpevent_reuse, EVCNT_TYPE_MISC, NULL,
    349 	    "VFP", "coproc re-use");
    350 	install_coproc_handler(VFP_COPROC, vfp_handler);
    351 	install_coproc_handler(VFP_COPROC2, vfp_handler);
    352 
    353 	vfp_patch_branch((uintptr_t)pmap_copy_page_generic,
    354 	   (uintptr_t)bcopy_page, (uintptr_t)bcopy_page_vfp);
    355 	vfp_patch_branch((uintptr_t)pmap_zero_page_generic,
    356 	   (uintptr_t)bzero_page, (uintptr_t)bzero_page_vfp);
    357 }
    358 
    359 /* The real handler for VFP bounces.  */
    360 static int
    361 vfp_handler(u_int address, u_int insn, trapframe_t *frame,
    362     int fault_code)
    363 {
    364 	struct cpu_info * const ci = curcpu();
    365 
    366 	/* This shouldn't ever happen.  */
    367 	if (fault_code != FAULT_USER)
    368 		panic("VFP fault in non-user mode");
    369 
    370 	if (ci->ci_vfp_id == 0)
    371 		/* No VFP detected, just fault.  */
    372 		return 1;
    373 
    374 	/*
    375 	 * If we are just changing/fetching FPSCR, don't bother loading it.
    376 	 */
    377 	if (!vfp_fpscr_handler(address, insn, frame, fault_code))
    378 		return 0;
    379 
    380 	pcu_load(&arm_vfp_ops);
    381 
    382 	/* Need to restart the faulted instruction.  */
    383 //	frame->tf_pc -= INSN_SIZE;
    384 	return 0;
    385 }
    386 
    387 static void
    388 vfp_state_load(lwp_t *l, bool used)
    389 {
    390 	struct pcb * const pcb = lwp_getpcb(l);
    391 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    392 
    393 	/*
    394 	 * Instrument VFP usage -- if a process has not previously
    395 	 * used the VFP, mark it as having used VFP for the first time,
    396 	 * and count this event.
    397 	 *
    398 	 * If a process has used the VFP, count a "used VFP, and took
    399 	 * a trap to use it again" event.
    400 	 */
    401 	if (__predict_false((l->l_md.md_flags & MDLWP_VFPUSED) == 0)) {
    402 		vfpevent_use.ev_count++;
    403 		l->l_md.md_flags |= MDLWP_VFPUSED;
    404 		pcb->pcb_vfp.vfp_fpscr =
    405 		    (VFP_FPSCR_DN | VFP_FPSCR_FZ);	/* Runfast */
    406 	} else {
    407 		vfpevent_reuse.ev_count++;
    408 	}
    409 
    410 	if (fregs->vfp_fpexc & VFP_FPEXC_EN) {
    411 		/*
    412 		 * If we think the VFP is enabled, it must have be disabled by
    413 		 * vfp_state_release for another LWP so we can just restore
    414 		 * FPEXC and return since our VFP state is still loaded.
    415 		 */
    416 		write_fpexc(fregs->vfp_fpexc);
    417 		return;
    418 	}
    419 
    420 	/* Enable the VFP (so that we can write the registers).  */
    421 	uint32_t fpexc = read_fpexc();
    422 	KDASSERT((fpexc & VFP_FPEXC_EX) == 0);
    423 	write_fpexc(fpexc | VFP_FPEXC_EN);
    424 
    425 	load_vfpregs_lo(fregs->vfp_regs);
    426 #ifdef CPU_CORTEX
    427 #ifdef CPU_ARM11
    428 	switch (curcpu()->ci_vfp_id) {
    429 	case FPU_VFP_CORTEXA5:
    430 	case FPU_VFP_CORTEXA7:
    431 	case FPU_VFP_CORTEXA8:
    432 	case FPU_VFP_CORTEXA9:
    433 #endif
    434 		load_vfpregs_hi(fregs->vfp_regs);
    435 #ifdef CPU_ARM11
    436 		break;
    437 	}
    438 #endif
    439 #endif
    440 	write_fpscr(fregs->vfp_fpscr);
    441 
    442 	if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
    443 		struct cpu_info * const ci = curcpu();
    444 		/* Need to restore the exception handling state.  */
    445 		switch (ci->ci_vfp_id) {
    446 		case FPU_VFP10_ARM10E:
    447 		case FPU_VFP11_ARM11:
    448 		case FPU_VFP_CORTEXA5:
    449 		case FPU_VFP_CORTEXA7:
    450 		case FPU_VFP_CORTEXA8:
    451 		case FPU_VFP_CORTEXA9:
    452 			write_fpinst2(fregs->vfp_fpinst2);
    453 			write_fpinst(fregs->vfp_fpinst);
    454 			break;
    455 		default:
    456 			panic("%s: Unsupported VFP %#x",
    457 			    __func__, ci->ci_vfp_id);
    458 		}
    459 	}
    460 
    461 	/* Finally, restore the FPEXC but don't enable the VFP. */
    462 	fregs->vfp_fpexc |= VFP_FPEXC_EN;
    463 	write_fpexc(fregs->vfp_fpexc);
    464 }
    465 
    466 void
    467 vfp_state_save(lwp_t *l)
    468 {
    469 	struct pcb * const pcb = lwp_getpcb(l);
    470 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    471 
    472 	/*
    473 	 * If it's already disabled, then the state has been saved
    474 	 * (or discarded).
    475 	 */
    476 	if ((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0)
    477 		return;
    478 
    479 	/*
    480 	 * Enable the VFP (so we can read the registers).
    481 	 * Make sure the exception bit is cleared so that we can
    482 	 * safely dump the registers.
    483 	 */
    484 	uint32_t fpexc = read_fpexc();
    485 	write_fpexc((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
    486 
    487 	fregs->vfp_fpexc = fpexc;
    488 	if (fpexc & VFP_FPEXC_EX) {
    489 		struct cpu_info * const ci = curcpu();
    490 		/* Need to save the exception handling state */
    491 		switch (ci->ci_vfp_id) {
    492 		case FPU_VFP10_ARM10E:
    493 		case FPU_VFP11_ARM11:
    494 		case FPU_VFP_CORTEXA5:
    495 		case FPU_VFP_CORTEXA7:
    496 		case FPU_VFP_CORTEXA8:
    497 		case FPU_VFP_CORTEXA9:
    498 			fregs->vfp_fpinst = read_fpinst();
    499 			fregs->vfp_fpinst2 = read_fpinst2();
    500 			break;
    501 		default:
    502 			panic("%s: Unsupported VFP %#x",
    503 			    __func__, ci->ci_vfp_id);
    504 		}
    505 	}
    506 	fregs->vfp_fpscr = read_fpscr();
    507 	save_vfpregs_lo(fregs->vfp_regs);
    508 #ifdef CPU_CORTEX
    509 #ifdef CPU_ARM11
    510 	switch (curcpu()->ci_vfp_id) {
    511 	case FPU_VFP_CORTEXA5:
    512 	case FPU_VFP_CORTEXA7:
    513 	case FPU_VFP_CORTEXA8:
    514 	case FPU_VFP_CORTEXA9:
    515 #endif
    516 		save_vfpregs_hi(fregs->vfp_regs);
    517 #ifdef CPU_ARM11
    518 		break;
    519 	}
    520 #endif
    521 #endif
    522 
    523 	/* Disable the VFP.  */
    524 	write_fpexc(fpexc);
    525 }
    526 
    527 void
    528 vfp_state_release(lwp_t *l)
    529 {
    530 	struct pcb * const pcb = lwp_getpcb(l);
    531 
    532 	/*
    533 	 * Now mark the VFP as disabled (and our state has been already
    534 	 * saved or is being discarded).
    535 	 */
    536 	pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
    537 
    538 	/*
    539 	 * Turn off the FPU so the next time a VFP instruction is issued
    540 	 * an exception happens.  We don't know if this LWP's state was
    541 	 * loaded but if we turned off the FPU for some other LWP, when
    542 	 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
    543 	 * is still set so it just restroe fpexc and return since its
    544 	 * contents are still sitting in the VFP.
    545 	 */
    546 	write_fpexc(read_fpexc() & ~VFP_FPEXC_EN);
    547 }
    548 
    549 void
    550 vfp_savecontext(void)
    551 {
    552 	pcu_save(&arm_vfp_ops);
    553 }
    554 
    555 void
    556 vfp_discardcontext(void)
    557 {
    558 	pcu_discard(&arm_vfp_ops);
    559 }
    560 
    561 void
    562 vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
    563 {
    564 	if (l->l_md.md_flags & MDLWP_VFPUSED) {
    565 		const struct pcb * const pcb = lwp_getpcb(l);
    566 		pcu_save(&arm_vfp_ops);
    567 		mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
    568 		memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
    569 		    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    570 		*flagsp |= _UC_FPU|_UC_ARM_VFP;
    571 	}
    572 }
    573 
    574 void
    575 vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
    576 {
    577 	pcu_discard(&arm_vfp_ops);
    578 	struct pcb * const pcb = lwp_getpcb(l);
    579 	l->l_md.md_flags |= MDLWP_VFPUSED;
    580 	pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
    581 	memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
    582 	    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    583 }
    584 
    585 #endif /* FPU_VFP */
    586