vfp_init.c revision 1.23 1 /* $NetBSD: vfp_init.c,v 1.23 2013/08/18 06:28:18 matt Exp $ */
2
3 /*
4 * Copyright (c) 2008 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 * products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/systm.h>
35 #include <sys/device.h>
36 #include <sys/proc.h>
37 #include <sys/cpu.h>
38
39 #include <arm/locore.h>
40 #include <arm/pcb.h>
41 #include <arm/undefined.h>
42 #include <arm/vfpreg.h>
43 #include <arm/mcontext.h>
44
45 #include <uvm/uvm_extern.h> /* for pmap.h */
46
47 extern int cpu_media_and_vfp_features[];
48 extern int cpu_neon_present;
49
50 #ifdef FPU_VFP
51
52 /* FLDMD <X>, {d0-d15} */
53 static inline void
54 load_vfpregs_lo(const uint64_t *p)
55 {
56 /* vldmia rN, {d0-d15} */
57 __asm __volatile("ldc\tp11, c0, [%0], {32}" :: "r" (p) : "memory");
58 }
59
60 /* FSTMD <X>, {d0-d15} */
61 static inline void
62 save_vfpregs_lo(uint64_t *p)
63 {
64 __asm __volatile("stc\tp11, c0, [%0], {32}" :: "r" (p) : "memory");
65 }
66
67 #ifdef CPU_CORTEX
68 /* FLDMD <X>, {d16-d31} */
69 static inline void
70 load_vfpregs_hi(const uint64_t *p)
71 {
72 __asm __volatile("ldcl\tp11, c0, [%0], {32}" :: "r" (&p[16]) : "memory");
73 }
74
75 /* FLDMD <X>, {d16-d31} */
76 static inline void
77 save_vfpregs_hi(uint64_t *p)
78 {
79 __asm __volatile("stcl\tp11, c0, [%0], {32}" :: "r" (&p[16]) : "memory");
80 }
81 #endif
82
83 static inline void
84 load_vfpregs(const struct vfpreg *fregs)
85 {
86 load_vfpregs_lo(fregs->vfp_regs);
87 #ifdef CPU_CORTEX
88 #ifdef CPU_ARM11
89 switch (curcpu()->ci_vfp_id) {
90 case FPU_VFP_CORTEXA5:
91 case FPU_VFP_CORTEXA7:
92 case FPU_VFP_CORTEXA8:
93 case FPU_VFP_CORTEXA9:
94 case FPU_VFP_CORTEXA15:
95 #endif
96 load_vfpregs_hi(fregs->vfp_regs);
97 #ifdef CPU_ARM11
98 break;
99 }
100 #endif
101 #endif
102 }
103
104 static inline void
105 save_vfpregs(struct vfpreg *fregs)
106 {
107 save_vfpregs_lo(fregs->vfp_regs);
108 #ifdef CPU_CORTEX
109 #ifdef CPU_ARM11
110 switch (curcpu()->ci_vfp_id) {
111 case FPU_VFP_CORTEXA5:
112 case FPU_VFP_CORTEXA7:
113 case FPU_VFP_CORTEXA8:
114 case FPU_VFP_CORTEXA9:
115 case FPU_VFP_CORTEXA15:
116 #endif
117 save_vfpregs_hi(fregs->vfp_regs);
118 #ifdef CPU_ARM11
119 break;
120 }
121 #endif
122 #endif
123 }
124
125 /* The real handler for VFP bounces. */
126 static int vfp_handler(u_int, u_int, trapframe_t *, int);
127 #ifdef CPU_CORTEX
128 static int neon_handler(u_int, u_int, trapframe_t *, int);
129 #endif
130
131 static void vfp_state_load(lwp_t *, u_int);
132 static void vfp_state_save(lwp_t *, u_int);
133 static void vfp_state_release(lwp_t *, u_int);
134
135 const pcu_ops_t arm_vfp_ops = {
136 .pcu_id = PCU_FPU,
137 .pcu_state_save = vfp_state_save,
138 .pcu_state_load = vfp_state_load,
139 .pcu_state_release = vfp_state_release,
140 };
141
142 struct evcnt vfpevent_use;
143 struct evcnt vfpevent_reuse;
144 struct evcnt vfpevent_fpe;
145
146 /*
147 * Used to test for a VFP. The following function is installed as a coproc10
148 * handler on the undefined instruction vector and then we issue a VFP
149 * instruction. If undefined_test is non zero then the VFP did not handle
150 * the instruction so must be absent, or disabled.
151 */
152
153 static int undefined_test;
154
155 static int
156 vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
157 {
158
159 frame->tf_pc += INSN_SIZE;
160 ++undefined_test;
161 return 0;
162 }
163
164 #endif /* FPU_VFP */
165
166 struct evcnt vfp_fpscr_ev =
167 EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "VFP", "FPSCR traps");
168 EVCNT_ATTACH_STATIC(vfp_fpscr_ev);
169
170 static int
171 vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
172 {
173 struct lwp * const l = curlwp;
174 const u_int regno = (insn >> 12) & 0xf;
175 /*
176 * Only match move to/from the FPSCR register and we
177 * can't be using the SP,LR,PC as a source.
178 */
179 if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
180 return 1;
181
182 struct pcb * const pcb = lwp_getpcb(l);
183
184 #ifdef FPU_VFP
185 /*
186 * If FPU is valid somewhere, let's just reenable VFP and
187 * retry the instruction (only safe thing to do since the
188 * pcb has a stale copy).
189 */
190 if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
191 return 1;
192 #endif
193
194 if (__predict_false((l->l_md.md_flags & MDLWP_VFPUSED) == 0)) {
195 l->l_md.md_flags |= MDLWP_VFPUSED;
196 pcb->pcb_vfp.vfp_fpscr =
197 (VFP_FPSCR_DN | VFP_FPSCR_FZ); /* Runfast */
198 }
199
200 /*
201 * We know know the pcb has the saved copy.
202 */
203 register_t * const regp = &frame->tf_r0 + regno;
204 if (insn & 0x00100000) {
205 *regp = pcb->pcb_vfp.vfp_fpscr;
206 } else {
207 register_t tmp = *regp;
208 if (!(cpu_media_and_vfp_features[0] & ARM_MVFR0_EXCEPT_MASK))
209 tmp &= ~VFP_FPSCR_ESUM;
210 pcb->pcb_vfp.vfp_fpscr = tmp;
211 }
212
213 vfp_fpscr_ev.ev_count++;
214
215 frame->tf_pc += INSN_SIZE;
216 return 0;
217 }
218
219 #ifndef FPU_VFP
220 /*
221 * If we don't want VFP support, we still need to handle emulating VFP FPSCR
222 * instructions.
223 */
224 void
225 vfp_attach(void)
226 {
227 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
228 }
229
230 #else
231 #if 0
232 static bool
233 vfp_patch_branch(uintptr_t code, uintptr_t func, uintptr_t newfunc)
234 {
235 for (;; code += sizeof(uint32_t)) {
236 uint32_t insn = *(uint32_t *)code;
237 if ((insn & 0xffd08000) == 0xe8908000) /* ldm ... { pc } */
238 return false;
239 if ((insn & 0xfffffff0) == 0xe12fff10) /* bx rN */
240 return false;
241 if ((insn & 0xf1a0f000) == 0xe1a0f000) /* mov pc, ... */
242 return false;
243 if ((insn >> 25) != 0x75) /* not b/bl insn */
244 continue;
245 intptr_t imm26 = ((int32_t)insn << 8) >> 6;
246 if (code + imm26 + 8 == func) {
247 int32_t imm24 = (newfunc - (code + 8)) >> 2;
248 uint32_t new_insn = (insn & 0xff000000)
249 | (imm24 & 0xffffff);
250 KASSERTMSG((uint32_t)((imm24 >> 24) + 1) <= 1, "%x",
251 ((imm24 >> 24) + 1));
252 *(uint32_t *)code = new_insn;
253 cpu_idcache_wbinv_range(code, sizeof(uint32_t));
254 return true;
255 }
256 }
257 }
258 #endif
259
260 void
261 vfp_attach(void)
262 {
263 struct cpu_info * const ci = curcpu();
264 const char *model = NULL;
265 bool vfp_p = false;
266
267 if (CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid)
268 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
269 const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
270 const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
271
272 /*
273 * We first need to enable access to the coprocessors.
274 */
275 uint32_t cpacr = armreg_cpacr_read();
276 cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
277 cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
278 #if 0
279 if (CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
280 /*
281 * Disable access to the upper 16 FP registers and NEON.
282 */
283 cpacr |= CPACR_V7_D32DIS;
284 cpacr |= CPACR_V7_ASEDIS;
285 }
286 #endif
287 armreg_cpacr_write(cpacr);
288
289 /*
290 * If we could enable them, then they exist.
291 */
292 cpacr = armreg_cpacr_read();
293 vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) != CPACR_NOACCESS
294 || __SHIFTOUT(cpacr, cpacr_vfp) != CPACR_NOACCESS;
295 }
296
297 void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
298
299 undefined_test = 0;
300
301 const uint32_t fpsid = armreg_fpsid_read();
302
303 remove_coproc_handler(uh);
304
305 if (undefined_test != 0) {
306 aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
307 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
308 ci->ci_vfp_id = 0;
309 return;
310 }
311
312 ci->ci_vfp_id = fpsid;
313 switch (fpsid & ~ VFP_FPSID_REV_MSK) {
314 case FPU_VFP10_ARM10E:
315 model = "VFP10 R1";
316 break;
317 case FPU_VFP11_ARM11:
318 model = "VFP11";
319 break;
320 case FPU_VFP_CORTEXA5:
321 case FPU_VFP_CORTEXA7:
322 case FPU_VFP_CORTEXA8:
323 case FPU_VFP_CORTEXA9:
324 case FPU_VFP_CORTEXA15:
325 model = "NEON MPE (VFP 3.0+)";
326 cpu_neon_present = 1;
327 break;
328 default:
329 aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %x\n",
330 fpsid);
331 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
332 return;
333 }
334
335 cpu_fpu_present = 1;
336 cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
337 cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
338 if (fpsid != 0) {
339 aprint_normal("vfp%d at %s: %s\n",
340 device_unit(curcpu()->ci_dev),
341 device_xname(curcpu()->ci_dev),
342 model);
343 aprint_verbose("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
344 device_unit(curcpu()->ci_dev),
345 cpu_media_and_vfp_features[0],
346 cpu_media_and_vfp_features[1]);
347 }
348 evcnt_attach_dynamic(&vfpevent_use, EVCNT_TYPE_MISC, NULL,
349 "VFP", "coproc use");
350 evcnt_attach_dynamic(&vfpevent_reuse, EVCNT_TYPE_MISC, NULL,
351 "VFP", "coproc re-use");
352 evcnt_attach_dynamic(&vfpevent_fpe, EVCNT_TYPE_TRAP, NULL,
353 "VFP", "coproc fault");
354 install_coproc_handler(VFP_COPROC, vfp_handler);
355 install_coproc_handler(VFP_COPROC2, vfp_handler);
356 #ifdef CPU_CORTEX
357 install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
358 #endif
359
360 #if 0
361 vfp_patch_branch((uintptr_t)pmap_copy_page_generic,
362 (uintptr_t)bcopy_page, (uintptr_t)bcopy_page_vfp);
363 vfp_patch_branch((uintptr_t)pmap_zero_page_generic,
364 (uintptr_t)bzero_page, (uintptr_t)bzero_page_vfp);
365 #endif
366 }
367
368 /* The real handler for VFP bounces. */
369 static int
370 vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
371 {
372 struct cpu_info * const ci = curcpu();
373
374 /* This shouldn't ever happen. */
375 if (fault_code != FAULT_USER)
376 panic("VFP fault at %#x in non-user mode", frame->tf_pc);
377
378 if (ci->ci_vfp_id == 0)
379 /* No VFP detected, just fault. */
380 return 1;
381
382 uint32_t fpexc = armreg_fpexc_read();
383 if (fpexc & VFP_FPEXC_EX) {
384 ksiginfo_t ksi;
385 KASSERT(fpexc & VFP_FPEXC_EN);
386
387 vfpevent_fpe.ev_count++;
388
389 pcu_save(&arm_vfp_ops);
390
391 /*
392 * Need the clear the exception condition so any signal
393 * can run.
394 */
395 armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXE_FSUM));
396
397 KSI_INIT_TRAP(&ksi);
398 ksi.ksi_signo = SIGFPE;
399 if (fpexc & VFP_FPEXC_IXF)
400 ksi.ksi_code = FPE_FLTRES;
401 else if (fpexc & VFP_FPEXC_UFF)
402 ksi.ksi_code = FPE_FLTUND;
403 else if (fpexc & VFP_FPEXC_OFF)
404 ksi.ksi_code = FPE_FLTOVF;
405 else if (fpexc & VFP_FPEXC_DZF)
406 ksi.ksi_code = FPE_FLTDIV;
407 else if (fpexc & VFP_FPEXC_IOF)
408 ksi.ksi_code = FPE_FLTINV;
409 ksi.ksi_addr = (uint32_t *)address;
410 ksi.ksi_trap = 0;
411 trapsignal(curlwp, &ksi);
412 return 0;
413 }
414
415 /*
416 * If we are just changing/fetching FPSCR, don't bother loading it.
417 */
418 if (!vfp_fpscr_handler(address, insn, frame, fault_code))
419 return 0;
420
421 pcu_load(&arm_vfp_ops);
422
423 /* Need to restart the faulted instruction. */
424 // frame->tf_pc -= INSN_SIZE;
425 return 0;
426 }
427
428 #ifdef CPU_CORTEX
429 /* The real handler for NEON bounces. */
430 static int
431 neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
432 {
433 struct cpu_info * const ci = curcpu();
434
435 if (ci->ci_vfp_id == 0)
436 /* No VFP detected, just fault. */
437 return 1;
438
439 if ((insn & 0xfe000000) != 0xf2000000
440 && (insn & 0xfe000000) != 0xf4000000)
441 /* Not NEON instruction, just fault. */
442 return 1;
443
444 /* This shouldn't ever happen. */
445 if (fault_code != FAULT_USER)
446 panic("NEON fault in non-user mode");
447
448 pcu_load(&arm_vfp_ops);
449
450 /* Need to restart the faulted instruction. */
451 // frame->tf_pc -= INSN_SIZE;
452 return 0;
453 }
454 #endif
455
456 static void
457 vfp_state_load(lwp_t *l, u_int flags)
458 {
459 struct pcb * const pcb = lwp_getpcb(l);
460
461 KASSERT(flags & PCU_ENABLE);
462
463 if (flags & PCU_KERNEL) {
464 if ((flags & PCU_LOADED) == 0) {
465 pcb->pcb_kernel_vfp.vfp_fpexc = pcb->pcb_vfp.vfp_fpexc;
466 }
467 pcb->pcb_vfp.vfp_fpexc = VFP_FPEXC_EN;
468 armreg_fpexc_write(pcb->pcb_vfp.vfp_fpexc);
469 /*
470 * Load the kernel registers (just the first 16) if they've
471 * been used..
472 */
473 if (flags & PCU_LOADED) {
474 load_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
475 }
476 return;
477 }
478 struct vfpreg * const fregs = &pcb->pcb_vfp;
479
480 /*
481 * Instrument VFP usage -- if a process has not previously
482 * used the VFP, mark it as having used VFP for the first time,
483 * and count this event.
484 *
485 * If a process has used the VFP, count a "used VFP, and took
486 * a trap to use it again" event.
487 */
488 if (__predict_false((l->l_md.md_flags & MDLWP_VFPUSED) == 0)) {
489 vfpevent_use.ev_count++;
490 l->l_md.md_flags |= MDLWP_VFPUSED;
491 pcb->pcb_vfp.vfp_fpscr = /* Runfast */
492 (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
493 } else {
494 vfpevent_reuse.ev_count++;
495 }
496
497 if (fregs->vfp_fpexc & VFP_FPEXC_EN) {
498 /*
499 * If we think the VFP is enabled, it must have be disabled by
500 * vfp_state_release for another LWP so we can just restore
501 * FPEXC and return since our VFP state is still loaded.
502 */
503 armreg_fpexc_write(fregs->vfp_fpexc);
504 return;
505 }
506
507 /* Load and Enable the VFP (so that we can write the registers). */
508 if (flags & PCU_RELOAD) {
509 uint32_t fpexc = armreg_fpexc_read();
510 KDASSERT((fpexc & VFP_FPEXC_EX) == 0);
511 armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
512
513 load_vfpregs(fregs);
514 armreg_fpscr_write(fregs->vfp_fpscr);
515
516 if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
517 /* Need to restore the exception handling state. */
518 armreg_fpinst2_write(fregs->vfp_fpinst2);
519 if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
520 armreg_fpinst_write(fregs->vfp_fpinst);
521 }
522 }
523
524 /* Finally, restore the FPEXC but don't enable the VFP. */
525 fregs->vfp_fpexc |= VFP_FPEXC_EN;
526 armreg_fpexc_write(fregs->vfp_fpexc);
527 }
528
529 void
530 vfp_state_save(lwp_t *l, u_int flags)
531 {
532 struct pcb * const pcb = lwp_getpcb(l);
533 uint32_t fpexc = armreg_fpexc_read();
534 armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
535
536 if (flags & PCU_KERNEL) {
537 /*
538 * Save the kernel set of VFP registers.
539 * (just the first 16).
540 */
541 save_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
542 return;
543 }
544
545 struct vfpreg * const fregs = &pcb->pcb_vfp;
546
547 /*
548 * Enable the VFP (so we can read the registers).
549 * Make sure the exception bit is cleared so that we can
550 * safely dump the registers.
551 */
552 fregs->vfp_fpexc = fpexc;
553 if (fpexc & VFP_FPEXC_EX) {
554 /* Need to save the exception handling state */
555 fregs->vfp_fpinst = armreg_fpinst_read();
556 if (fpexc & VFP_FPEXC_FP2V)
557 fregs->vfp_fpinst2 = armreg_fpinst2_read();
558 }
559 fregs->vfp_fpscr = armreg_fpscr_read();
560 save_vfpregs(fregs);
561
562 /* Disable the VFP. */
563 armreg_fpexc_write(fpexc);
564 }
565
566 void
567 vfp_state_release(lwp_t *l, u_int flags)
568 {
569 struct pcb * const pcb = lwp_getpcb(l);
570
571 if (flags & PCU_KERNEL) {
572 /*
573 * Restore the FPEXC since we borrowed that field.
574 */
575 pcb->pcb_vfp.vfp_fpexc = pcb->pcb_kernel_vfp.vfp_fpexc;
576 } else {
577 /*
578 * Now mark the VFP as disabled (and our state
579 * has been already saved or is being discarded).
580 */
581 pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
582 }
583
584 /*
585 * Turn off the FPU so the next time a VFP instruction is issued
586 * an exception happens. We don't know if this LWP's state was
587 * loaded but if we turned off the FPU for some other LWP, when
588 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
589 * is still set so it just restore fpexc and return since its
590 * contents are still sitting in the VFP.
591 */
592 armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
593 }
594
595 void
596 vfp_savecontext(void)
597 {
598 pcu_save(&arm_vfp_ops);
599 }
600
601 void
602 vfp_discardcontext(void)
603 {
604 pcu_discard(&arm_vfp_ops);
605 }
606
607 void
608 vfp_kernel_acquire(void)
609 {
610 if (__predict_false(cpu_intr_p())) {
611 armreg_fpexc_write(VFP_FPEXC_EN);
612 if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
613 lwp_t * const l = curlwp;
614 struct pcb * const pcb = lwp_getpcb(l);
615 KASSERT((l->l_md.md_flags & MDLWP_VFPINTR) == 0);
616 l->l_md.md_flags |= MDLWP_VFPINTR;
617 save_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
618 }
619 } else {
620 pcu_kernel_acquire(&arm_vfp_ops);
621 }
622 }
623
624 void
625 vfp_kernel_release(void)
626 {
627 if (__predict_false(cpu_intr_p())) {
628 uint32_t fpexc = 0;
629 if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
630 lwp_t * const l = curlwp;
631 struct pcb * const pcb = lwp_getpcb(l);
632 KASSERT(l->l_md.md_flags & MDLWP_VFPINTR);
633 load_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
634 l->l_md.md_flags &= ~MDLWP_VFPINTR;
635 fpexc = pcb->pcb_vfp.vfp_fpexc;
636 }
637 armreg_fpexc_write(fpexc);
638 } else {
639 pcu_kernel_release(&arm_vfp_ops);
640 }
641 }
642
643 void
644 vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
645 {
646 if (l->l_md.md_flags & MDLWP_VFPUSED) {
647 const struct pcb * const pcb = lwp_getpcb(l);
648 pcu_save(&arm_vfp_ops);
649 mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
650 memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
651 sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
652 *flagsp |= _UC_FPU|_UC_ARM_VFP;
653 }
654 }
655
656 void
657 vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
658 {
659 pcu_discard(&arm_vfp_ops);
660 struct pcb * const pcb = lwp_getpcb(l);
661 l->l_md.md_flags |= MDLWP_VFPUSED;
662 pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
663 memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
664 sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
665 }
666
667 #endif /* FPU_VFP */
668