vfp_init.c revision 1.25 1 /* $NetBSD: vfp_init.c,v 1.25 2013/08/23 05:22:01 matt Exp $ */
2
3 /*
4 * Copyright (c) 2008 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 * products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/systm.h>
35 #include <sys/device.h>
36 #include <sys/proc.h>
37 #include <sys/cpu.h>
38
39 #include <arm/locore.h>
40 #include <arm/pcb.h>
41 #include <arm/undefined.h>
42 #include <arm/vfpreg.h>
43 #include <arm/mcontext.h>
44
45 #include <uvm/uvm_extern.h> /* for pmap.h */
46
47 extern int cpu_media_and_vfp_features[];
48 extern int cpu_neon_present;
49
50 #ifdef FPU_VFP
51
52 /* FLDMD <X>, {d0-d15} */
53 static inline void
54 load_vfpregs_lo(const uint64_t *p)
55 {
56 /* vldmia rN, {d0-d15} */
57 __asm __volatile("ldc\tp11, c0, [%0], {32}" :: "r" (p) : "memory");
58 }
59
60 /* FSTMD <X>, {d0-d15} */
61 static inline void
62 save_vfpregs_lo(uint64_t *p)
63 {
64 __asm __volatile("stc\tp11, c0, [%0], {32}" :: "r" (p) : "memory");
65 }
66
67 #ifdef CPU_CORTEX
68 /* FLDMD <X>, {d16-d31} */
69 static inline void
70 load_vfpregs_hi(const uint64_t *p)
71 {
72 __asm __volatile("ldcl\tp11, c0, [%0], {32}" :: "r" (&p[16]) : "memory");
73 }
74
75 /* FLDMD <X>, {d16-d31} */
76 static inline void
77 save_vfpregs_hi(uint64_t *p)
78 {
79 __asm __volatile("stcl\tp11, c0, [%0], {32}" :: "r" (&p[16]) : "memory");
80 }
81 #endif
82
83 static inline void
84 load_vfpregs(const struct vfpreg *fregs)
85 {
86 load_vfpregs_lo(fregs->vfp_regs);
87 #ifdef CPU_CORTEX
88 #ifdef CPU_ARM11
89 switch (curcpu()->ci_vfp_id) {
90 case FPU_VFP_CORTEXA5:
91 case FPU_VFP_CORTEXA7:
92 case FPU_VFP_CORTEXA8:
93 case FPU_VFP_CORTEXA9:
94 case FPU_VFP_CORTEXA15:
95 #endif
96 load_vfpregs_hi(fregs->vfp_regs);
97 #ifdef CPU_ARM11
98 break;
99 }
100 #endif
101 #endif
102 }
103
104 static inline void
105 save_vfpregs(struct vfpreg *fregs)
106 {
107 save_vfpregs_lo(fregs->vfp_regs);
108 #ifdef CPU_CORTEX
109 #ifdef CPU_ARM11
110 switch (curcpu()->ci_vfp_id) {
111 case FPU_VFP_CORTEXA5:
112 case FPU_VFP_CORTEXA7:
113 case FPU_VFP_CORTEXA8:
114 case FPU_VFP_CORTEXA9:
115 case FPU_VFP_CORTEXA15:
116 #endif
117 save_vfpregs_hi(fregs->vfp_regs);
118 #ifdef CPU_ARM11
119 break;
120 }
121 #endif
122 #endif
123 }
124
125 /* The real handler for VFP bounces. */
126 static int vfp_handler(u_int, u_int, trapframe_t *, int);
127 #ifdef CPU_CORTEX
128 static int neon_handler(u_int, u_int, trapframe_t *, int);
129 #endif
130
131 static void vfp_state_load(lwp_t *, u_int);
132 static void vfp_state_save(lwp_t *, u_int);
133 static void vfp_state_release(lwp_t *, u_int);
134
135 const pcu_ops_t arm_vfp_ops = {
136 .pcu_id = PCU_FPU,
137 .pcu_state_save = vfp_state_save,
138 .pcu_state_load = vfp_state_load,
139 .pcu_state_release = vfp_state_release,
140 };
141
142 struct evcnt vfpevent_use;
143 struct evcnt vfpevent_reuse;
144 struct evcnt vfpevent_fpe;
145
146 /*
147 * Used to test for a VFP. The following function is installed as a coproc10
148 * handler on the undefined instruction vector and then we issue a VFP
149 * instruction. If undefined_test is non zero then the VFP did not handle
150 * the instruction so must be absent, or disabled.
151 */
152
153 static int undefined_test;
154
155 static int
156 vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
157 {
158
159 frame->tf_pc += INSN_SIZE;
160 ++undefined_test;
161 return 0;
162 }
163
164 #endif /* FPU_VFP */
165
166 struct evcnt vfp_fpscr_ev =
167 EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "VFP", "FPSCR traps");
168 EVCNT_ATTACH_STATIC(vfp_fpscr_ev);
169
170 static int
171 vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
172 {
173 struct lwp * const l = curlwp;
174 const u_int regno = (insn >> 12) & 0xf;
175 /*
176 * Only match move to/from the FPSCR register and we
177 * can't be using the SP,LR,PC as a source.
178 */
179 if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
180 return 1;
181
182 struct pcb * const pcb = lwp_getpcb(l);
183
184 #ifdef FPU_VFP
185 /*
186 * If FPU is valid somewhere, let's just reenable VFP and
187 * retry the instruction (only safe thing to do since the
188 * pcb has a stale copy).
189 */
190 if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
191 return 1;
192 #endif
193
194 if (__predict_false(!vfp_used_p())) {
195 pcb->pcb_vfp.vfp_fpscr =
196 (VFP_FPSCR_DN | VFP_FPSCR_FZ); /* Runfast */
197 }
198
199 /*
200 * We know know the pcb has the saved copy.
201 */
202 register_t * const regp = &frame->tf_r0 + regno;
203 if (insn & 0x00100000) {
204 *regp = pcb->pcb_vfp.vfp_fpscr;
205 } else {
206 register_t tmp = *regp;
207 if (!(cpu_media_and_vfp_features[0] & ARM_MVFR0_EXCEPT_MASK))
208 tmp &= ~VFP_FPSCR_ESUM;
209 pcb->pcb_vfp.vfp_fpscr = tmp;
210 }
211
212 vfp_fpscr_ev.ev_count++;
213
214 frame->tf_pc += INSN_SIZE;
215 return 0;
216 }
217
218 #ifndef FPU_VFP
219 /*
220 * If we don't want VFP support, we still need to handle emulating VFP FPSCR
221 * instructions.
222 */
223 void
224 vfp_attach(void)
225 {
226 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
227 }
228
229 #else
230 #if 0
231 static bool
232 vfp_patch_branch(uintptr_t code, uintptr_t func, uintptr_t newfunc)
233 {
234 for (;; code += sizeof(uint32_t)) {
235 uint32_t insn = *(uint32_t *)code;
236 if ((insn & 0xffd08000) == 0xe8908000) /* ldm ... { pc } */
237 return false;
238 if ((insn & 0xfffffff0) == 0xe12fff10) /* bx rN */
239 return false;
240 if ((insn & 0xf1a0f000) == 0xe1a0f000) /* mov pc, ... */
241 return false;
242 if ((insn >> 25) != 0x75) /* not b/bl insn */
243 continue;
244 intptr_t imm26 = ((int32_t)insn << 8) >> 6;
245 if (code + imm26 + 8 == func) {
246 int32_t imm24 = (newfunc - (code + 8)) >> 2;
247 uint32_t new_insn = (insn & 0xff000000)
248 | (imm24 & 0xffffff);
249 KASSERTMSG((uint32_t)((imm24 >> 24) + 1) <= 1, "%x",
250 ((imm24 >> 24) + 1));
251 *(uint32_t *)code = new_insn;
252 cpu_idcache_wbinv_range(code, sizeof(uint32_t));
253 return true;
254 }
255 }
256 }
257 #endif
258
259 void
260 vfp_attach(void)
261 {
262 struct cpu_info * const ci = curcpu();
263 const char *model = NULL;
264 bool vfp_p = false;
265
266 if (CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid)
267 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
268 const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
269 const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
270
271 /*
272 * We first need to enable access to the coprocessors.
273 */
274 uint32_t cpacr = armreg_cpacr_read();
275 cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
276 cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
277 #if 0
278 if (CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
279 /*
280 * Disable access to the upper 16 FP registers and NEON.
281 */
282 cpacr |= CPACR_V7_D32DIS;
283 cpacr |= CPACR_V7_ASEDIS;
284 }
285 #endif
286 armreg_cpacr_write(cpacr);
287
288 /*
289 * If we could enable them, then they exist.
290 */
291 cpacr = armreg_cpacr_read();
292 vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) != CPACR_NOACCESS
293 || __SHIFTOUT(cpacr, cpacr_vfp) != CPACR_NOACCESS;
294 }
295
296 void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
297
298 undefined_test = 0;
299
300 const uint32_t fpsid = armreg_fpsid_read();
301
302 remove_coproc_handler(uh);
303
304 if (undefined_test != 0) {
305 aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
306 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
307 ci->ci_vfp_id = 0;
308 return;
309 }
310
311 ci->ci_vfp_id = fpsid;
312 switch (fpsid & ~ VFP_FPSID_REV_MSK) {
313 case FPU_VFP10_ARM10E:
314 model = "VFP10 R1";
315 break;
316 case FPU_VFP11_ARM11:
317 model = "VFP11";
318 break;
319 case FPU_VFP_CORTEXA5:
320 case FPU_VFP_CORTEXA7:
321 case FPU_VFP_CORTEXA8:
322 case FPU_VFP_CORTEXA9:
323 case FPU_VFP_CORTEXA15:
324 model = "NEON MPE (VFP 3.0+)";
325 cpu_neon_present = 1;
326 break;
327 default:
328 aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %x\n",
329 fpsid);
330 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
331 return;
332 }
333
334 cpu_fpu_present = 1;
335 cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
336 cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
337 if (fpsid != 0) {
338 aprint_normal("vfp%d at %s: %s\n",
339 device_unit(curcpu()->ci_dev),
340 device_xname(curcpu()->ci_dev),
341 model);
342 aprint_verbose("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
343 device_unit(curcpu()->ci_dev),
344 cpu_media_and_vfp_features[0],
345 cpu_media_and_vfp_features[1]);
346 }
347 evcnt_attach_dynamic(&vfpevent_use, EVCNT_TYPE_MISC, NULL,
348 "VFP", "coproc use");
349 evcnt_attach_dynamic(&vfpevent_reuse, EVCNT_TYPE_MISC, NULL,
350 "VFP", "coproc re-use");
351 evcnt_attach_dynamic(&vfpevent_fpe, EVCNT_TYPE_TRAP, NULL,
352 "VFP", "coproc fault");
353 install_coproc_handler(VFP_COPROC, vfp_handler);
354 install_coproc_handler(VFP_COPROC2, vfp_handler);
355 #ifdef CPU_CORTEX
356 install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
357 #endif
358
359 #if 0
360 vfp_patch_branch((uintptr_t)pmap_copy_page_generic,
361 (uintptr_t)bcopy_page, (uintptr_t)bcopy_page_vfp);
362 vfp_patch_branch((uintptr_t)pmap_zero_page_generic,
363 (uintptr_t)bzero_page, (uintptr_t)bzero_page_vfp);
364 #endif
365 }
366
367 /* The real handler for VFP bounces. */
368 static int
369 vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
370 {
371 struct cpu_info * const ci = curcpu();
372
373 /* This shouldn't ever happen. */
374 if (fault_code != FAULT_USER)
375 panic("VFP fault at %#x in non-user mode", frame->tf_pc);
376
377 if (ci->ci_vfp_id == 0)
378 /* No VFP detected, just fault. */
379 return 1;
380
381 uint32_t fpexc = armreg_fpexc_read();
382 if (fpexc & VFP_FPEXC_EX) {
383 ksiginfo_t ksi;
384 KASSERT(fpexc & VFP_FPEXC_EN);
385
386 vfpevent_fpe.ev_count++;
387
388 pcu_save(&arm_vfp_ops);
389
390 /*
391 * Need the clear the exception condition so any signal
392 * can run.
393 */
394 armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXE_FSUM));
395
396 KSI_INIT_TRAP(&ksi);
397 ksi.ksi_signo = SIGFPE;
398 if (fpexc & VFP_FPEXC_IXF)
399 ksi.ksi_code = FPE_FLTRES;
400 else if (fpexc & VFP_FPEXC_UFF)
401 ksi.ksi_code = FPE_FLTUND;
402 else if (fpexc & VFP_FPEXC_OFF)
403 ksi.ksi_code = FPE_FLTOVF;
404 else if (fpexc & VFP_FPEXC_DZF)
405 ksi.ksi_code = FPE_FLTDIV;
406 else if (fpexc & VFP_FPEXC_IOF)
407 ksi.ksi_code = FPE_FLTINV;
408 ksi.ksi_addr = (uint32_t *)address;
409 ksi.ksi_trap = 0;
410 trapsignal(curlwp, &ksi);
411 return 0;
412 }
413
414 /*
415 * If we are just changing/fetching FPSCR, don't bother loading it.
416 */
417 if (!vfp_fpscr_handler(address, insn, frame, fault_code))
418 return 0;
419
420 pcu_load(&arm_vfp_ops);
421
422 /* Need to restart the faulted instruction. */
423 // frame->tf_pc -= INSN_SIZE;
424 return 0;
425 }
426
427 #ifdef CPU_CORTEX
428 /* The real handler for NEON bounces. */
429 static int
430 neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
431 {
432 struct cpu_info * const ci = curcpu();
433
434 if (ci->ci_vfp_id == 0)
435 /* No VFP detected, just fault. */
436 return 1;
437
438 if ((insn & 0xfe000000) != 0xf2000000
439 && (insn & 0xfe000000) != 0xf4000000)
440 /* Not NEON instruction, just fault. */
441 return 1;
442
443 /* This shouldn't ever happen. */
444 if (fault_code != FAULT_USER)
445 panic("NEON fault in non-user mode");
446
447 pcu_load(&arm_vfp_ops);
448
449 /* Need to restart the faulted instruction. */
450 // frame->tf_pc -= INSN_SIZE;
451 return 0;
452 }
453 #endif
454
455 static void
456 vfp_state_load(lwp_t *l, u_int flags)
457 {
458 struct pcb * const pcb = lwp_getpcb(l);
459
460 KASSERT(flags & PCU_ENABLE);
461
462 if (flags & PCU_KERNEL) {
463 if ((flags & PCU_LOADED) == 0) {
464 pcb->pcb_kernel_vfp.vfp_fpexc = pcb->pcb_vfp.vfp_fpexc;
465 }
466 pcb->pcb_vfp.vfp_fpexc = VFP_FPEXC_EN;
467 armreg_fpexc_write(pcb->pcb_vfp.vfp_fpexc);
468 /*
469 * Load the kernel registers (just the first 16) if they've
470 * been used..
471 */
472 if (flags & PCU_LOADED) {
473 load_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
474 }
475 return;
476 }
477 struct vfpreg * const fregs = &pcb->pcb_vfp;
478
479 /*
480 * Instrument VFP usage -- if a process has not previously
481 * used the VFP, mark it as having used VFP for the first time,
482 * and count this event.
483 *
484 * If a process has used the VFP, count a "used VFP, and took
485 * a trap to use it again" event.
486 */
487 if (__predict_false((flags & PCU_LOADED) == 0)) {
488 vfpevent_use.ev_count++;
489 pcb->pcb_vfp.vfp_fpscr = /* Runfast */
490 (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
491 } else {
492 vfpevent_reuse.ev_count++;
493 }
494
495 if (fregs->vfp_fpexc & VFP_FPEXC_EN) {
496 /*
497 * If we think the VFP is enabled, it must have be disabled by
498 * vfp_state_release for another LWP so we can just restore
499 * FPEXC and return since our VFP state is still loaded.
500 */
501 armreg_fpexc_write(fregs->vfp_fpexc);
502 return;
503 }
504
505 /* Load and Enable the VFP (so that we can write the registers). */
506 if (flags & PCU_RELOAD) {
507 uint32_t fpexc = armreg_fpexc_read();
508 KDASSERT((fpexc & VFP_FPEXC_EX) == 0);
509 armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
510
511 load_vfpregs(fregs);
512 armreg_fpscr_write(fregs->vfp_fpscr);
513
514 if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
515 /* Need to restore the exception handling state. */
516 armreg_fpinst2_write(fregs->vfp_fpinst2);
517 if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
518 armreg_fpinst_write(fregs->vfp_fpinst);
519 }
520 }
521
522 /* Finally, restore the FPEXC but don't enable the VFP. */
523 fregs->vfp_fpexc |= VFP_FPEXC_EN;
524 armreg_fpexc_write(fregs->vfp_fpexc);
525 }
526
527 void
528 vfp_state_save(lwp_t *l, u_int flags)
529 {
530 struct pcb * const pcb = lwp_getpcb(l);
531 uint32_t fpexc = armreg_fpexc_read();
532 armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
533
534 if (flags & PCU_KERNEL) {
535 /*
536 * Save the kernel set of VFP registers.
537 * (just the first 16).
538 */
539 save_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
540 return;
541 }
542
543 struct vfpreg * const fregs = &pcb->pcb_vfp;
544
545 /*
546 * Enable the VFP (so we can read the registers).
547 * Make sure the exception bit is cleared so that we can
548 * safely dump the registers.
549 */
550 fregs->vfp_fpexc = fpexc;
551 if (fpexc & VFP_FPEXC_EX) {
552 /* Need to save the exception handling state */
553 fregs->vfp_fpinst = armreg_fpinst_read();
554 if (fpexc & VFP_FPEXC_FP2V)
555 fregs->vfp_fpinst2 = armreg_fpinst2_read();
556 }
557 fregs->vfp_fpscr = armreg_fpscr_read();
558 save_vfpregs(fregs);
559
560 /* Disable the VFP. */
561 armreg_fpexc_write(fpexc);
562 }
563
564 void
565 vfp_state_release(lwp_t *l, u_int flags)
566 {
567 struct pcb * const pcb = lwp_getpcb(l);
568
569 if (flags & PCU_KERNEL) {
570 /*
571 * Restore the FPEXC since we borrowed that field.
572 */
573 pcb->pcb_vfp.vfp_fpexc = pcb->pcb_kernel_vfp.vfp_fpexc;
574 } else {
575 /*
576 * Now mark the VFP as disabled (and our state
577 * has been already saved or is being discarded).
578 */
579 pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
580 }
581
582 /*
583 * Turn off the FPU so the next time a VFP instruction is issued
584 * an exception happens. We don't know if this LWP's state was
585 * loaded but if we turned off the FPU for some other LWP, when
586 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
587 * is still set so it just restore fpexc and return since its
588 * contents are still sitting in the VFP.
589 */
590 armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
591 }
592
593 void
594 vfp_savecontext(void)
595 {
596 pcu_save(&arm_vfp_ops);
597 }
598
599 void
600 vfp_discardcontext(bool used_p)
601 {
602 pcu_discard(&arm_vfp_ops, used_p);
603 }
604
605 bool
606 vfp_used_p(void)
607 {
608 return pcu_used_p(&arm_vfp_ops);
609 }
610
611 void
612 vfp_kernel_acquire(void)
613 {
614 if (__predict_false(cpu_intr_p())) {
615 armreg_fpexc_write(VFP_FPEXC_EN);
616 if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
617 lwp_t * const l = curlwp;
618 struct pcb * const pcb = lwp_getpcb(l);
619 KASSERT((l->l_md.md_flags & MDLWP_VFPINTR) == 0);
620 l->l_md.md_flags |= MDLWP_VFPINTR;
621 save_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
622 }
623 } else {
624 pcu_kernel_acquire(&arm_vfp_ops);
625 }
626 }
627
628 void
629 vfp_kernel_release(void)
630 {
631 if (__predict_false(cpu_intr_p())) {
632 uint32_t fpexc = 0;
633 if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
634 lwp_t * const l = curlwp;
635 struct pcb * const pcb = lwp_getpcb(l);
636 KASSERT(l->l_md.md_flags & MDLWP_VFPINTR);
637 load_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
638 l->l_md.md_flags &= ~MDLWP_VFPINTR;
639 fpexc = pcb->pcb_vfp.vfp_fpexc;
640 }
641 armreg_fpexc_write(fpexc);
642 } else {
643 pcu_kernel_release(&arm_vfp_ops);
644 }
645 }
646
647 void
648 vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
649 {
650 if (vfp_used_p()) {
651 const struct pcb * const pcb = lwp_getpcb(l);
652 pcu_save(&arm_vfp_ops);
653 mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
654 memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
655 sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
656 *flagsp |= _UC_FPU|_UC_ARM_VFP;
657 }
658 }
659
660 void
661 vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
662 {
663 pcu_discard(&arm_vfp_ops, true);
664 struct pcb * const pcb = lwp_getpcb(l);
665 pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
666 memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
667 sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
668 }
669
670 #endif /* FPU_VFP */
671