vfp_init.c revision 1.33 1 /* $NetBSD: vfp_init.c,v 1.33 2014/01/25 17:30:56 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2008 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 * products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/systm.h>
35 #include <sys/device.h>
36 #include <sys/proc.h>
37 #include <sys/cpu.h>
38
39 #include <arm/locore.h>
40 #include <arm/pcb.h>
41 #include <arm/undefined.h>
42 #include <arm/vfpreg.h>
43 #include <arm/mcontext.h>
44
45 #include <uvm/uvm_extern.h> /* for pmap.h */
46
47 extern int cpu_media_and_vfp_features[];
48 extern int cpu_neon_present;
49
50 #ifdef FPU_VFP
51
52 #ifdef CPU_CORTEX
53 __asm(".fpu\tvfpv4");
54 #else
55 __asm(".fpu\tvfp");
56 #endif
57
58 /* FLDMD <X>, {d0-d15} */
59 static inline void
60 load_vfpregs_lo(const uint64_t *p)
61 {
62 __asm __volatile("vldmia %0, {d0-d15}" :: "r" (p) : "memory");
63 }
64
65 /* FSTMD <X>, {d0-d15} */
66 static inline void
67 save_vfpregs_lo(uint64_t *p)
68 {
69 __asm __volatile("vstmia %0, {d0-d15}" :: "r" (p) : "memory");
70 }
71
72 #ifdef CPU_CORTEX
73 /* FLDMD <X>, {d16-d31} */
74 static inline void
75 load_vfpregs_hi(const uint64_t *p)
76 {
77 __asm __volatile("vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
78 }
79
80 /* FLDMD <X>, {d16-d31} */
81 static inline void
82 save_vfpregs_hi(uint64_t *p)
83 {
84 __asm __volatile("vstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
85 }
86 #endif
87
88 static inline void
89 load_vfpregs(const struct vfpreg *fregs)
90 {
91 load_vfpregs_lo(fregs->vfp_regs);
92 #ifdef CPU_CORTEX
93 #ifdef CPU_ARM11
94 switch (curcpu()->ci_vfp_id) {
95 case FPU_VFP_CORTEXA5:
96 case FPU_VFP_CORTEXA7:
97 case FPU_VFP_CORTEXA8:
98 case FPU_VFP_CORTEXA9:
99 case FPU_VFP_CORTEXA15:
100 #endif
101 load_vfpregs_hi(fregs->vfp_regs);
102 #ifdef CPU_ARM11
103 break;
104 }
105 #endif
106 #endif
107 }
108
109 static inline void
110 save_vfpregs(struct vfpreg *fregs)
111 {
112 save_vfpregs_lo(fregs->vfp_regs);
113 #ifdef CPU_CORTEX
114 #ifdef CPU_ARM11
115 switch (curcpu()->ci_vfp_id) {
116 case FPU_VFP_CORTEXA5:
117 case FPU_VFP_CORTEXA7:
118 case FPU_VFP_CORTEXA8:
119 case FPU_VFP_CORTEXA9:
120 case FPU_VFP_CORTEXA15:
121 #endif
122 save_vfpregs_hi(fregs->vfp_regs);
123 #ifdef CPU_ARM11
124 break;
125 }
126 #endif
127 #endif
128 }
129
130 /* The real handler for VFP bounces. */
131 static int vfp_handler(u_int, u_int, trapframe_t *, int);
132 #ifdef CPU_CORTEX
133 static int neon_handler(u_int, u_int, trapframe_t *, int);
134 #endif
135
136 static void vfp_state_load(lwp_t *, u_int);
137 static void vfp_state_save(lwp_t *, u_int);
138 static void vfp_state_release(lwp_t *, u_int);
139
140 const pcu_ops_t arm_vfp_ops = {
141 .pcu_id = PCU_FPU,
142 .pcu_state_save = vfp_state_save,
143 .pcu_state_load = vfp_state_load,
144 .pcu_state_release = vfp_state_release,
145 };
146
147 struct evcnt vfpevent_use;
148 struct evcnt vfpevent_reuse;
149 struct evcnt vfpevent_fpe;
150
151 /*
152 * Used to test for a VFP. The following function is installed as a coproc10
153 * handler on the undefined instruction vector and then we issue a VFP
154 * instruction. If undefined_test is non zero then the VFP did not handle
155 * the instruction so must be absent, or disabled.
156 */
157
158 static int undefined_test;
159
160 static int
161 vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
162 {
163
164 frame->tf_pc += INSN_SIZE;
165 ++undefined_test;
166 return 0;
167 }
168
169 #endif /* FPU_VFP */
170
171 struct evcnt vfp_fpscr_ev =
172 EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "VFP", "FPSCR traps");
173 EVCNT_ATTACH_STATIC(vfp_fpscr_ev);
174
175 static int
176 vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
177 {
178 struct lwp * const l = curlwp;
179 const u_int regno = (insn >> 12) & 0xf;
180 /*
181 * Only match move to/from the FPSCR register and we
182 * can't be using the SP,LR,PC as a source.
183 */
184 if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
185 return 1;
186
187 struct pcb * const pcb = lwp_getpcb(l);
188
189 #ifdef FPU_VFP
190 /*
191 * If FPU is valid somewhere, let's just reenable VFP and
192 * retry the instruction (only safe thing to do since the
193 * pcb has a stale copy).
194 */
195 if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
196 return 1;
197
198 if (__predict_false(!vfp_used_p())) {
199 pcb->pcb_vfp.vfp_fpscr =
200 (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN); /* Runfast */
201 }
202 #endif
203
204 /*
205 * We now know the pcb has the saved copy.
206 */
207 register_t * const regp = &frame->tf_r0 + regno;
208 if (insn & 0x00100000) {
209 *regp = pcb->pcb_vfp.vfp_fpscr;
210 } else {
211 register_t tmp = *regp;
212 if (!(cpu_media_and_vfp_features[0] & ARM_MVFR0_EXCEPT_MASK))
213 tmp &= ~VFP_FPSCR_ESUM;
214 pcb->pcb_vfp.vfp_fpscr = tmp;
215 }
216
217 vfp_fpscr_ev.ev_count++;
218
219 frame->tf_pc += INSN_SIZE;
220 return 0;
221 }
222
223 #ifndef FPU_VFP
224 /*
225 * If we don't want VFP support, we still need to handle emulating VFP FPSCR
226 * instructions.
227 */
228 void
229 vfp_attach(void)
230 {
231 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
232 }
233
234 #else
235 #if 0
236 static bool
237 vfp_patch_branch(uintptr_t code, uintptr_t func, uintptr_t newfunc)
238 {
239 for (;; code += sizeof(uint32_t)) {
240 uint32_t insn = *(uint32_t *)code;
241 if ((insn & 0xffd08000) == 0xe8908000) /* ldm ... { pc } */
242 return false;
243 if ((insn & 0xfffffff0) == 0xe12fff10) /* bx rN */
244 return false;
245 if ((insn & 0xf1a0f000) == 0xe1a0f000) /* mov pc, ... */
246 return false;
247 if ((insn >> 25) != 0x75) /* not b/bl insn */
248 continue;
249 intptr_t imm26 = ((int32_t)insn << 8) >> 6;
250 if (code + imm26 + 8 == func) {
251 int32_t imm24 = (newfunc - (code + 8)) >> 2;
252 uint32_t new_insn = (insn & 0xff000000)
253 | (imm24 & 0xffffff);
254 KASSERTMSG((uint32_t)((imm24 >> 24) + 1) <= 1, "%x",
255 ((imm24 >> 24) + 1));
256 *(uint32_t *)code = new_insn;
257 cpu_idcache_wbinv_range(code, sizeof(uint32_t));
258 return true;
259 }
260 }
261 }
262 #endif
263
264 void
265 vfp_attach(void)
266 {
267 struct cpu_info * const ci = curcpu();
268 const char *model = NULL;
269
270 if (CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid)
271 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
272 const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
273 const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
274
275 /*
276 * We first need to enable access to the coprocessors.
277 */
278 uint32_t cpacr = armreg_cpacr_read();
279 cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
280 cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
281 #if 0
282 if (CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
283 /*
284 * Disable access to the upper 16 FP registers and NEON.
285 */
286 cpacr |= CPACR_V7_D32DIS;
287 cpacr |= CPACR_V7_ASEDIS;
288 }
289 #endif
290 armreg_cpacr_write(cpacr);
291
292 /*
293 * If we could enable them, then they exist.
294 */
295 cpacr = armreg_cpacr_read();
296 bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) != CPACR_NOACCESS
297 || __SHIFTOUT(cpacr, cpacr_vfp) != CPACR_NOACCESS;
298 if (!vfp_p) {
299 aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
300 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
301 ci->ci_vfp_id = 0;
302 return;
303 }
304 }
305
306 void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
307
308 undefined_test = 0;
309
310 const uint32_t fpsid = armreg_fpsid_read();
311
312 remove_coproc_handler(uh);
313
314 if (undefined_test != 0) {
315 aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
316 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
317 ci->ci_vfp_id = 0;
318 return;
319 }
320
321 ci->ci_vfp_id = fpsid;
322 switch (fpsid & ~ VFP_FPSID_REV_MSK) {
323 case FPU_VFP10_ARM10E:
324 model = "VFP10 R1";
325 break;
326 case FPU_VFP11_ARM11:
327 model = "VFP11";
328 break;
329 case FPU_VFP_CORTEXA5:
330 case FPU_VFP_CORTEXA7:
331 case FPU_VFP_CORTEXA8:
332 case FPU_VFP_CORTEXA9:
333 case FPU_VFP_CORTEXA15:
334 model = "NEON MPE (VFP 3.0+)";
335 cpu_neon_present = 1;
336 break;
337 default:
338 aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %x\n",
339 fpsid);
340 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
341 return;
342 }
343
344 cpu_fpu_present = 1;
345 cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
346 cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
347 if (fpsid != 0) {
348 aprint_normal("vfp%d at %s: %s\n",
349 device_unit(curcpu()->ci_dev),
350 device_xname(curcpu()->ci_dev),
351 model);
352 aprint_verbose("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
353 device_unit(curcpu()->ci_dev),
354 cpu_media_and_vfp_features[0],
355 cpu_media_and_vfp_features[1]);
356 }
357 evcnt_attach_dynamic(&vfpevent_use, EVCNT_TYPE_MISC, NULL,
358 "VFP", "coproc use");
359 evcnt_attach_dynamic(&vfpevent_reuse, EVCNT_TYPE_MISC, NULL,
360 "VFP", "coproc re-use");
361 evcnt_attach_dynamic(&vfpevent_fpe, EVCNT_TYPE_TRAP, NULL,
362 "VFP", "coproc fault");
363 install_coproc_handler(VFP_COPROC, vfp_handler);
364 install_coproc_handler(VFP_COPROC2, vfp_handler);
365 #ifdef CPU_CORTEX
366 install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
367 #endif
368
369 #if 0
370 vfp_patch_branch((uintptr_t)pmap_copy_page_generic,
371 (uintptr_t)bcopy_page, (uintptr_t)bcopy_page_vfp);
372 vfp_patch_branch((uintptr_t)pmap_zero_page_generic,
373 (uintptr_t)bzero_page, (uintptr_t)bzero_page_vfp);
374 #endif
375 }
376
377 /* The real handler for VFP bounces. */
378 static int
379 vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
380 {
381 struct cpu_info * const ci = curcpu();
382
383 /* This shouldn't ever happen. */
384 if (fault_code != FAULT_USER)
385 panic("VFP fault at %#x in non-user mode", frame->tf_pc);
386
387 if (ci->ci_vfp_id == 0) {
388 /* No VFP detected, just fault. */
389 return 1;
390 }
391
392 /*
393 * If we are just changing/fetching FPSCR, don't bother loading it.
394 */
395 if (!vfp_fpscr_handler(address, insn, frame, fault_code))
396 return 0;
397
398 /*
399 * Make sure we own the FP.
400 */
401 pcu_load(&arm_vfp_ops);
402
403 uint32_t fpexc = armreg_fpexc_read();
404 if (fpexc & VFP_FPEXC_EX) {
405 ksiginfo_t ksi;
406 KASSERT(fpexc & VFP_FPEXC_EN);
407
408 vfpevent_fpe.ev_count++;
409
410 /*
411 * Need the clear the exception condition so any signal
412 * and future use can proceed.
413 */
414 armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
415
416 pcu_save(&arm_vfp_ops);
417
418 /*
419 * XXX Need to emulate bounce instructions here to get correct
420 * XXX exception codes, etc.
421 */
422 KSI_INIT_TRAP(&ksi);
423 ksi.ksi_signo = SIGFPE;
424 if (fpexc & VFP_FPEXC_IXF)
425 ksi.ksi_code = FPE_FLTRES;
426 else if (fpexc & VFP_FPEXC_UFF)
427 ksi.ksi_code = FPE_FLTUND;
428 else if (fpexc & VFP_FPEXC_OFF)
429 ksi.ksi_code = FPE_FLTOVF;
430 else if (fpexc & VFP_FPEXC_DZF)
431 ksi.ksi_code = FPE_FLTDIV;
432 else if (fpexc & VFP_FPEXC_IOF)
433 ksi.ksi_code = FPE_FLTINV;
434 ksi.ksi_addr = (uint32_t *)address;
435 ksi.ksi_trap = 0;
436 trapsignal(curlwp, &ksi);
437 return 0;
438 }
439
440 /* Need to restart the faulted instruction. */
441 // frame->tf_pc -= INSN_SIZE;
442 return 0;
443 }
444
445 #ifdef CPU_CORTEX
446 /* The real handler for NEON bounces. */
447 static int
448 neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
449 {
450 struct cpu_info * const ci = curcpu();
451
452 if (ci->ci_vfp_id == 0)
453 /* No VFP detected, just fault. */
454 return 1;
455
456 if ((insn & 0xfe000000) != 0xf2000000
457 && (insn & 0xfe000000) != 0xf4000000)
458 /* Not NEON instruction, just fault. */
459 return 1;
460
461 /* This shouldn't ever happen. */
462 if (fault_code != FAULT_USER)
463 panic("NEON fault in non-user mode");
464
465 pcu_load(&arm_vfp_ops);
466
467 /* Need to restart the faulted instruction. */
468 // frame->tf_pc -= INSN_SIZE;
469 return 0;
470 }
471 #endif
472
473 static void
474 vfp_state_load(lwp_t *l, u_int flags)
475 {
476 struct pcb * const pcb = lwp_getpcb(l);
477
478 KASSERT(flags & PCU_ENABLE);
479
480 if (flags & PCU_KERNEL) {
481 if ((flags & PCU_LOADED) == 0) {
482 pcb->pcb_kernel_vfp.vfp_fpexc = pcb->pcb_vfp.vfp_fpexc;
483 }
484 pcb->pcb_vfp.vfp_fpexc = VFP_FPEXC_EN;
485 armreg_fpexc_write(pcb->pcb_vfp.vfp_fpexc);
486 /*
487 * Load the kernel registers (just the first 16) if they've
488 * been used..
489 */
490 if (flags & PCU_LOADED) {
491 load_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
492 }
493 return;
494 }
495 struct vfpreg * const fregs = &pcb->pcb_vfp;
496
497 /*
498 * Instrument VFP usage -- if a process has not previously
499 * used the VFP, mark it as having used VFP for the first time,
500 * and count this event.
501 *
502 * If a process has used the VFP, count a "used VFP, and took
503 * a trap to use it again" event.
504 */
505 if (__predict_false((flags & PCU_LOADED) == 0)) {
506 KASSERT(flags & PCU_RELOAD);
507 vfpevent_use.ev_count++;
508 pcb->pcb_vfp.vfp_fpscr =
509 (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN); /* Runfast */
510 } else {
511 vfpevent_reuse.ev_count++;
512 }
513
514 uint32_t fpexc = armreg_fpexc_read();
515 if (flags & PCU_RELOAD) {
516 bool enabled = fregs->vfp_fpexc & VFP_FPEXC_EN;
517
518 /*
519 * Load and Enable the VFP (so that we can write the
520 * registers).
521 */
522 fregs->vfp_fpexc |= VFP_FPEXC_EN;
523 armreg_fpexc_write(fregs->vfp_fpexc);
524 if (enabled) {
525 /*
526 * If we think the VFP is enabled, it must have be
527 * disabled by vfp_state_release for another LWP so
528 * we can now just return.
529 */
530 return;
531 }
532
533 load_vfpregs(fregs);
534 armreg_fpscr_write(fregs->vfp_fpscr);
535
536 if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
537 /* Need to restore the exception handling state. */
538 armreg_fpinst2_write(fregs->vfp_fpinst2);
539 if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
540 armreg_fpinst_write(fregs->vfp_fpinst);
541 }
542 } else {
543 /*
544 * If the VFP is already enabled we must be bouncing an
545 * instruction.
546 */
547 armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
548 }
549 }
550
551 void
552 vfp_state_save(lwp_t *l, u_int flags)
553 {
554 struct pcb * const pcb = lwp_getpcb(l);
555 uint32_t fpexc = armreg_fpexc_read();
556
557 /*
558 * Enable the VFP (so we can read the registers).
559 * Make sure the exception bit is cleared so that we can
560 * safely dump the registers.
561 */
562 armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
563
564 if (flags & PCU_KERNEL) {
565 /*
566 * Save the kernel set of VFP registers.
567 * (just the first 16).
568 */
569 save_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
570 return;
571 }
572
573 struct vfpreg * const fregs = &pcb->pcb_vfp;
574
575 fregs->vfp_fpexc = fpexc;
576 if (fpexc & VFP_FPEXC_EX) {
577 /* Need to save the exception handling state */
578 fregs->vfp_fpinst = armreg_fpinst_read();
579 if (fpexc & VFP_FPEXC_FP2V)
580 fregs->vfp_fpinst2 = armreg_fpinst2_read();
581 }
582 fregs->vfp_fpscr = armreg_fpscr_read();
583 save_vfpregs(fregs);
584
585 /* Disable the VFP. */
586 armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
587 }
588
589 void
590 vfp_state_release(lwp_t *l, u_int flags)
591 {
592 struct pcb * const pcb = lwp_getpcb(l);
593
594 if (flags & PCU_KERNEL) {
595 /*
596 * Restore the FPEXC since we borrowed that field.
597 */
598 pcb->pcb_vfp.vfp_fpexc = pcb->pcb_kernel_vfp.vfp_fpexc;
599 } else {
600 /*
601 * Now mark the VFP as disabled (and our state
602 * has been already saved or is being discarded).
603 */
604 pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
605 }
606
607 /*
608 * Turn off the FPU so the next time a VFP instruction is issued
609 * an exception happens. We don't know if this LWP's state was
610 * loaded but if we turned off the FPU for some other LWP, when
611 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
612 * is still set so it just restore fpexc and return since its
613 * contents are still sitting in the VFP.
614 */
615 armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
616 }
617
618 void
619 vfp_savecontext(void)
620 {
621 pcu_save(&arm_vfp_ops);
622 }
623
624 void
625 vfp_discardcontext(bool used_p)
626 {
627 pcu_discard(&arm_vfp_ops, used_p);
628 }
629
630 bool
631 vfp_used_p(void)
632 {
633 return pcu_used_p(&arm_vfp_ops);
634 }
635
636 void
637 vfp_kernel_acquire(void)
638 {
639 if (__predict_false(cpu_intr_p())) {
640 armreg_fpexc_write(VFP_FPEXC_EN);
641 if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
642 lwp_t * const l = curlwp;
643 struct pcb * const pcb = lwp_getpcb(l);
644 KASSERT((l->l_md.md_flags & MDLWP_VFPINTR) == 0);
645 l->l_md.md_flags |= MDLWP_VFPINTR;
646 save_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
647 }
648 } else {
649 pcu_kernel_acquire(&arm_vfp_ops);
650 }
651 }
652
653 void
654 vfp_kernel_release(void)
655 {
656 if (__predict_false(cpu_intr_p())) {
657 uint32_t fpexc = 0;
658 if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
659 lwp_t * const l = curlwp;
660 struct pcb * const pcb = lwp_getpcb(l);
661 KASSERT(l->l_md.md_flags & MDLWP_VFPINTR);
662 load_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
663 l->l_md.md_flags &= ~MDLWP_VFPINTR;
664 fpexc = pcb->pcb_vfp.vfp_fpexc;
665 }
666 armreg_fpexc_write(fpexc);
667 } else {
668 pcu_kernel_release(&arm_vfp_ops);
669 }
670 }
671
672 void
673 vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
674 {
675 if (vfp_used_p()) {
676 const struct pcb * const pcb = lwp_getpcb(l);
677 pcu_save(&arm_vfp_ops);
678 mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
679 memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
680 sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
681 *flagsp |= _UC_FPU|_UC_ARM_VFP;
682 }
683 }
684
685 void
686 vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
687 {
688 pcu_discard(&arm_vfp_ops, true);
689 struct pcb * const pcb = lwp_getpcb(l);
690 pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
691 memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
692 sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
693 }
694
695 #endif /* FPU_VFP */
696