Home | History | Annotate | Line # | Download | only in vfp
vfp_init.c revision 1.33
      1 /*      $NetBSD: vfp_init.c,v 1.33 2014/01/25 17:30:56 skrll Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2008 ARM Ltd
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the company may not be used to endorse or promote
     16  *    products derived from this software without specific prior written
     17  *    permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
     20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
     23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     25  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     27  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/param.h>
     33 #include <sys/types.h>
     34 #include <sys/systm.h>
     35 #include <sys/device.h>
     36 #include <sys/proc.h>
     37 #include <sys/cpu.h>
     38 
     39 #include <arm/locore.h>
     40 #include <arm/pcb.h>
     41 #include <arm/undefined.h>
     42 #include <arm/vfpreg.h>
     43 #include <arm/mcontext.h>
     44 
     45 #include <uvm/uvm_extern.h>		/* for pmap.h */
     46 
     47 extern int cpu_media_and_vfp_features[];
     48 extern int cpu_neon_present;
     49 
     50 #ifdef FPU_VFP
     51 
     52 #ifdef CPU_CORTEX
     53 __asm(".fpu\tvfpv4");
     54 #else
     55 __asm(".fpu\tvfp");
     56 #endif
     57 
     58 /* FLDMD <X>, {d0-d15} */
     59 static inline void
     60 load_vfpregs_lo(const uint64_t *p)
     61 {
     62 	__asm __volatile("vldmia %0, {d0-d15}" :: "r" (p) : "memory");
     63 }
     64 
     65 /* FSTMD <X>, {d0-d15} */
     66 static inline void
     67 save_vfpregs_lo(uint64_t *p)
     68 {
     69 	__asm __volatile("vstmia %0, {d0-d15}" :: "r" (p) : "memory");
     70 }
     71 
     72 #ifdef CPU_CORTEX
     73 /* FLDMD <X>, {d16-d31} */
     74 static inline void
     75 load_vfpregs_hi(const uint64_t *p)
     76 {
     77 	__asm __volatile("vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
     78 }
     79 
     80 /* FLDMD <X>, {d16-d31} */
     81 static inline void
     82 save_vfpregs_hi(uint64_t *p)
     83 {
     84 	__asm __volatile("vstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
     85 }
     86 #endif
     87 
     88 static inline void
     89 load_vfpregs(const struct vfpreg *fregs)
     90 {
     91 	load_vfpregs_lo(fregs->vfp_regs);
     92 #ifdef CPU_CORTEX
     93 #ifdef CPU_ARM11
     94 	switch (curcpu()->ci_vfp_id) {
     95 	case FPU_VFP_CORTEXA5:
     96 	case FPU_VFP_CORTEXA7:
     97 	case FPU_VFP_CORTEXA8:
     98 	case FPU_VFP_CORTEXA9:
     99 	case FPU_VFP_CORTEXA15:
    100 #endif
    101 		load_vfpregs_hi(fregs->vfp_regs);
    102 #ifdef CPU_ARM11
    103 		break;
    104 	}
    105 #endif
    106 #endif
    107 }
    108 
    109 static inline void
    110 save_vfpregs(struct vfpreg *fregs)
    111 {
    112 	save_vfpregs_lo(fregs->vfp_regs);
    113 #ifdef CPU_CORTEX
    114 #ifdef CPU_ARM11
    115 	switch (curcpu()->ci_vfp_id) {
    116 	case FPU_VFP_CORTEXA5:
    117 	case FPU_VFP_CORTEXA7:
    118 	case FPU_VFP_CORTEXA8:
    119 	case FPU_VFP_CORTEXA9:
    120 	case FPU_VFP_CORTEXA15:
    121 #endif
    122 		save_vfpregs_hi(fregs->vfp_regs);
    123 #ifdef CPU_ARM11
    124 		break;
    125 	}
    126 #endif
    127 #endif
    128 }
    129 
    130 /* The real handler for VFP bounces.  */
    131 static int vfp_handler(u_int, u_int, trapframe_t *, int);
    132 #ifdef CPU_CORTEX
    133 static int neon_handler(u_int, u_int, trapframe_t *, int);
    134 #endif
    135 
    136 static void vfp_state_load(lwp_t *, u_int);
    137 static void vfp_state_save(lwp_t *, u_int);
    138 static void vfp_state_release(lwp_t *, u_int);
    139 
    140 const pcu_ops_t arm_vfp_ops = {
    141 	.pcu_id = PCU_FPU,
    142 	.pcu_state_save = vfp_state_save,
    143 	.pcu_state_load = vfp_state_load,
    144 	.pcu_state_release = vfp_state_release,
    145 };
    146 
    147 struct evcnt vfpevent_use;
    148 struct evcnt vfpevent_reuse;
    149 struct evcnt vfpevent_fpe;
    150 
    151 /*
    152  * Used to test for a VFP. The following function is installed as a coproc10
    153  * handler on the undefined instruction vector and then we issue a VFP
    154  * instruction. If undefined_test is non zero then the VFP did not handle
    155  * the instruction so must be absent, or disabled.
    156  */
    157 
    158 static int undefined_test;
    159 
    160 static int
    161 vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    162 {
    163 
    164 	frame->tf_pc += INSN_SIZE;
    165 	++undefined_test;
    166 	return 0;
    167 }
    168 
    169 #endif /* FPU_VFP */
    170 
    171 struct evcnt vfp_fpscr_ev =
    172     EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "VFP", "FPSCR traps");
    173 EVCNT_ATTACH_STATIC(vfp_fpscr_ev);
    174 
    175 static int
    176 vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    177 {
    178 	struct lwp * const l = curlwp;
    179 	const u_int regno = (insn >> 12) & 0xf;
    180 	/*
    181 	 * Only match move to/from the FPSCR register and we
    182 	 * can't be using the SP,LR,PC as a source.
    183 	 */
    184 	if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
    185 		return 1;
    186 
    187 	struct pcb * const pcb = lwp_getpcb(l);
    188 
    189 #ifdef FPU_VFP
    190 	/*
    191 	 * If FPU is valid somewhere, let's just reenable VFP and
    192 	 * retry the instruction (only safe thing to do since the
    193 	 * pcb has a stale copy).
    194 	 */
    195 	if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
    196 		return 1;
    197 
    198 	if (__predict_false(!vfp_used_p())) {
    199 		pcb->pcb_vfp.vfp_fpscr =
    200 		    (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN); /* Runfast */
    201 	}
    202 #endif
    203 
    204 	/*
    205 	 * We now know the pcb has the saved copy.
    206 	 */
    207 	register_t * const regp = &frame->tf_r0 + regno;
    208 	if (insn & 0x00100000) {
    209 		*regp = pcb->pcb_vfp.vfp_fpscr;
    210 	} else {
    211 		register_t tmp = *regp;
    212 		if (!(cpu_media_and_vfp_features[0] & ARM_MVFR0_EXCEPT_MASK))
    213 			tmp &= ~VFP_FPSCR_ESUM;
    214 		pcb->pcb_vfp.vfp_fpscr = tmp;
    215 	}
    216 
    217 	vfp_fpscr_ev.ev_count++;
    218 
    219 	frame->tf_pc += INSN_SIZE;
    220 	return 0;
    221 }
    222 
    223 #ifndef FPU_VFP
    224 /*
    225  * If we don't want VFP support, we still need to handle emulating VFP FPSCR
    226  * instructions.
    227  */
    228 void
    229 vfp_attach(void)
    230 {
    231 	install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    232 }
    233 
    234 #else
    235 #if 0
    236 static bool
    237 vfp_patch_branch(uintptr_t code, uintptr_t func, uintptr_t newfunc)
    238 {
    239 	for (;; code += sizeof(uint32_t)) {
    240 		uint32_t insn = *(uint32_t *)code;
    241 		if ((insn & 0xffd08000) == 0xe8908000)	/* ldm ... { pc } */
    242 			return false;
    243 		if ((insn & 0xfffffff0) == 0xe12fff10)	/* bx rN */
    244 			return false;
    245 		if ((insn & 0xf1a0f000) == 0xe1a0f000)	/* mov pc, ... */
    246 			return false;
    247 		if ((insn >> 25) != 0x75)		/* not b/bl insn */
    248 			continue;
    249 		intptr_t imm26 = ((int32_t)insn << 8) >> 6;
    250 		if (code + imm26 + 8 == func) {
    251 			int32_t imm24 = (newfunc - (code + 8)) >> 2;
    252 			uint32_t new_insn = (insn & 0xff000000)
    253 			   | (imm24 & 0xffffff);
    254 			KASSERTMSG((uint32_t)((imm24 >> 24) + 1) <= 1, "%x",
    255 			    ((imm24 >> 24) + 1));
    256 			*(uint32_t *)code = new_insn;
    257 			cpu_idcache_wbinv_range(code, sizeof(uint32_t));
    258 			return true;
    259 		}
    260 	}
    261 }
    262 #endif
    263 
    264 void
    265 vfp_attach(void)
    266 {
    267 	struct cpu_info * const ci = curcpu();
    268 	const char *model = NULL;
    269 
    270 	if (CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid)
    271 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
    272 		const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
    273 		const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
    274 
    275 		/*
    276 		 * We first need to enable access to the coprocessors.
    277 		 */
    278 		uint32_t cpacr = armreg_cpacr_read();
    279 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
    280 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
    281 #if 0
    282 		if (CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
    283 			/*
    284 			 * Disable access to the upper 16 FP registers and NEON.
    285 			 */
    286 			cpacr |= CPACR_V7_D32DIS;
    287 			cpacr |= CPACR_V7_ASEDIS;
    288 		}
    289 #endif
    290 		armreg_cpacr_write(cpacr);
    291 
    292 		/*
    293 		 * If we could enable them, then they exist.
    294 		 */
    295 		cpacr = armreg_cpacr_read();
    296 		bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) != CPACR_NOACCESS
    297 		    || __SHIFTOUT(cpacr, cpacr_vfp) != CPACR_NOACCESS;
    298 		if (!vfp_p) {
    299 			aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
    300 			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    301 			ci->ci_vfp_id = 0;
    302 			return;
    303 		}
    304 	}
    305 
    306 	void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
    307 
    308 	undefined_test = 0;
    309 
    310 	const uint32_t fpsid = armreg_fpsid_read();
    311 
    312 	remove_coproc_handler(uh);
    313 
    314 	if (undefined_test != 0) {
    315 		aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
    316 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    317 		ci->ci_vfp_id = 0;
    318 		return;
    319 	}
    320 
    321 	ci->ci_vfp_id = fpsid;
    322 	switch (fpsid & ~ VFP_FPSID_REV_MSK) {
    323 	case FPU_VFP10_ARM10E:
    324 		model = "VFP10 R1";
    325 		break;
    326 	case FPU_VFP11_ARM11:
    327 		model = "VFP11";
    328 		break;
    329 	case FPU_VFP_CORTEXA5:
    330 	case FPU_VFP_CORTEXA7:
    331 	case FPU_VFP_CORTEXA8:
    332 	case FPU_VFP_CORTEXA9:
    333 	case FPU_VFP_CORTEXA15:
    334 		model = "NEON MPE (VFP 3.0+)";
    335 		cpu_neon_present = 1;
    336 		break;
    337 	default:
    338 		aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %x\n",
    339 		    fpsid);
    340 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    341 		return;
    342 	}
    343 
    344 	cpu_fpu_present = 1;
    345 	cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
    346 	cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
    347 	if (fpsid != 0) {
    348 		aprint_normal("vfp%d at %s: %s\n",
    349 		    device_unit(curcpu()->ci_dev),
    350 		    device_xname(curcpu()->ci_dev),
    351 		    model);
    352 		aprint_verbose("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
    353 		    device_unit(curcpu()->ci_dev),
    354 		    cpu_media_and_vfp_features[0],
    355 		    cpu_media_and_vfp_features[1]);
    356 	}
    357 	evcnt_attach_dynamic(&vfpevent_use, EVCNT_TYPE_MISC, NULL,
    358 	    "VFP", "coproc use");
    359 	evcnt_attach_dynamic(&vfpevent_reuse, EVCNT_TYPE_MISC, NULL,
    360 	    "VFP", "coproc re-use");
    361 	evcnt_attach_dynamic(&vfpevent_fpe, EVCNT_TYPE_TRAP, NULL,
    362 	    "VFP", "coproc fault");
    363 	install_coproc_handler(VFP_COPROC, vfp_handler);
    364 	install_coproc_handler(VFP_COPROC2, vfp_handler);
    365 #ifdef CPU_CORTEX
    366 	install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
    367 #endif
    368 
    369 #if 0
    370 	vfp_patch_branch((uintptr_t)pmap_copy_page_generic,
    371 	   (uintptr_t)bcopy_page, (uintptr_t)bcopy_page_vfp);
    372 	vfp_patch_branch((uintptr_t)pmap_zero_page_generic,
    373 	   (uintptr_t)bzero_page, (uintptr_t)bzero_page_vfp);
    374 #endif
    375 }
    376 
    377 /* The real handler for VFP bounces.  */
    378 static int
    379 vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    380 {
    381 	struct cpu_info * const ci = curcpu();
    382 
    383 	/* This shouldn't ever happen.  */
    384 	if (fault_code != FAULT_USER)
    385 		panic("VFP fault at %#x in non-user mode", frame->tf_pc);
    386 
    387 	if (ci->ci_vfp_id == 0) {
    388 		/* No VFP detected, just fault.  */
    389 		return 1;
    390 	}
    391 
    392 	/*
    393 	 * If we are just changing/fetching FPSCR, don't bother loading it.
    394 	 */
    395 	if (!vfp_fpscr_handler(address, insn, frame, fault_code))
    396 		return 0;
    397 
    398 	/*
    399 	 * Make sure we own the FP.
    400 	 */
    401 	pcu_load(&arm_vfp_ops);
    402 
    403 	uint32_t fpexc = armreg_fpexc_read();
    404 	if (fpexc & VFP_FPEXC_EX) {
    405 		ksiginfo_t ksi;
    406 		KASSERT(fpexc & VFP_FPEXC_EN);
    407 
    408 		vfpevent_fpe.ev_count++;
    409 
    410 		/*
    411 		 * Need the clear the exception condition so any signal
    412 		 * and future use can proceed.
    413 		 */
    414 		armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
    415 
    416 		pcu_save(&arm_vfp_ops);
    417 
    418 		/*
    419 		 * XXX Need to emulate bounce instructions here to get correct
    420 		 * XXX exception codes, etc.
    421 		 */
    422 		KSI_INIT_TRAP(&ksi);
    423 		ksi.ksi_signo = SIGFPE;
    424 		if (fpexc & VFP_FPEXC_IXF)
    425 			ksi.ksi_code = FPE_FLTRES;
    426 		else if (fpexc & VFP_FPEXC_UFF)
    427 			ksi.ksi_code = FPE_FLTUND;
    428 		else if (fpexc & VFP_FPEXC_OFF)
    429 			ksi.ksi_code = FPE_FLTOVF;
    430 		else if (fpexc & VFP_FPEXC_DZF)
    431 			ksi.ksi_code = FPE_FLTDIV;
    432 		else if (fpexc & VFP_FPEXC_IOF)
    433 			ksi.ksi_code = FPE_FLTINV;
    434 		ksi.ksi_addr = (uint32_t *)address;
    435 		ksi.ksi_trap = 0;
    436 		trapsignal(curlwp, &ksi);
    437 		return 0;
    438 	}
    439 
    440 	/* Need to restart the faulted instruction.  */
    441 //	frame->tf_pc -= INSN_SIZE;
    442 	return 0;
    443 }
    444 
    445 #ifdef CPU_CORTEX
    446 /* The real handler for NEON bounces.  */
    447 static int
    448 neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    449 {
    450 	struct cpu_info * const ci = curcpu();
    451 
    452 	if (ci->ci_vfp_id == 0)
    453 		/* No VFP detected, just fault.  */
    454 		return 1;
    455 
    456 	if ((insn & 0xfe000000) != 0xf2000000
    457 	    && (insn & 0xfe000000) != 0xf4000000)
    458 		/* Not NEON instruction, just fault.  */
    459 		return 1;
    460 
    461 	/* This shouldn't ever happen.  */
    462 	if (fault_code != FAULT_USER)
    463 		panic("NEON fault in non-user mode");
    464 
    465 	pcu_load(&arm_vfp_ops);
    466 
    467 	/* Need to restart the faulted instruction.  */
    468 //	frame->tf_pc -= INSN_SIZE;
    469 	return 0;
    470 }
    471 #endif
    472 
    473 static void
    474 vfp_state_load(lwp_t *l, u_int flags)
    475 {
    476 	struct pcb * const pcb = lwp_getpcb(l);
    477 
    478 	KASSERT(flags & PCU_ENABLE);
    479 
    480 	if (flags & PCU_KERNEL) {
    481 		if ((flags & PCU_LOADED) == 0) {
    482 			pcb->pcb_kernel_vfp.vfp_fpexc = pcb->pcb_vfp.vfp_fpexc;
    483 		}
    484 		pcb->pcb_vfp.vfp_fpexc = VFP_FPEXC_EN;
    485 		armreg_fpexc_write(pcb->pcb_vfp.vfp_fpexc);
    486 		/*
    487 		 * Load the kernel registers (just the first 16) if they've
    488 		 * been used..
    489 		 */
    490 		if (flags & PCU_LOADED) {
    491 			load_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
    492 		}
    493 		return;
    494 	}
    495 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    496 
    497 	/*
    498 	 * Instrument VFP usage -- if a process has not previously
    499 	 * used the VFP, mark it as having used VFP for the first time,
    500 	 * and count this event.
    501 	 *
    502 	 * If a process has used the VFP, count a "used VFP, and took
    503 	 * a trap to use it again" event.
    504 	 */
    505 	if (__predict_false((flags & PCU_LOADED) == 0)) {
    506 		KASSERT(flags & PCU_RELOAD);
    507 		vfpevent_use.ev_count++;
    508 		pcb->pcb_vfp.vfp_fpscr =
    509 		    (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN); /* Runfast */
    510 	} else {
    511 		vfpevent_reuse.ev_count++;
    512 	}
    513 
    514 	uint32_t fpexc = armreg_fpexc_read();
    515 	if (flags & PCU_RELOAD) {
    516 		bool enabled = fregs->vfp_fpexc & VFP_FPEXC_EN;
    517 
    518 		/*
    519 		 * Load and Enable the VFP (so that we can write the
    520 		 * registers).
    521 		 */
    522 		fregs->vfp_fpexc |= VFP_FPEXC_EN;
    523 		armreg_fpexc_write(fregs->vfp_fpexc);
    524 		if (enabled) {
    525 			/*
    526 			 * If we think the VFP is enabled, it must have be
    527 			 * disabled by vfp_state_release for another LWP so
    528 			 * we can now just return.
    529 			 */
    530 			return;
    531 		}
    532 
    533 		load_vfpregs(fregs);
    534 		armreg_fpscr_write(fregs->vfp_fpscr);
    535 
    536 		if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
    537 			/* Need to restore the exception handling state.  */
    538 			armreg_fpinst2_write(fregs->vfp_fpinst2);
    539 			if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
    540 				armreg_fpinst_write(fregs->vfp_fpinst);
    541 		}
    542 	} else {
    543 		/*
    544 		 * If the VFP is already enabled we must be bouncing an
    545 		 * instruction.
    546 		 */
    547 		armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
    548 	}
    549 }
    550 
    551 void
    552 vfp_state_save(lwp_t *l, u_int flags)
    553 {
    554 	struct pcb * const pcb = lwp_getpcb(l);
    555 	uint32_t fpexc = armreg_fpexc_read();
    556 
    557 	/*
    558 	 * Enable the VFP (so we can read the registers).
    559 	 * Make sure the exception bit is cleared so that we can
    560 	 * safely dump the registers.
    561 	 */
    562 	armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
    563 
    564 	if (flags & PCU_KERNEL) {
    565 		/*
    566 		 * Save the kernel set of VFP registers.
    567 		 * (just the first 16).
    568 		 */
    569 		save_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
    570 		return;
    571 	}
    572 
    573 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    574 
    575 	fregs->vfp_fpexc = fpexc;
    576 	if (fpexc & VFP_FPEXC_EX) {
    577 		/* Need to save the exception handling state */
    578 		fregs->vfp_fpinst = armreg_fpinst_read();
    579 		if (fpexc & VFP_FPEXC_FP2V)
    580 			fregs->vfp_fpinst2 = armreg_fpinst2_read();
    581 	}
    582 	fregs->vfp_fpscr = armreg_fpscr_read();
    583 	save_vfpregs(fregs);
    584 
    585 	/* Disable the VFP.  */
    586 	armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
    587 }
    588 
    589 void
    590 vfp_state_release(lwp_t *l, u_int flags)
    591 {
    592 	struct pcb * const pcb = lwp_getpcb(l);
    593 
    594 	if (flags & PCU_KERNEL) {
    595 		/*
    596 		 * Restore the FPEXC since we borrowed that field.
    597 		 */
    598 		pcb->pcb_vfp.vfp_fpexc = pcb->pcb_kernel_vfp.vfp_fpexc;
    599 	} else {
    600 		/*
    601 		 * Now mark the VFP as disabled (and our state
    602 		 * has been already saved or is being discarded).
    603 		 */
    604 		pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
    605 	}
    606 
    607 	/*
    608 	 * Turn off the FPU so the next time a VFP instruction is issued
    609 	 * an exception happens.  We don't know if this LWP's state was
    610 	 * loaded but if we turned off the FPU for some other LWP, when
    611 	 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
    612 	 * is still set so it just restore fpexc and return since its
    613 	 * contents are still sitting in the VFP.
    614 	 */
    615 	armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
    616 }
    617 
    618 void
    619 vfp_savecontext(void)
    620 {
    621 	pcu_save(&arm_vfp_ops);
    622 }
    623 
    624 void
    625 vfp_discardcontext(bool used_p)
    626 {
    627 	pcu_discard(&arm_vfp_ops, used_p);
    628 }
    629 
    630 bool
    631 vfp_used_p(void)
    632 {
    633 	return pcu_used_p(&arm_vfp_ops);
    634 }
    635 
    636 void
    637 vfp_kernel_acquire(void)
    638 {
    639 	if (__predict_false(cpu_intr_p())) {
    640 		armreg_fpexc_write(VFP_FPEXC_EN);
    641 		if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
    642 			lwp_t * const l = curlwp;
    643 			struct pcb * const pcb = lwp_getpcb(l);
    644 			KASSERT((l->l_md.md_flags & MDLWP_VFPINTR) == 0);
    645 			l->l_md.md_flags |= MDLWP_VFPINTR;
    646 			save_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
    647 		}
    648 	} else {
    649 		pcu_kernel_acquire(&arm_vfp_ops);
    650 	}
    651 }
    652 
    653 void
    654 vfp_kernel_release(void)
    655 {
    656 	if (__predict_false(cpu_intr_p())) {
    657 		uint32_t fpexc = 0;
    658 		if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
    659 			lwp_t * const l = curlwp;
    660 			struct pcb * const pcb = lwp_getpcb(l);
    661 			KASSERT(l->l_md.md_flags & MDLWP_VFPINTR);
    662 			load_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
    663 			l->l_md.md_flags &= ~MDLWP_VFPINTR;
    664 			fpexc = pcb->pcb_vfp.vfp_fpexc;
    665 		}
    666 		armreg_fpexc_write(fpexc);
    667 	} else {
    668 		pcu_kernel_release(&arm_vfp_ops);
    669 	}
    670 }
    671 
    672 void
    673 vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
    674 {
    675 	if (vfp_used_p()) {
    676 		const struct pcb * const pcb = lwp_getpcb(l);
    677 		pcu_save(&arm_vfp_ops);
    678 		mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
    679 		memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
    680 		    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    681 		*flagsp |= _UC_FPU|_UC_ARM_VFP;
    682 	}
    683 }
    684 
    685 void
    686 vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
    687 {
    688 	pcu_discard(&arm_vfp_ops, true);
    689 	struct pcb * const pcb = lwp_getpcb(l);
    690 	pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
    691 	memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
    692 	    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    693 }
    694 
    695 #endif /* FPU_VFP */
    696