Home | History | Annotate | Line # | Download | only in vfp
vfp_init.c revision 1.36
      1 /*      $NetBSD: vfp_init.c,v 1.36 2014/03/18 07:03:22 matt Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2008 ARM Ltd
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the company may not be used to endorse or promote
     16  *    products derived from this software without specific prior written
     17  *    permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
     20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
     23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     25  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     27  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/param.h>
     33 #include <sys/types.h>
     34 #include <sys/systm.h>
     35 #include <sys/device.h>
     36 #include <sys/proc.h>
     37 #include <sys/cpu.h>
     38 
     39 #include <arm/locore.h>
     40 #include <arm/pcb.h>
     41 #include <arm/undefined.h>
     42 #include <arm/vfpreg.h>
     43 #include <arm/mcontext.h>
     44 
     45 #include <uvm/uvm_extern.h>		/* for pmap.h */
     46 
     47 #ifdef FPU_VFP
     48 
     49 #ifdef CPU_CORTEX
     50 __asm(".fpu\tvfpv4");
     51 #else
     52 __asm(".fpu\tvfp");
     53 #endif
     54 
     55 /* FLDMD <X>, {d0-d15} */
     56 static inline void
     57 load_vfpregs_lo(const uint64_t *p)
     58 {
     59 	__asm __volatile("vldmia %0, {d0-d15}" :: "r" (p) : "memory");
     60 }
     61 
     62 /* FSTMD <X>, {d0-d15} */
     63 static inline void
     64 save_vfpregs_lo(uint64_t *p)
     65 {
     66 	__asm __volatile("vstmia %0, {d0-d15}" :: "r" (p) : "memory");
     67 }
     68 
     69 #ifdef CPU_CORTEX
     70 /* FLDMD <X>, {d16-d31} */
     71 static inline void
     72 load_vfpregs_hi(const uint64_t *p)
     73 {
     74 	__asm __volatile("vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
     75 }
     76 
     77 /* FLDMD <X>, {d16-d31} */
     78 static inline void
     79 save_vfpregs_hi(uint64_t *p)
     80 {
     81 	__asm __volatile("vstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
     82 }
     83 #endif
     84 
     85 static inline void
     86 load_vfpregs(const struct vfpreg *fregs)
     87 {
     88 	load_vfpregs_lo(fregs->vfp_regs);
     89 #ifdef CPU_CORTEX
     90 #ifdef CPU_ARM11
     91 	switch (curcpu()->ci_vfp_id) {
     92 	case FPU_VFP_CORTEXA5:
     93 	case FPU_VFP_CORTEXA7:
     94 	case FPU_VFP_CORTEXA8:
     95 	case FPU_VFP_CORTEXA9:
     96 	case FPU_VFP_CORTEXA15:
     97 #endif
     98 		load_vfpregs_hi(fregs->vfp_regs);
     99 #ifdef CPU_ARM11
    100 		break;
    101 	}
    102 #endif
    103 #endif
    104 }
    105 
    106 static inline void
    107 save_vfpregs(struct vfpreg *fregs)
    108 {
    109 	save_vfpregs_lo(fregs->vfp_regs);
    110 #ifdef CPU_CORTEX
    111 #ifdef CPU_ARM11
    112 	switch (curcpu()->ci_vfp_id) {
    113 	case FPU_VFP_CORTEXA5:
    114 	case FPU_VFP_CORTEXA7:
    115 	case FPU_VFP_CORTEXA8:
    116 	case FPU_VFP_CORTEXA9:
    117 	case FPU_VFP_CORTEXA15:
    118 #endif
    119 		save_vfpregs_hi(fregs->vfp_regs);
    120 #ifdef CPU_ARM11
    121 		break;
    122 	}
    123 #endif
    124 #endif
    125 }
    126 
    127 /* The real handler for VFP bounces.  */
    128 static int vfp_handler(u_int, u_int, trapframe_t *, int);
    129 #ifdef CPU_CORTEX
    130 static int neon_handler(u_int, u_int, trapframe_t *, int);
    131 #endif
    132 
    133 static void vfp_state_load(lwp_t *, u_int);
    134 static void vfp_state_save(lwp_t *, u_int);
    135 static void vfp_state_release(lwp_t *, u_int);
    136 
    137 const pcu_ops_t arm_vfp_ops = {
    138 	.pcu_id = PCU_FPU,
    139 	.pcu_state_save = vfp_state_save,
    140 	.pcu_state_load = vfp_state_load,
    141 	.pcu_state_release = vfp_state_release,
    142 };
    143 
    144 struct evcnt vfpevent_use;
    145 struct evcnt vfpevent_reuse;
    146 struct evcnt vfpevent_fpe;
    147 
    148 /* determine what bits can be changed */
    149 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
    150 /* default to run fast */
    151 uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
    152 
    153 /*
    154  * Used to test for a VFP. The following function is installed as a coproc10
    155  * handler on the undefined instruction vector and then we issue a VFP
    156  * instruction. If undefined_test is non zero then the VFP did not handle
    157  * the instruction so must be absent, or disabled.
    158  */
    159 
    160 static int undefined_test;
    161 
    162 static int
    163 vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    164 {
    165 
    166 	frame->tf_pc += INSN_SIZE;
    167 	++undefined_test;
    168 	return 0;
    169 }
    170 
    171 #else
    172 /* determine what bits can be changed */
    173 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
    174 #endif /* FPU_VFP */
    175 
    176 struct evcnt vfp_fpscr_ev =
    177     EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "VFP", "FPSCR traps");
    178 EVCNT_ATTACH_STATIC(vfp_fpscr_ev);
    179 
    180 static int
    181 vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    182 {
    183 	struct lwp * const l = curlwp;
    184 	const u_int regno = (insn >> 12) & 0xf;
    185 	/*
    186 	 * Only match move to/from the FPSCR register and we
    187 	 * can't be using the SP,LR,PC as a source.
    188 	 */
    189 	if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
    190 		return 1;
    191 
    192 	struct pcb * const pcb = lwp_getpcb(l);
    193 
    194 #ifdef FPU_VFP
    195 	/*
    196 	 * If FPU is valid somewhere, let's just reenable VFP and
    197 	 * retry the instruction (only safe thing to do since the
    198 	 * pcb has a stale copy).
    199 	 */
    200 	if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
    201 		return 1;
    202 
    203 	if (__predict_false(!vfp_used_p())) {
    204 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
    205 	}
    206 #endif
    207 
    208 	/*
    209 	 * We now know the pcb has the saved copy.
    210 	 */
    211 	register_t * const regp = &frame->tf_r0 + regno;
    212 	if (insn & 0x00100000) {
    213 		*regp = pcb->pcb_vfp.vfp_fpscr;
    214 	} else {
    215 		pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
    216 		pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
    217 	}
    218 
    219 	vfp_fpscr_ev.ev_count++;
    220 
    221 	frame->tf_pc += INSN_SIZE;
    222 	return 0;
    223 }
    224 
    225 #ifndef FPU_VFP
    226 /*
    227  * If we don't want VFP support, we still need to handle emulating VFP FPSCR
    228  * instructions.
    229  */
    230 void
    231 vfp_attach(void)
    232 {
    233 	install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    234 }
    235 
    236 #else
    237 #if 0
    238 static bool
    239 vfp_patch_branch(uintptr_t code, uintptr_t func, uintptr_t newfunc)
    240 {
    241 	for (;; code += sizeof(uint32_t)) {
    242 		uint32_t insn = *(uint32_t *)code;
    243 		if ((insn & 0xffd08000) == 0xe8908000)	/* ldm ... { pc } */
    244 			return false;
    245 		if ((insn & 0xfffffff0) == 0xe12fff10)	/* bx rN */
    246 			return false;
    247 		if ((insn & 0xf1a0f000) == 0xe1a0f000)	/* mov pc, ... */
    248 			return false;
    249 		if ((insn >> 25) != 0x75)		/* not b/bl insn */
    250 			continue;
    251 		intptr_t imm26 = ((int32_t)insn << 8) >> 6;
    252 		if (code + imm26 + 8 == func) {
    253 			int32_t imm24 = (newfunc - (code + 8)) >> 2;
    254 			uint32_t new_insn = (insn & 0xff000000)
    255 			   | (imm24 & 0xffffff);
    256 			KASSERTMSG((uint32_t)((imm24 >> 24) + 1) <= 1, "%x",
    257 			    ((imm24 >> 24) + 1));
    258 			*(uint32_t *)code = new_insn;
    259 			cpu_idcache_wbinv_range(code, sizeof(uint32_t));
    260 			return true;
    261 		}
    262 	}
    263 }
    264 #endif
    265 
    266 void
    267 vfp_attach(void)
    268 {
    269 	struct cpu_info * const ci = curcpu();
    270 	const char *model = NULL;
    271 
    272 	if (CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid)
    273 	    || CPU_ID_MV88SV58XX_P(curcpu()->ci_arm_cpuid)
    274 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
    275 		const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
    276 		const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
    277 
    278 		/*
    279 		 * We first need to enable access to the coprocessors.
    280 		 */
    281 		uint32_t cpacr = armreg_cpacr_read();
    282 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
    283 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
    284 #if 0
    285 		if (CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
    286 			/*
    287 			 * Disable access to the upper 16 FP registers and NEON.
    288 			 */
    289 			cpacr |= CPACR_V7_D32DIS;
    290 			cpacr |= CPACR_V7_ASEDIS;
    291 		}
    292 #endif
    293 		armreg_cpacr_write(cpacr);
    294 
    295 		/*
    296 		 * If we could enable them, then they exist.
    297 		 */
    298 		cpacr = armreg_cpacr_read();
    299 		bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) != CPACR_NOACCESS
    300 		    || __SHIFTOUT(cpacr, cpacr_vfp) != CPACR_NOACCESS;
    301 		if (!vfp_p) {
    302 			aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
    303 			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    304 			ci->ci_vfp_id = 0;
    305 			return;
    306 		}
    307 	}
    308 
    309 	void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
    310 
    311 	undefined_test = 0;
    312 
    313 	const uint32_t fpsid = armreg_fpsid_read();
    314 
    315 	remove_coproc_handler(uh);
    316 
    317 	if (undefined_test != 0) {
    318 		aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
    319 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    320 		ci->ci_vfp_id = 0;
    321 		return;
    322 	}
    323 
    324 	ci->ci_vfp_id = fpsid;
    325 	switch (fpsid & ~ VFP_FPSID_REV_MSK) {
    326 	case FPU_VFP10_ARM10E:
    327 		model = "VFP10 R1";
    328 		break;
    329 	case FPU_VFP11_ARM11:
    330 		model = "VFP11";
    331 		break;
    332 	case FPU_VFP_MV88SV58XX:
    333 		model = "VFP3";
    334 		break;
    335 	case FPU_VFP_CORTEXA5:
    336 	case FPU_VFP_CORTEXA7:
    337 	case FPU_VFP_CORTEXA8:
    338 	case FPU_VFP_CORTEXA9:
    339 	case FPU_VFP_CORTEXA15:
    340 		model = "NEON MPE (VFP 3.0+)";
    341 		cpu_neon_present = 1;
    342 		break;
    343 	default:
    344 		aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
    345 		    fpsid);
    346 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    347 		vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
    348 		    |VFP_FPSCR_RMODE;
    349 		vfp_fpscr_default = 0;
    350 		return;
    351 	}
    352 
    353 	cpu_fpu_present = 1;
    354 	cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
    355 	cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
    356 	if (fpsid != 0) {
    357 		uint32_t f0 = armreg_mvfr0_read();
    358 		uint32_t f1 = armreg_mvfr0_read();
    359 		aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
    360 		    device_unit(curcpu()->ci_dev),
    361 		    device_xname(curcpu()->ci_dev),
    362 		    model,
    363 		    ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
    364 		    ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
    365 		    ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propogation" : ""),
    366 		    ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
    367 		aprint_verbose("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
    368 		    device_unit(curcpu()->ci_dev), f0, f1);
    369 		if (cpu_media_and_vfp_features[0] & ARM_MVFR0_ROUNDING_MASK) {
    370 			vfp_fpscr_changable |= VFP_FPSCR_RMODE;
    371 		}
    372 		if (cpu_media_and_vfp_features[0] & ARM_MVFR0_EXCEPT_MASK) {
    373 			vfp_fpscr_changable |= VFP_FPSCR_ESUM;
    374 		}
    375 		// If hardware supports propogation of NaNs, select it.
    376 		if (cpu_media_and_vfp_features[1] & ARM_MVFR1_D_NAN_MASK) {
    377 			vfp_fpscr_default &= ~VFP_FPSCR_DN;
    378 			vfp_fpscr_changable |= VFP_FPSCR_DN;
    379 		}
    380 		// If hardware supports denormalized numbers, use it.
    381 		if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
    382 			vfp_fpscr_default &= ~VFP_FPSCR_FZ;
    383 			vfp_fpscr_changable |= VFP_FPSCR_FZ;
    384 		}
    385 	}
    386 	evcnt_attach_dynamic(&vfpevent_use, EVCNT_TYPE_MISC, NULL,
    387 	    "VFP", "coproc use");
    388 	evcnt_attach_dynamic(&vfpevent_reuse, EVCNT_TYPE_MISC, NULL,
    389 	    "VFP", "coproc re-use");
    390 	evcnt_attach_dynamic(&vfpevent_fpe, EVCNT_TYPE_TRAP, NULL,
    391 	    "VFP", "coproc fault");
    392 	install_coproc_handler(VFP_COPROC, vfp_handler);
    393 	install_coproc_handler(VFP_COPROC2, vfp_handler);
    394 #ifdef CPU_CORTEX
    395 	install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
    396 #endif
    397 
    398 #if 0
    399 	vfp_patch_branch((uintptr_t)pmap_copy_page_generic,
    400 	   (uintptr_t)bcopy_page, (uintptr_t)bcopy_page_vfp);
    401 	vfp_patch_branch((uintptr_t)pmap_zero_page_generic,
    402 	   (uintptr_t)bzero_page, (uintptr_t)bzero_page_vfp);
    403 #endif
    404 }
    405 
    406 /* The real handler for VFP bounces.  */
    407 static int
    408 vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    409 {
    410 	struct cpu_info * const ci = curcpu();
    411 
    412 	/* This shouldn't ever happen.  */
    413 	if (fault_code != FAULT_USER)
    414 		panic("VFP fault at %#x in non-user mode", frame->tf_pc);
    415 
    416 	if (ci->ci_vfp_id == 0) {
    417 		/* No VFP detected, just fault.  */
    418 		return 1;
    419 	}
    420 
    421 	/*
    422 	 * If we are just changing/fetching FPSCR, don't bother loading it.
    423 	 */
    424 	if (!vfp_fpscr_handler(address, insn, frame, fault_code))
    425 		return 0;
    426 
    427 	/*
    428 	 * Make sure we own the FP.
    429 	 */
    430 	pcu_load(&arm_vfp_ops);
    431 
    432 	uint32_t fpexc = armreg_fpexc_read();
    433 	if (fpexc & VFP_FPEXC_EX) {
    434 		ksiginfo_t ksi;
    435 		KASSERT(fpexc & VFP_FPEXC_EN);
    436 
    437 		vfpevent_fpe.ev_count++;
    438 
    439 		/*
    440 		 * Need the clear the exception condition so any signal
    441 		 * and future use can proceed.
    442 		 */
    443 		armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
    444 
    445 		pcu_save(&arm_vfp_ops);
    446 
    447 		/*
    448 		 * XXX Need to emulate bounce instructions here to get correct
    449 		 * XXX exception codes, etc.
    450 		 */
    451 		KSI_INIT_TRAP(&ksi);
    452 		ksi.ksi_signo = SIGFPE;
    453 		if (fpexc & VFP_FPEXC_IXF)
    454 			ksi.ksi_code = FPE_FLTRES;
    455 		else if (fpexc & VFP_FPEXC_UFF)
    456 			ksi.ksi_code = FPE_FLTUND;
    457 		else if (fpexc & VFP_FPEXC_OFF)
    458 			ksi.ksi_code = FPE_FLTOVF;
    459 		else if (fpexc & VFP_FPEXC_DZF)
    460 			ksi.ksi_code = FPE_FLTDIV;
    461 		else if (fpexc & VFP_FPEXC_IOF)
    462 			ksi.ksi_code = FPE_FLTINV;
    463 		ksi.ksi_addr = (uint32_t *)address;
    464 		ksi.ksi_trap = 0;
    465 		trapsignal(curlwp, &ksi);
    466 		return 0;
    467 	}
    468 
    469 	/* Need to restart the faulted instruction.  */
    470 //	frame->tf_pc -= INSN_SIZE;
    471 	return 0;
    472 }
    473 
    474 #ifdef CPU_CORTEX
    475 /* The real handler for NEON bounces.  */
    476 static int
    477 neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    478 {
    479 	struct cpu_info * const ci = curcpu();
    480 
    481 	if (ci->ci_vfp_id == 0)
    482 		/* No VFP detected, just fault.  */
    483 		return 1;
    484 
    485 	if ((insn & 0xfe000000) != 0xf2000000
    486 	    && (insn & 0xfe000000) != 0xf4000000)
    487 		/* Not NEON instruction, just fault.  */
    488 		return 1;
    489 
    490 	/* This shouldn't ever happen.  */
    491 	if (fault_code != FAULT_USER)
    492 		panic("NEON fault in non-user mode");
    493 
    494 	pcu_load(&arm_vfp_ops);
    495 
    496 	/* Need to restart the faulted instruction.  */
    497 //	frame->tf_pc -= INSN_SIZE;
    498 	return 0;
    499 }
    500 #endif
    501 
    502 static void
    503 vfp_state_load(lwp_t *l, u_int flags)
    504 {
    505 	struct pcb * const pcb = lwp_getpcb(l);
    506 
    507 	KASSERT(flags & PCU_ENABLE);
    508 
    509 	if (flags & PCU_KERNEL) {
    510 		if ((flags & PCU_LOADED) == 0) {
    511 			pcb->pcb_kernel_vfp.vfp_fpexc = pcb->pcb_vfp.vfp_fpexc;
    512 		}
    513 		pcb->pcb_vfp.vfp_fpexc = VFP_FPEXC_EN;
    514 		armreg_fpexc_write(pcb->pcb_vfp.vfp_fpexc);
    515 		/*
    516 		 * Load the kernel registers (just the first 16) if they've
    517 		 * been used..
    518 		 */
    519 		if (flags & PCU_LOADED) {
    520 			load_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
    521 		}
    522 		return;
    523 	}
    524 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    525 
    526 	/*
    527 	 * Instrument VFP usage -- if a process has not previously
    528 	 * used the VFP, mark it as having used VFP for the first time,
    529 	 * and count this event.
    530 	 *
    531 	 * If a process has used the VFP, count a "used VFP, and took
    532 	 * a trap to use it again" event.
    533 	 */
    534 	if (__predict_false((flags & PCU_LOADED) == 0)) {
    535 		KASSERT(flags & PCU_RELOAD);
    536 		vfpevent_use.ev_count++;
    537 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
    538 	} else {
    539 		vfpevent_reuse.ev_count++;
    540 	}
    541 
    542 	uint32_t fpexc = armreg_fpexc_read();
    543 	if (flags & PCU_RELOAD) {
    544 		bool enabled = fregs->vfp_fpexc & VFP_FPEXC_EN;
    545 
    546 		/*
    547 		 * Load and Enable the VFP (so that we can write the
    548 		 * registers).
    549 		 */
    550 		fregs->vfp_fpexc |= VFP_FPEXC_EN;
    551 		armreg_fpexc_write(fregs->vfp_fpexc);
    552 		if (enabled) {
    553 			/*
    554 			 * If we think the VFP is enabled, it must have be
    555 			 * disabled by vfp_state_release for another LWP so
    556 			 * we can now just return.
    557 			 */
    558 			return;
    559 		}
    560 
    561 		load_vfpregs(fregs);
    562 		armreg_fpscr_write(fregs->vfp_fpscr);
    563 
    564 		if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
    565 			/* Need to restore the exception handling state.  */
    566 			armreg_fpinst2_write(fregs->vfp_fpinst2);
    567 			if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
    568 				armreg_fpinst_write(fregs->vfp_fpinst);
    569 		}
    570 	} else {
    571 		/*
    572 		 * If the VFP is already enabled we must be bouncing an
    573 		 * instruction.
    574 		 */
    575 		armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
    576 	}
    577 }
    578 
    579 void
    580 vfp_state_save(lwp_t *l, u_int flags)
    581 {
    582 	struct pcb * const pcb = lwp_getpcb(l);
    583 	uint32_t fpexc = armreg_fpexc_read();
    584 
    585 	/*
    586 	 * Enable the VFP (so we can read the registers).
    587 	 * Make sure the exception bit is cleared so that we can
    588 	 * safely dump the registers.
    589 	 */
    590 	armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
    591 
    592 	if (flags & PCU_KERNEL) {
    593 		/*
    594 		 * Save the kernel set of VFP registers.
    595 		 * (just the first 16).
    596 		 */
    597 		save_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
    598 		return;
    599 	}
    600 
    601 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    602 
    603 	fregs->vfp_fpexc = fpexc;
    604 	if (fpexc & VFP_FPEXC_EX) {
    605 		/* Need to save the exception handling state */
    606 		fregs->vfp_fpinst = armreg_fpinst_read();
    607 		if (fpexc & VFP_FPEXC_FP2V)
    608 			fregs->vfp_fpinst2 = armreg_fpinst2_read();
    609 	}
    610 	fregs->vfp_fpscr = armreg_fpscr_read();
    611 	save_vfpregs(fregs);
    612 
    613 	/* Disable the VFP.  */
    614 	armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
    615 }
    616 
    617 void
    618 vfp_state_release(lwp_t *l, u_int flags)
    619 {
    620 	struct pcb * const pcb = lwp_getpcb(l);
    621 
    622 	if (flags & PCU_KERNEL) {
    623 		/*
    624 		 * Restore the FPEXC since we borrowed that field.
    625 		 */
    626 		pcb->pcb_vfp.vfp_fpexc = pcb->pcb_kernel_vfp.vfp_fpexc;
    627 	} else {
    628 		/*
    629 		 * Now mark the VFP as disabled (and our state
    630 		 * has been already saved or is being discarded).
    631 		 */
    632 		pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
    633 	}
    634 
    635 	/*
    636 	 * Turn off the FPU so the next time a VFP instruction is issued
    637 	 * an exception happens.  We don't know if this LWP's state was
    638 	 * loaded but if we turned off the FPU for some other LWP, when
    639 	 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
    640 	 * is still set so it just restore fpexc and return since its
    641 	 * contents are still sitting in the VFP.
    642 	 */
    643 	armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
    644 }
    645 
    646 void
    647 vfp_savecontext(void)
    648 {
    649 	pcu_save(&arm_vfp_ops);
    650 }
    651 
    652 void
    653 vfp_discardcontext(bool used_p)
    654 {
    655 	pcu_discard(&arm_vfp_ops, used_p);
    656 }
    657 
    658 bool
    659 vfp_used_p(void)
    660 {
    661 	return pcu_used_p(&arm_vfp_ops);
    662 }
    663 
    664 void
    665 vfp_kernel_acquire(void)
    666 {
    667 	if (__predict_false(cpu_intr_p())) {
    668 		armreg_fpexc_write(VFP_FPEXC_EN);
    669 		if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
    670 			lwp_t * const l = curlwp;
    671 			struct pcb * const pcb = lwp_getpcb(l);
    672 			KASSERT((l->l_md.md_flags & MDLWP_VFPINTR) == 0);
    673 			l->l_md.md_flags |= MDLWP_VFPINTR;
    674 			save_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
    675 		}
    676 	} else {
    677 		pcu_kernel_acquire(&arm_vfp_ops);
    678 	}
    679 }
    680 
    681 void
    682 vfp_kernel_release(void)
    683 {
    684 	if (__predict_false(cpu_intr_p())) {
    685 		uint32_t fpexc = 0;
    686 		if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
    687 			lwp_t * const l = curlwp;
    688 			struct pcb * const pcb = lwp_getpcb(l);
    689 			KASSERT(l->l_md.md_flags & MDLWP_VFPINTR);
    690 			load_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
    691 			l->l_md.md_flags &= ~MDLWP_VFPINTR;
    692 			fpexc = pcb->pcb_vfp.vfp_fpexc;
    693 		}
    694 		armreg_fpexc_write(fpexc);
    695 	} else {
    696 		pcu_kernel_release(&arm_vfp_ops);
    697 	}
    698 }
    699 
    700 void
    701 vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
    702 {
    703 	if (vfp_used_p()) {
    704 		const struct pcb * const pcb = lwp_getpcb(l);
    705 		pcu_save(&arm_vfp_ops);
    706 		mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
    707 		memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
    708 		    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    709 		*flagsp |= _UC_FPU|_UC_ARM_VFP;
    710 	}
    711 }
    712 
    713 void
    714 vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
    715 {
    716 	pcu_discard(&arm_vfp_ops, true);
    717 	struct pcb * const pcb = lwp_getpcb(l);
    718 	pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
    719 	memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
    720 	    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    721 }
    722 
    723 #endif /* FPU_VFP */
    724