vfp_init.c revision 1.50 1 /* $NetBSD: vfp_init.c,v 1.50 2016/03/03 17:01:31 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2008 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 * products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/systm.h>
35 #include <sys/device.h>
36 #include <sys/proc.h>
37 #include <sys/cpu.h>
38
39 #include <arm/locore.h>
40 #include <arm/pcb.h>
41 #include <arm/undefined.h>
42 #include <arm/vfpreg.h>
43 #include <arm/mcontext.h>
44
45 #include <uvm/uvm_extern.h> /* for pmap.h */
46
47 #ifdef FPU_VFP
48
49 #ifdef CPU_CORTEX
50 __asm(".fpu\tvfpv4");
51 #else
52 __asm(".fpu\tvfp");
53 #endif
54
55 /* FLDMD <X>, {d0-d15} */
56 static inline void
57 load_vfpregs_lo(const uint64_t *p)
58 {
59 __asm __volatile("vldmia %0, {d0-d15}" :: "r" (p) : "memory");
60 }
61
62 /* FSTMD <X>, {d0-d15} */
63 static inline void
64 save_vfpregs_lo(uint64_t *p)
65 {
66 __asm __volatile("vstmia %0, {d0-d15}" :: "r" (p) : "memory");
67 }
68
69 #ifdef CPU_CORTEX
70 /* FLDMD <X>, {d16-d31} */
71 static inline void
72 load_vfpregs_hi(const uint64_t *p)
73 {
74 __asm __volatile("vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
75 }
76
77 /* FLDMD <X>, {d16-d31} */
78 static inline void
79 save_vfpregs_hi(uint64_t *p)
80 {
81 __asm __volatile("vstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
82 }
83 #endif
84
85 static inline void
86 load_vfpregs(const struct vfpreg *fregs)
87 {
88 load_vfpregs_lo(fregs->vfp_regs);
89 #ifdef CPU_CORTEX
90 #ifdef CPU_ARM11
91 switch (curcpu()->ci_vfp_id) {
92 case FPU_VFP_CORTEXA5:
93 case FPU_VFP_CORTEXA7:
94 case FPU_VFP_CORTEXA8:
95 case FPU_VFP_CORTEXA9:
96 case FPU_VFP_CORTEXA15:
97 case FPU_VFP_CORTEXA15_QEMU:
98 case FPU_VFP_CORTEXA53:
99 #endif
100 load_vfpregs_hi(fregs->vfp_regs);
101 #ifdef CPU_ARM11
102 break;
103 }
104 #endif
105 #endif
106 }
107
108 static inline void
109 save_vfpregs(struct vfpreg *fregs)
110 {
111 save_vfpregs_lo(fregs->vfp_regs);
112 #ifdef CPU_CORTEX
113 #ifdef CPU_ARM11
114 switch (curcpu()->ci_vfp_id) {
115 case FPU_VFP_CORTEXA5:
116 case FPU_VFP_CORTEXA7:
117 case FPU_VFP_CORTEXA8:
118 case FPU_VFP_CORTEXA9:
119 case FPU_VFP_CORTEXA15:
120 case FPU_VFP_CORTEXA15_QEMU:
121 case FPU_VFP_CORTEXA53:
122 #endif
123 save_vfpregs_hi(fregs->vfp_regs);
124 #ifdef CPU_ARM11
125 break;
126 }
127 #endif
128 #endif
129 }
130
131 /* The real handler for VFP bounces. */
132 static int vfp_handler(u_int, u_int, trapframe_t *, int);
133 #ifdef CPU_CORTEX
134 static int neon_handler(u_int, u_int, trapframe_t *, int);
135 #endif
136
137 static void vfp_state_load(lwp_t *, u_int);
138 static void vfp_state_save(lwp_t *);
139 static void vfp_state_release(lwp_t *);
140
141 const pcu_ops_t arm_vfp_ops = {
142 .pcu_id = PCU_FPU,
143 .pcu_state_save = vfp_state_save,
144 .pcu_state_load = vfp_state_load,
145 .pcu_state_release = vfp_state_release,
146 };
147
148 /* determine what bits can be changed */
149 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
150 /* default to run fast */
151 uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
152
153 /*
154 * Used to test for a VFP. The following function is installed as a coproc10
155 * handler on the undefined instruction vector and then we issue a VFP
156 * instruction. If undefined_test is non zero then the VFP did not handle
157 * the instruction so must be absent, or disabled.
158 */
159
160 static int undefined_test;
161
162 static int
163 vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
164 {
165
166 frame->tf_pc += INSN_SIZE;
167 ++undefined_test;
168 return 0;
169 }
170
171 #else
172 /* determine what bits can be changed */
173 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
174 #endif /* FPU_VFP */
175
176 static int
177 vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
178 {
179 struct lwp * const l = curlwp;
180 const u_int regno = (insn >> 12) & 0xf;
181 /*
182 * Only match move to/from the FPSCR register and we
183 * can't be using the SP,LR,PC as a source.
184 */
185 if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
186 return 1;
187
188 struct pcb * const pcb = lwp_getpcb(l);
189
190 #ifdef FPU_VFP
191 /*
192 * If FPU is valid somewhere, let's just reenable VFP and
193 * retry the instruction (only safe thing to do since the
194 * pcb has a stale copy).
195 */
196 if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
197 return 1;
198
199 if (__predict_false(!vfp_used_p())) {
200 pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
201 }
202 #endif
203
204 /*
205 * We now know the pcb has the saved copy.
206 */
207 register_t * const regp = &frame->tf_r0 + regno;
208 if (insn & 0x00100000) {
209 *regp = pcb->pcb_vfp.vfp_fpscr;
210 } else {
211 pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
212 pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
213 }
214
215 curcpu()->ci_vfp_evs[0].ev_count++;
216
217 frame->tf_pc += INSN_SIZE;
218 return 0;
219 }
220
221 #ifndef FPU_VFP
222 /*
223 * If we don't want VFP support, we still need to handle emulating VFP FPSCR
224 * instructions.
225 */
226 void
227 vfp_attach(struct cpu_info *ci)
228 {
229 if (CPU_IS_PRIMARY(ci)) {
230 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
231 }
232 evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
233 ci->ci_cpuname, "vfp fpscr traps");
234 }
235
236 #else
237 void
238 vfp_attach(struct cpu_info *ci)
239 {
240 const char *model = NULL;
241
242 if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
243 || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
244 || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
245 #if 0
246 const uint32_t nsacr = armreg_nsacr_read();
247 const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
248 if ((nsacr & nsacr_vfp) != nsacr_vfp) {
249 aprint_normal_dev(ci->ci_dev,
250 "VFP access denied (NSACR=%#x)\n", nsacr);
251 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
252 ci->ci_vfp_id = 0;
253 evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
254 EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
255 "vfp fpscr traps");
256 return;
257 }
258 #endif
259 const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
260 const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
261
262 /*
263 * We first need to enable access to the coprocessors.
264 */
265 uint32_t cpacr = armreg_cpacr_read();
266 cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
267 cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
268 armreg_cpacr_write(cpacr);
269
270 arm_isb();
271
272 /*
273 * If we could enable them, then they exist.
274 */
275 cpacr = armreg_cpacr_read();
276 bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
277 && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
278 if (!vfp_p) {
279 aprint_normal_dev(ci->ci_dev,
280 "VFP access denied (CPACR=%#x)\n", cpacr);
281 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
282 ci->ci_vfp_id = 0;
283 evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
284 EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
285 "vfp fpscr traps");
286 return;
287 }
288 }
289
290 void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
291
292 undefined_test = 0;
293
294 const uint32_t fpsid = armreg_fpsid_read();
295
296 remove_coproc_handler(uh);
297
298 if (undefined_test != 0) {
299 aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
300 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
301 ci->ci_vfp_id = 0;
302 return;
303 }
304
305 ci->ci_vfp_id = fpsid;
306 switch (fpsid & ~ VFP_FPSID_REV_MSK) {
307 case FPU_VFP10_ARM10E:
308 model = "VFP10 R1";
309 break;
310 case FPU_VFP11_ARM11:
311 model = "VFP11";
312 break;
313 case FPU_VFP_MV88SV58XX:
314 model = "VFP3";
315 break;
316 case FPU_VFP_CORTEXA5:
317 case FPU_VFP_CORTEXA7:
318 case FPU_VFP_CORTEXA8:
319 case FPU_VFP_CORTEXA9:
320 case FPU_VFP_CORTEXA15:
321 case FPU_VFP_CORTEXA15_QEMU:
322 case FPU_VFP_CORTEXA53:
323 if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
324 model = "VFP 4.0+";
325 } else {
326 model = "NEON MPE (VFP 3.0+)";
327 cpu_neon_present = 1;
328 }
329 break;
330 default:
331 aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
332 fpsid);
333 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
334 vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
335 |VFP_FPSCR_RMODE;
336 vfp_fpscr_default = 0;
337 return;
338 }
339
340 cpu_fpu_present = 1;
341 cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
342 cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
343 if (fpsid != 0) {
344 uint32_t f0 = armreg_mvfr0_read();
345 uint32_t f1 = armreg_mvfr1_read();
346 aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
347 device_unit(ci->ci_dev),
348 device_xname(ci->ci_dev),
349 model,
350 ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
351 ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
352 ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
353 ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
354 aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
355 device_unit(ci->ci_dev), f0, f1);
356 if (CPU_IS_PRIMARY(ci)) {
357 if (f0 & ARM_MVFR0_ROUNDING_MASK) {
358 vfp_fpscr_changable |= VFP_FPSCR_RMODE;
359 }
360 if (f1 & ARM_MVFR0_EXCEPT_MASK) {
361 vfp_fpscr_changable |= VFP_FPSCR_ESUM;
362 }
363 // If hardware supports propagation of NaNs, select it.
364 if (f1 & ARM_MVFR1_D_NAN_MASK) {
365 vfp_fpscr_default &= ~VFP_FPSCR_DN;
366 vfp_fpscr_changable |= VFP_FPSCR_DN;
367 }
368 // If hardware supports denormalized numbers, use it.
369 if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
370 vfp_fpscr_default &= ~VFP_FPSCR_FZ;
371 vfp_fpscr_changable |= VFP_FPSCR_FZ;
372 }
373 }
374 }
375 evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
376 ci->ci_cpuname, "vfp coproc use");
377 evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
378 ci->ci_cpuname, "vfp coproc re-use");
379 evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
380 ci->ci_cpuname, "vfp coproc fault");
381 install_coproc_handler(VFP_COPROC, vfp_handler);
382 install_coproc_handler(VFP_COPROC2, vfp_handler);
383 #ifdef CPU_CORTEX
384 if (cpu_neon_present)
385 install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
386 #endif
387 }
388
389 /* The real handler for VFP bounces. */
390 static int
391 vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
392 {
393 struct cpu_info * const ci = curcpu();
394
395 /* This shouldn't ever happen. */
396 if (fault_code != FAULT_USER)
397 panic("VFP fault at %#x in non-user mode", frame->tf_pc);
398
399 if (ci->ci_vfp_id == 0) {
400 /* No VFP detected, just fault. */
401 return 1;
402 }
403
404 /*
405 * If we are just changing/fetching FPSCR, don't bother loading it
406 * just emulate the instruction.
407 */
408 if (!vfp_fpscr_handler(address, insn, frame, fault_code))
409 return 0;
410
411 /*
412 * If we already own the FPU and it's enabled (and no exception), raise
413 * SIGILL. If there is an exception, drop through to raise a SIGFPE.
414 */
415 if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
416 && (armreg_fpexc_read() & (VFP_FPEXC_EX|VFP_FPEXC_EN)) == VFP_FPEXC_EN)
417 return 1;
418
419 /*
420 * Make sure we own the FP.
421 */
422 pcu_load(&arm_vfp_ops);
423
424 uint32_t fpexc = armreg_fpexc_read();
425 if (fpexc & VFP_FPEXC_EX) {
426 ksiginfo_t ksi;
427 KASSERT(fpexc & VFP_FPEXC_EN);
428
429 curcpu()->ci_vfp_evs[2].ev_count++;
430
431 /*
432 * Need the clear the exception condition so any signal
433 * and future use can proceed.
434 */
435 armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
436
437 pcu_save(&arm_vfp_ops);
438
439 /*
440 * XXX Need to emulate bounce instructions here to get correct
441 * XXX exception codes, etc.
442 */
443 KSI_INIT_TRAP(&ksi);
444 ksi.ksi_signo = SIGFPE;
445 if (fpexc & VFP_FPEXC_IXF)
446 ksi.ksi_code = FPE_FLTRES;
447 else if (fpexc & VFP_FPEXC_UFF)
448 ksi.ksi_code = FPE_FLTUND;
449 else if (fpexc & VFP_FPEXC_OFF)
450 ksi.ksi_code = FPE_FLTOVF;
451 else if (fpexc & VFP_FPEXC_DZF)
452 ksi.ksi_code = FPE_FLTDIV;
453 else if (fpexc & VFP_FPEXC_IOF)
454 ksi.ksi_code = FPE_FLTINV;
455 ksi.ksi_addr = (uint32_t *)address;
456 ksi.ksi_trap = 0;
457 trapsignal(curlwp, &ksi);
458 return 0;
459 }
460
461 /* Need to restart the faulted instruction. */
462 // frame->tf_pc -= INSN_SIZE;
463 return 0;
464 }
465
466 #ifdef CPU_CORTEX
467 /* The real handler for NEON bounces. */
468 static int
469 neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
470 {
471 struct cpu_info * const ci = curcpu();
472
473 if (ci->ci_vfp_id == 0)
474 /* No VFP detected, just fault. */
475 return 1;
476
477 if ((insn & 0xfe000000) != 0xf2000000
478 && (insn & 0xfe000000) != 0xf4000000)
479 /* Not NEON instruction, just fault. */
480 return 1;
481
482 /* This shouldn't ever happen. */
483 if (fault_code != FAULT_USER)
484 panic("NEON fault in non-user mode");
485
486 /* if we already own the FPU and it's enabled, raise SIGILL */
487 if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
488 && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
489 return 1;
490
491 pcu_load(&arm_vfp_ops);
492
493 /* Need to restart the faulted instruction. */
494 // frame->tf_pc -= INSN_SIZE;
495 return 0;
496 }
497 #endif
498
499 static void
500 vfp_state_load(lwp_t *l, u_int flags)
501 {
502 struct pcb * const pcb = lwp_getpcb(l);
503 struct vfpreg * const fregs = &pcb->pcb_vfp;
504
505 /*
506 * Instrument VFP usage -- if a process has not previously
507 * used the VFP, mark it as having used VFP for the first time,
508 * and count this event.
509 *
510 * If a process has used the VFP, count a "used VFP, and took
511 * a trap to use it again" event.
512 */
513 if (__predict_false((flags & PCU_VALID) == 0)) {
514 curcpu()->ci_vfp_evs[0].ev_count++;
515 pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
516 } else {
517 curcpu()->ci_vfp_evs[1].ev_count++;
518 }
519
520 /*
521 * If the VFP is already enabled we must be bouncing an instruction.
522 */
523 if (flags & PCU_REENABLE) {
524 uint32_t fpexc = armreg_fpexc_read();
525 armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
526 return;
527 }
528
529 /*
530 * Load and Enable the VFP (so that we can write the registers).
531 */
532 bool enabled = fregs->vfp_fpexc & VFP_FPEXC_EN;
533 fregs->vfp_fpexc |= VFP_FPEXC_EN;
534 armreg_fpexc_write(fregs->vfp_fpexc);
535 if (enabled) {
536 /*
537 * If we think the VFP is enabled, it must have be
538 * disabled by vfp_state_release for another LWP so
539 * we can now just return.
540 */
541 return;
542 }
543
544 load_vfpregs(fregs);
545 armreg_fpscr_write(fregs->vfp_fpscr);
546
547 if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
548 /* Need to restore the exception handling state. */
549 armreg_fpinst2_write(fregs->vfp_fpinst2);
550 if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
551 armreg_fpinst_write(fregs->vfp_fpinst);
552 }
553 }
554
555 void
556 vfp_state_save(lwp_t *l)
557 {
558 struct pcb * const pcb = lwp_getpcb(l);
559 struct vfpreg * const fregs = &pcb->pcb_vfp;
560 uint32_t fpexc = armreg_fpexc_read();
561
562 /*
563 * Enable the VFP (so we can read the registers).
564 * Make sure the exception bit is cleared so that we can
565 * safely dump the registers.
566 */
567 armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
568
569 fregs->vfp_fpexc = fpexc;
570 if (fpexc & VFP_FPEXC_EX) {
571 /* Need to save the exception handling state */
572 fregs->vfp_fpinst = armreg_fpinst_read();
573 if (fpexc & VFP_FPEXC_FP2V)
574 fregs->vfp_fpinst2 = armreg_fpinst2_read();
575 }
576 fregs->vfp_fpscr = armreg_fpscr_read();
577 save_vfpregs(fregs);
578
579 /* Disable the VFP. */
580 armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
581 }
582
583 void
584 vfp_state_release(lwp_t *l)
585 {
586 struct pcb * const pcb = lwp_getpcb(l);
587
588 /*
589 * Now mark the VFP as disabled (and our state
590 * has been already saved or is being discarded).
591 */
592 pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
593
594 /*
595 * Turn off the FPU so the next time a VFP instruction is issued
596 * an exception happens. We don't know if this LWP's state was
597 * loaded but if we turned off the FPU for some other LWP, when
598 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
599 * is still set so it just restore fpexc and return since its
600 * contents are still sitting in the VFP.
601 */
602 armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
603 }
604
605 void
606 vfp_savecontext(void)
607 {
608 pcu_save(&arm_vfp_ops);
609 }
610
611 void
612 vfp_discardcontext(bool used_p)
613 {
614 pcu_discard(&arm_vfp_ops, used_p);
615 }
616
617 bool
618 vfp_used_p(void)
619 {
620 return pcu_valid_p(&arm_vfp_ops);
621 }
622
623 void
624 vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
625 {
626 if (vfp_used_p()) {
627 const struct pcb * const pcb = lwp_getpcb(l);
628 pcu_save(&arm_vfp_ops);
629 mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
630 memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
631 sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
632 *flagsp |= _UC_FPU|_UC_ARM_VFP;
633 }
634 }
635
636 void
637 vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
638 {
639 pcu_discard(&arm_vfp_ops, true);
640 struct pcb * const pcb = lwp_getpcb(l);
641 pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
642 memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
643 sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
644 }
645
646 #endif /* FPU_VFP */
647