vfp_init.c revision 1.54 1 /* $NetBSD: vfp_init.c,v 1.54 2017/10/16 15:08:24 bouyer Exp $ */
2
3 /*
4 * Copyright (c) 2008 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 * products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/systm.h>
35 #include <sys/device.h>
36 #include <sys/proc.h>
37 #include <sys/cpu.h>
38
39 #include <arm/locore.h>
40 #include <arm/pcb.h>
41 #include <arm/undefined.h>
42 #include <arm/vfpreg.h>
43 #include <arm/mcontext.h>
44
45 #include <uvm/uvm_extern.h> /* for pmap.h */
46
47 #ifdef FPU_VFP
48
49 #ifdef CPU_CORTEX
50 __asm(".fpu\tvfpv4");
51 #else
52 __asm(".fpu\tvfp");
53 #endif
54
55 /* FLDMD <X>, {d0-d15} */
56 static inline void
57 load_vfpregs_lo(const uint64_t *p)
58 {
59 __asm __volatile("vldmia %0, {d0-d15}" :: "r" (p) : "memory");
60 }
61
62 /* FSTMD <X>, {d0-d15} */
63 static inline void
64 save_vfpregs_lo(uint64_t *p)
65 {
66 __asm __volatile("vstmia %0, {d0-d15}" :: "r" (p) : "memory");
67 }
68
69 #ifdef CPU_CORTEX
70 /* FLDMD <X>, {d16-d31} */
71 static inline void
72 load_vfpregs_hi(const uint64_t *p)
73 {
74 __asm __volatile("vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
75 }
76
77 /* FLDMD <X>, {d16-d31} */
78 static inline void
79 save_vfpregs_hi(uint64_t *p)
80 {
81 __asm __volatile("vstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
82 }
83 #endif
84
85 static inline void
86 load_vfpregs(const struct vfpreg *fregs)
87 {
88 load_vfpregs_lo(fregs->vfp_regs);
89 #ifdef CPU_CORTEX
90 #ifdef CPU_ARM11
91 switch (curcpu()->ci_vfp_id) {
92 case FPU_VFP_CORTEXA5:
93 case FPU_VFP_CORTEXA7:
94 case FPU_VFP_CORTEXA8:
95 case FPU_VFP_CORTEXA9:
96 case FPU_VFP_CORTEXA15:
97 case FPU_VFP_CORTEXA15_QEMU:
98 case FPU_VFP_CORTEXA53:
99 case FPU_VFP_CORTEXA57:
100 #endif
101 load_vfpregs_hi(fregs->vfp_regs);
102 #ifdef CPU_ARM11
103 break;
104 }
105 #endif
106 #endif
107 }
108
109 static inline void
110 save_vfpregs(struct vfpreg *fregs)
111 {
112 save_vfpregs_lo(fregs->vfp_regs);
113 #ifdef CPU_CORTEX
114 #ifdef CPU_ARM11
115 switch (curcpu()->ci_vfp_id) {
116 case FPU_VFP_CORTEXA5:
117 case FPU_VFP_CORTEXA7:
118 case FPU_VFP_CORTEXA8:
119 case FPU_VFP_CORTEXA9:
120 case FPU_VFP_CORTEXA15:
121 case FPU_VFP_CORTEXA15_QEMU:
122 case FPU_VFP_CORTEXA53:
123 case FPU_VFP_CORTEXA57:
124 #endif
125 save_vfpregs_hi(fregs->vfp_regs);
126 #ifdef CPU_ARM11
127 break;
128 }
129 #endif
130 #endif
131 }
132
133 /* The real handler for VFP bounces. */
134 static int vfp_handler(u_int, u_int, trapframe_t *, int);
135 #ifdef CPU_CORTEX
136 static int neon_handler(u_int, u_int, trapframe_t *, int);
137 #endif
138
139 static void vfp_state_load(lwp_t *, u_int);
140 static void vfp_state_save(lwp_t *);
141 static void vfp_state_release(lwp_t *);
142
143 const pcu_ops_t arm_vfp_ops = {
144 .pcu_id = PCU_FPU,
145 .pcu_state_save = vfp_state_save,
146 .pcu_state_load = vfp_state_load,
147 .pcu_state_release = vfp_state_release,
148 };
149
150 /* determine what bits can be changed */
151 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
152 /* default to run fast */
153 uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
154
155 /*
156 * Used to test for a VFP. The following function is installed as a coproc10
157 * handler on the undefined instruction vector and then we issue a VFP
158 * instruction. If undefined_test is non zero then the VFP did not handle
159 * the instruction so must be absent, or disabled.
160 */
161
162 static int undefined_test;
163
164 static int
165 vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
166 {
167
168 frame->tf_pc += INSN_SIZE;
169 ++undefined_test;
170 return 0;
171 }
172
173 #else
174 /* determine what bits can be changed */
175 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
176 #endif /* FPU_VFP */
177
178 static int
179 vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
180 {
181 struct lwp * const l = curlwp;
182 const u_int regno = (insn >> 12) & 0xf;
183 /*
184 * Only match move to/from the FPSCR register and we
185 * can't be using the SP,LR,PC as a source.
186 */
187 if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
188 return 1;
189
190 struct pcb * const pcb = lwp_getpcb(l);
191
192 #ifdef FPU_VFP
193 /*
194 * If FPU is valid somewhere, let's just reenable VFP and
195 * retry the instruction (only safe thing to do since the
196 * pcb has a stale copy).
197 */
198 if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
199 return 1;
200
201 if (__predict_false(!vfp_used_p(l))) {
202 pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
203 }
204 #endif
205
206 /*
207 * We now know the pcb has the saved copy.
208 */
209 register_t * const regp = &frame->tf_r0 + regno;
210 if (insn & 0x00100000) {
211 *regp = pcb->pcb_vfp.vfp_fpscr;
212 } else {
213 pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
214 pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
215 }
216
217 curcpu()->ci_vfp_evs[0].ev_count++;
218
219 frame->tf_pc += INSN_SIZE;
220 return 0;
221 }
222
223 #ifndef FPU_VFP
224 /*
225 * If we don't want VFP support, we still need to handle emulating VFP FPSCR
226 * instructions.
227 */
228 void
229 vfp_attach(struct cpu_info *ci)
230 {
231 if (CPU_IS_PRIMARY(ci)) {
232 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
233 }
234 evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
235 ci->ci_cpuname, "vfp fpscr traps");
236 }
237
238 #else
239 void
240 vfp_attach(struct cpu_info *ci)
241 {
242 const char *model = NULL;
243
244 if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
245 || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
246 || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
247 #if 0
248 const uint32_t nsacr = armreg_nsacr_read();
249 const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
250 if ((nsacr & nsacr_vfp) != nsacr_vfp) {
251 aprint_normal_dev(ci->ci_dev,
252 "VFP access denied (NSACR=%#x)\n", nsacr);
253 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
254 ci->ci_vfp_id = 0;
255 evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
256 EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
257 "vfp fpscr traps");
258 return;
259 }
260 #endif
261 const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
262 const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
263
264 /*
265 * We first need to enable access to the coprocessors.
266 */
267 uint32_t cpacr = armreg_cpacr_read();
268 cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
269 cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
270 armreg_cpacr_write(cpacr);
271
272 arm_isb();
273
274 /*
275 * If we could enable them, then they exist.
276 */
277 cpacr = armreg_cpacr_read();
278 bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
279 && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
280 if (!vfp_p) {
281 aprint_normal_dev(ci->ci_dev,
282 "VFP access denied (CPACR=%#x)\n", cpacr);
283 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
284 ci->ci_vfp_id = 0;
285 evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
286 EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
287 "vfp fpscr traps");
288 return;
289 }
290 }
291
292 void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
293
294 undefined_test = 0;
295
296 const uint32_t fpsid = armreg_fpsid_read();
297
298 remove_coproc_handler(uh);
299
300 if (undefined_test != 0) {
301 aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
302 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
303 ci->ci_vfp_id = 0;
304 return;
305 }
306
307 ci->ci_vfp_id = fpsid;
308 switch (fpsid & ~ VFP_FPSID_REV_MSK) {
309 case FPU_VFP10_ARM10E:
310 model = "VFP10 R1";
311 break;
312 case FPU_VFP11_ARM11:
313 model = "VFP11";
314 break;
315 case FPU_VFP_MV88SV58XX:
316 model = "VFP3";
317 break;
318 case FPU_VFP_CORTEXA5:
319 case FPU_VFP_CORTEXA7:
320 case FPU_VFP_CORTEXA8:
321 case FPU_VFP_CORTEXA9:
322 case FPU_VFP_CORTEXA15:
323 case FPU_VFP_CORTEXA15_QEMU:
324 case FPU_VFP_CORTEXA53:
325 case FPU_VFP_CORTEXA57:
326 if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
327 model = "VFP 4.0+";
328 } else {
329 model = "NEON MPE (VFP 3.0+)";
330 cpu_neon_present = 1;
331 }
332 break;
333 default:
334 aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
335 fpsid);
336 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
337 vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
338 |VFP_FPSCR_RMODE;
339 vfp_fpscr_default = 0;
340 return;
341 }
342
343 cpu_fpu_present = 1;
344 cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
345 cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
346 if (fpsid != 0) {
347 uint32_t f0 = armreg_mvfr0_read();
348 uint32_t f1 = armreg_mvfr1_read();
349 aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
350 device_unit(ci->ci_dev),
351 device_xname(ci->ci_dev),
352 model,
353 ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
354 ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
355 ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
356 ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
357 aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
358 device_unit(ci->ci_dev), f0, f1);
359 if (CPU_IS_PRIMARY(ci)) {
360 if (f0 & ARM_MVFR0_ROUNDING_MASK) {
361 vfp_fpscr_changable |= VFP_FPSCR_RMODE;
362 }
363 if (f1 & ARM_MVFR0_EXCEPT_MASK) {
364 vfp_fpscr_changable |= VFP_FPSCR_ESUM;
365 }
366 // If hardware supports propagation of NaNs, select it.
367 if (f1 & ARM_MVFR1_D_NAN_MASK) {
368 vfp_fpscr_default &= ~VFP_FPSCR_DN;
369 vfp_fpscr_changable |= VFP_FPSCR_DN;
370 }
371 // If hardware supports denormalized numbers, use it.
372 if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
373 vfp_fpscr_default &= ~VFP_FPSCR_FZ;
374 vfp_fpscr_changable |= VFP_FPSCR_FZ;
375 }
376 }
377 }
378 evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
379 ci->ci_cpuname, "vfp coproc use");
380 evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
381 ci->ci_cpuname, "vfp coproc re-use");
382 evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
383 ci->ci_cpuname, "vfp coproc fault");
384 install_coproc_handler(VFP_COPROC, vfp_handler);
385 install_coproc_handler(VFP_COPROC2, vfp_handler);
386 #ifdef CPU_CORTEX
387 if (cpu_neon_present)
388 install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
389 #endif
390 }
391
392 /* The real handler for VFP bounces. */
393 static int
394 vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
395 {
396 struct cpu_info * const ci = curcpu();
397
398 /* This shouldn't ever happen. */
399 if (fault_code != FAULT_USER)
400 panic("VFP fault at %#x in non-user mode", frame->tf_pc);
401
402 if (ci->ci_vfp_id == 0) {
403 /* No VFP detected, just fault. */
404 return 1;
405 }
406
407 /*
408 * If we are just changing/fetching FPSCR, don't bother loading it
409 * just emulate the instruction.
410 */
411 if (!vfp_fpscr_handler(address, insn, frame, fault_code))
412 return 0;
413
414 /*
415 * If we already own the FPU and it's enabled (and no exception), raise
416 * SIGILL. If there is an exception, drop through to raise a SIGFPE.
417 */
418 if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
419 && (armreg_fpexc_read() & (VFP_FPEXC_EX|VFP_FPEXC_EN)) == VFP_FPEXC_EN)
420 return 1;
421
422 /*
423 * Make sure we own the FP.
424 */
425 pcu_load(&arm_vfp_ops);
426
427 uint32_t fpexc = armreg_fpexc_read();
428 if (fpexc & VFP_FPEXC_EX) {
429 ksiginfo_t ksi;
430 KASSERT(fpexc & VFP_FPEXC_EN);
431
432 curcpu()->ci_vfp_evs[2].ev_count++;
433
434 /*
435 * Need the clear the exception condition so any signal
436 * and future use can proceed.
437 */
438 armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
439
440 pcu_save(&arm_vfp_ops, curlwp);
441
442 /*
443 * XXX Need to emulate bounce instructions here to get correct
444 * XXX exception codes, etc.
445 */
446 KSI_INIT_TRAP(&ksi);
447 ksi.ksi_signo = SIGFPE;
448 if (fpexc & VFP_FPEXC_IXF)
449 ksi.ksi_code = FPE_FLTRES;
450 else if (fpexc & VFP_FPEXC_UFF)
451 ksi.ksi_code = FPE_FLTUND;
452 else if (fpexc & VFP_FPEXC_OFF)
453 ksi.ksi_code = FPE_FLTOVF;
454 else if (fpexc & VFP_FPEXC_DZF)
455 ksi.ksi_code = FPE_FLTDIV;
456 else if (fpexc & VFP_FPEXC_IOF)
457 ksi.ksi_code = FPE_FLTINV;
458 ksi.ksi_addr = (uint32_t *)address;
459 ksi.ksi_trap = 0;
460 trapsignal(curlwp, &ksi);
461 return 0;
462 }
463
464 /* Need to restart the faulted instruction. */
465 // frame->tf_pc -= INSN_SIZE;
466 return 0;
467 }
468
469 #ifdef CPU_CORTEX
470 /* The real handler for NEON bounces. */
471 static int
472 neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
473 {
474 struct cpu_info * const ci = curcpu();
475
476 if (ci->ci_vfp_id == 0)
477 /* No VFP detected, just fault. */
478 return 1;
479
480 if ((insn & 0xfe000000) != 0xf2000000
481 && (insn & 0xfe000000) != 0xf4000000)
482 /* Not NEON instruction, just fault. */
483 return 1;
484
485 /* This shouldn't ever happen. */
486 if (fault_code != FAULT_USER)
487 panic("NEON fault in non-user mode");
488
489 /* if we already own the FPU and it's enabled, raise SIGILL */
490 if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
491 && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
492 return 1;
493
494 pcu_load(&arm_vfp_ops);
495
496 /* Need to restart the faulted instruction. */
497 // frame->tf_pc -= INSN_SIZE;
498 return 0;
499 }
500 #endif
501
502 static void
503 vfp_state_load(lwp_t *l, u_int flags)
504 {
505 struct pcb * const pcb = lwp_getpcb(l);
506 struct vfpreg * const fregs = &pcb->pcb_vfp;
507
508 /*
509 * Instrument VFP usage -- if a process has not previously
510 * used the VFP, mark it as having used VFP for the first time,
511 * and count this event.
512 *
513 * If a process has used the VFP, count a "used VFP, and took
514 * a trap to use it again" event.
515 */
516 if (__predict_false((flags & PCU_VALID) == 0)) {
517 curcpu()->ci_vfp_evs[0].ev_count++;
518 pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
519 } else {
520 curcpu()->ci_vfp_evs[1].ev_count++;
521 }
522
523 KASSERT((armreg_fpexc_read() & VFP_FPEXC_EN) == 0);
524 /*
525 * If the VFP is already enabled we must be bouncing an instruction.
526 */
527 if (flags & PCU_REENABLE) {
528 uint32_t fpexc = armreg_fpexc_read();
529 armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
530 fregs->vfp_fpexc |= VFP_FPEXC_EN;
531 return;
532 }
533 KASSERT((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0);
534
535 /*
536 * Load and Enable the VFP (so that we can write the registers).
537 */
538 bool enabled = fregs->vfp_fpexc & VFP_FPEXC_EN;
539 fregs->vfp_fpexc |= VFP_FPEXC_EN;
540 armreg_fpexc_write(fregs->vfp_fpexc);
541 if (enabled) {
542 /*
543 * If we think the VFP is enabled, it must have be
544 * disabled by vfp_state_release for another LWP so
545 * we can now just return.
546 */
547 return;
548 }
549 KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == NULL);
550 KASSERT(l->l_pcu_cpu[PCU_FPU] == NULL);
551
552 load_vfpregs(fregs);
553 armreg_fpscr_write(fregs->vfp_fpscr);
554
555 if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
556 /* Need to restore the exception handling state. */
557 armreg_fpinst_write(fregs->vfp_fpinst);
558 if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
559 armreg_fpinst2_write(fregs->vfp_fpinst2);
560 }
561 }
562
563 void
564 vfp_state_save(lwp_t *l)
565 {
566 struct pcb * const pcb = lwp_getpcb(l);
567 struct vfpreg * const fregs = &pcb->pcb_vfp;
568 uint32_t fpexc = armreg_fpexc_read();
569
570 KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == l);
571 KASSERT(curcpu() == l->l_pcu_cpu[PCU_FPU]);
572 KASSERT(curlwp == l || curlwp->l_pcu_cpu[PCU_FPU] != curcpu());
573 /*
574 * Enable the VFP (so we can read the registers).
575 * Make sure the exception bit is cleared so that we can
576 * safely dump the registers.
577 */
578 armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
579
580 fregs->vfp_fpexc = fpexc;
581 if (fpexc & VFP_FPEXC_EX) {
582 /* Need to save the exception handling state */
583 fregs->vfp_fpinst = armreg_fpinst_read();
584 if (fpexc & VFP_FPEXC_FP2V)
585 fregs->vfp_fpinst2 = armreg_fpinst2_read();
586 }
587 fregs->vfp_fpscr = armreg_fpscr_read();
588 save_vfpregs(fregs);
589
590 /* Disable the VFP. */
591 armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
592 }
593
594 void
595 vfp_state_release(lwp_t *l)
596 {
597 struct pcb * const pcb = lwp_getpcb(l);
598
599 /*
600 * Now mark the VFP as disabled (and our state
601 * has been already saved or is being discarded).
602 */
603 pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
604
605 /*
606 * Turn off the FPU so the next time a VFP instruction is issued
607 * an exception happens. We don't know if this LWP's state was
608 * loaded but if we turned off the FPU for some other LWP, when
609 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
610 * is still set so it just restore fpexc and return since its
611 * contents are still sitting in the VFP.
612 */
613 armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
614 }
615
616 void
617 vfp_savecontext(lwp_t *l)
618 {
619 pcu_save(&arm_vfp_ops, l);
620 }
621
622 void
623 vfp_discardcontext(lwp_t *l, bool used_p)
624 {
625 pcu_discard(&arm_vfp_ops, l, used_p);
626 }
627
628 bool
629 vfp_used_p(const lwp_t *l)
630 {
631 return pcu_valid_p(&arm_vfp_ops, l);
632 }
633
634 void
635 vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
636 {
637 if (vfp_used_p(l)) {
638 const struct pcb * const pcb = lwp_getpcb(l);
639
640 pcu_save(&arm_vfp_ops, l);
641 mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
642 memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
643 sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
644 *flagsp |= _UC_FPU|_UC_ARM_VFP;
645 }
646 }
647
648 void
649 vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
650 {
651 struct pcb * const pcb = lwp_getpcb(l);
652
653 pcu_discard(&arm_vfp_ops, l, true);
654 pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
655 memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
656 sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
657 }
658
659 #endif /* FPU_VFP */
660