Home | History | Annotate | Line # | Download | only in vfp
vfp_init.c revision 1.54
      1 /*      $NetBSD: vfp_init.c,v 1.54 2017/10/16 15:08:24 bouyer Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2008 ARM Ltd
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the company may not be used to endorse or promote
     16  *    products derived from this software without specific prior written
     17  *    permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
     20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
     23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     25  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     27  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/param.h>
     33 #include <sys/types.h>
     34 #include <sys/systm.h>
     35 #include <sys/device.h>
     36 #include <sys/proc.h>
     37 #include <sys/cpu.h>
     38 
     39 #include <arm/locore.h>
     40 #include <arm/pcb.h>
     41 #include <arm/undefined.h>
     42 #include <arm/vfpreg.h>
     43 #include <arm/mcontext.h>
     44 
     45 #include <uvm/uvm_extern.h>		/* for pmap.h */
     46 
     47 #ifdef FPU_VFP
     48 
     49 #ifdef CPU_CORTEX
     50 __asm(".fpu\tvfpv4");
     51 #else
     52 __asm(".fpu\tvfp");
     53 #endif
     54 
     55 /* FLDMD <X>, {d0-d15} */
     56 static inline void
     57 load_vfpregs_lo(const uint64_t *p)
     58 {
     59 	__asm __volatile("vldmia %0, {d0-d15}" :: "r" (p) : "memory");
     60 }
     61 
     62 /* FSTMD <X>, {d0-d15} */
     63 static inline void
     64 save_vfpregs_lo(uint64_t *p)
     65 {
     66 	__asm __volatile("vstmia %0, {d0-d15}" :: "r" (p) : "memory");
     67 }
     68 
     69 #ifdef CPU_CORTEX
     70 /* FLDMD <X>, {d16-d31} */
     71 static inline void
     72 load_vfpregs_hi(const uint64_t *p)
     73 {
     74 	__asm __volatile("vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
     75 }
     76 
     77 /* FLDMD <X>, {d16-d31} */
     78 static inline void
     79 save_vfpregs_hi(uint64_t *p)
     80 {
     81 	__asm __volatile("vstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
     82 }
     83 #endif
     84 
     85 static inline void
     86 load_vfpregs(const struct vfpreg *fregs)
     87 {
     88 	load_vfpregs_lo(fregs->vfp_regs);
     89 #ifdef CPU_CORTEX
     90 #ifdef CPU_ARM11
     91 	switch (curcpu()->ci_vfp_id) {
     92 	case FPU_VFP_CORTEXA5:
     93 	case FPU_VFP_CORTEXA7:
     94 	case FPU_VFP_CORTEXA8:
     95 	case FPU_VFP_CORTEXA9:
     96 	case FPU_VFP_CORTEXA15:
     97 	case FPU_VFP_CORTEXA15_QEMU:
     98 	case FPU_VFP_CORTEXA53:
     99 	case FPU_VFP_CORTEXA57:
    100 #endif
    101 		load_vfpregs_hi(fregs->vfp_regs);
    102 #ifdef CPU_ARM11
    103 		break;
    104 	}
    105 #endif
    106 #endif
    107 }
    108 
    109 static inline void
    110 save_vfpregs(struct vfpreg *fregs)
    111 {
    112 	save_vfpregs_lo(fregs->vfp_regs);
    113 #ifdef CPU_CORTEX
    114 #ifdef CPU_ARM11
    115 	switch (curcpu()->ci_vfp_id) {
    116 	case FPU_VFP_CORTEXA5:
    117 	case FPU_VFP_CORTEXA7:
    118 	case FPU_VFP_CORTEXA8:
    119 	case FPU_VFP_CORTEXA9:
    120 	case FPU_VFP_CORTEXA15:
    121 	case FPU_VFP_CORTEXA15_QEMU:
    122 	case FPU_VFP_CORTEXA53:
    123 	case FPU_VFP_CORTEXA57:
    124 #endif
    125 		save_vfpregs_hi(fregs->vfp_regs);
    126 #ifdef CPU_ARM11
    127 		break;
    128 	}
    129 #endif
    130 #endif
    131 }
    132 
    133 /* The real handler for VFP bounces.  */
    134 static int vfp_handler(u_int, u_int, trapframe_t *, int);
    135 #ifdef CPU_CORTEX
    136 static int neon_handler(u_int, u_int, trapframe_t *, int);
    137 #endif
    138 
    139 static void vfp_state_load(lwp_t *, u_int);
    140 static void vfp_state_save(lwp_t *);
    141 static void vfp_state_release(lwp_t *);
    142 
    143 const pcu_ops_t arm_vfp_ops = {
    144 	.pcu_id = PCU_FPU,
    145 	.pcu_state_save = vfp_state_save,
    146 	.pcu_state_load = vfp_state_load,
    147 	.pcu_state_release = vfp_state_release,
    148 };
    149 
    150 /* determine what bits can be changed */
    151 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
    152 /* default to run fast */
    153 uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
    154 
    155 /*
    156  * Used to test for a VFP. The following function is installed as a coproc10
    157  * handler on the undefined instruction vector and then we issue a VFP
    158  * instruction. If undefined_test is non zero then the VFP did not handle
    159  * the instruction so must be absent, or disabled.
    160  */
    161 
    162 static int undefined_test;
    163 
    164 static int
    165 vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    166 {
    167 
    168 	frame->tf_pc += INSN_SIZE;
    169 	++undefined_test;
    170 	return 0;
    171 }
    172 
    173 #else
    174 /* determine what bits can be changed */
    175 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
    176 #endif /* FPU_VFP */
    177 
    178 static int
    179 vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    180 {
    181 	struct lwp * const l = curlwp;
    182 	const u_int regno = (insn >> 12) & 0xf;
    183 	/*
    184 	 * Only match move to/from the FPSCR register and we
    185 	 * can't be using the SP,LR,PC as a source.
    186 	 */
    187 	if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
    188 		return 1;
    189 
    190 	struct pcb * const pcb = lwp_getpcb(l);
    191 
    192 #ifdef FPU_VFP
    193 	/*
    194 	 * If FPU is valid somewhere, let's just reenable VFP and
    195 	 * retry the instruction (only safe thing to do since the
    196 	 * pcb has a stale copy).
    197 	 */
    198 	if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
    199 		return 1;
    200 
    201 	if (__predict_false(!vfp_used_p(l))) {
    202 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
    203 	}
    204 #endif
    205 
    206 	/*
    207 	 * We now know the pcb has the saved copy.
    208 	 */
    209 	register_t * const regp = &frame->tf_r0 + regno;
    210 	if (insn & 0x00100000) {
    211 		*regp = pcb->pcb_vfp.vfp_fpscr;
    212 	} else {
    213 		pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
    214 		pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
    215 	}
    216 
    217 	curcpu()->ci_vfp_evs[0].ev_count++;
    218 
    219 	frame->tf_pc += INSN_SIZE;
    220 	return 0;
    221 }
    222 
    223 #ifndef FPU_VFP
    224 /*
    225  * If we don't want VFP support, we still need to handle emulating VFP FPSCR
    226  * instructions.
    227  */
    228 void
    229 vfp_attach(struct cpu_info *ci)
    230 {
    231 	if (CPU_IS_PRIMARY(ci)) {
    232 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    233 	}
    234 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
    235 	    ci->ci_cpuname, "vfp fpscr traps");
    236 }
    237 
    238 #else
    239 void
    240 vfp_attach(struct cpu_info *ci)
    241 {
    242 	const char *model = NULL;
    243 
    244 	if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
    245 	    || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
    246 	    || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
    247 #if 0
    248 		const uint32_t nsacr = armreg_nsacr_read();
    249 		const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
    250 		if ((nsacr & nsacr_vfp) != nsacr_vfp) {
    251 			aprint_normal_dev(ci->ci_dev,
    252 			    "VFP access denied (NSACR=%#x)\n", nsacr);
    253 			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    254 			ci->ci_vfp_id = 0;
    255 			evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
    256 			    EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
    257 			    "vfp fpscr traps");
    258 			return;
    259 		}
    260 #endif
    261 		const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
    262 		const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
    263 
    264 		/*
    265 		 * We first need to enable access to the coprocessors.
    266 		 */
    267 		uint32_t cpacr = armreg_cpacr_read();
    268 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
    269 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
    270 		armreg_cpacr_write(cpacr);
    271 
    272 		arm_isb();
    273 
    274 		/*
    275 		 * If we could enable them, then they exist.
    276 		 */
    277 		cpacr = armreg_cpacr_read();
    278 		bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
    279 		    && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
    280 		if (!vfp_p) {
    281 			aprint_normal_dev(ci->ci_dev,
    282 			    "VFP access denied (CPACR=%#x)\n", cpacr);
    283 			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    284 			ci->ci_vfp_id = 0;
    285 			evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
    286 			    EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
    287 			    "vfp fpscr traps");
    288 			return;
    289 		}
    290 	}
    291 
    292 	void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
    293 
    294 	undefined_test = 0;
    295 
    296 	const uint32_t fpsid = armreg_fpsid_read();
    297 
    298 	remove_coproc_handler(uh);
    299 
    300 	if (undefined_test != 0) {
    301 		aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
    302 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    303 		ci->ci_vfp_id = 0;
    304 		return;
    305 	}
    306 
    307 	ci->ci_vfp_id = fpsid;
    308 	switch (fpsid & ~ VFP_FPSID_REV_MSK) {
    309 	case FPU_VFP10_ARM10E:
    310 		model = "VFP10 R1";
    311 		break;
    312 	case FPU_VFP11_ARM11:
    313 		model = "VFP11";
    314 		break;
    315 	case FPU_VFP_MV88SV58XX:
    316 		model = "VFP3";
    317 		break;
    318 	case FPU_VFP_CORTEXA5:
    319 	case FPU_VFP_CORTEXA7:
    320 	case FPU_VFP_CORTEXA8:
    321 	case FPU_VFP_CORTEXA9:
    322 	case FPU_VFP_CORTEXA15:
    323 	case FPU_VFP_CORTEXA15_QEMU:
    324 	case FPU_VFP_CORTEXA53:
    325 	case FPU_VFP_CORTEXA57:
    326 		if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
    327 			model = "VFP 4.0+";
    328 		} else {
    329 			model = "NEON MPE (VFP 3.0+)";
    330 			cpu_neon_present = 1;
    331 		}
    332 		break;
    333 	default:
    334 		aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
    335 		    fpsid);
    336 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    337 		vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
    338 		    |VFP_FPSCR_RMODE;
    339 		vfp_fpscr_default = 0;
    340 		return;
    341 	}
    342 
    343 	cpu_fpu_present = 1;
    344 	cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
    345 	cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
    346 	if (fpsid != 0) {
    347 		uint32_t f0 = armreg_mvfr0_read();
    348 		uint32_t f1 = armreg_mvfr1_read();
    349 		aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
    350 		    device_unit(ci->ci_dev),
    351 		    device_xname(ci->ci_dev),
    352 		    model,
    353 		    ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
    354 		    ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
    355 		    ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
    356 		    ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
    357 		aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
    358 		    device_unit(ci->ci_dev), f0, f1);
    359 		if (CPU_IS_PRIMARY(ci)) {
    360 			if (f0 & ARM_MVFR0_ROUNDING_MASK) {
    361 				vfp_fpscr_changable |= VFP_FPSCR_RMODE;
    362 			}
    363 			if (f1 & ARM_MVFR0_EXCEPT_MASK) {
    364 				vfp_fpscr_changable |= VFP_FPSCR_ESUM;
    365 			}
    366 			// If hardware supports propagation of NaNs, select it.
    367 			if (f1 & ARM_MVFR1_D_NAN_MASK) {
    368 				vfp_fpscr_default &= ~VFP_FPSCR_DN;
    369 				vfp_fpscr_changable |= VFP_FPSCR_DN;
    370 			}
    371 			// If hardware supports denormalized numbers, use it.
    372 			if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
    373 				vfp_fpscr_default &= ~VFP_FPSCR_FZ;
    374 				vfp_fpscr_changable |= VFP_FPSCR_FZ;
    375 			}
    376 		}
    377 	}
    378 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
    379 	    ci->ci_cpuname, "vfp coproc use");
    380 	evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
    381 	    ci->ci_cpuname, "vfp coproc re-use");
    382 	evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
    383 	    ci->ci_cpuname, "vfp coproc fault");
    384 	install_coproc_handler(VFP_COPROC, vfp_handler);
    385 	install_coproc_handler(VFP_COPROC2, vfp_handler);
    386 #ifdef CPU_CORTEX
    387 	if (cpu_neon_present)
    388 		install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
    389 #endif
    390 }
    391 
    392 /* The real handler for VFP bounces.  */
    393 static int
    394 vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    395 {
    396 	struct cpu_info * const ci = curcpu();
    397 
    398 	/* This shouldn't ever happen.  */
    399 	if (fault_code != FAULT_USER)
    400 		panic("VFP fault at %#x in non-user mode", frame->tf_pc);
    401 
    402 	if (ci->ci_vfp_id == 0) {
    403 		/* No VFP detected, just fault.  */
    404 		return 1;
    405 	}
    406 
    407 	/*
    408 	 * If we are just changing/fetching FPSCR, don't bother loading it
    409 	 * just emulate the instruction.
    410 	 */
    411 	if (!vfp_fpscr_handler(address, insn, frame, fault_code))
    412 		return 0;
    413 
    414 	/*
    415 	 * If we already own the FPU and it's enabled (and no exception), raise
    416 	 * SIGILL.  If there is an exception, drop through to raise a SIGFPE.
    417 	 */
    418 	if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
    419 	    && (armreg_fpexc_read() & (VFP_FPEXC_EX|VFP_FPEXC_EN)) == VFP_FPEXC_EN)
    420 		return 1;
    421 
    422 	/*
    423 	 * Make sure we own the FP.
    424 	 */
    425 	pcu_load(&arm_vfp_ops);
    426 
    427 	uint32_t fpexc = armreg_fpexc_read();
    428 	if (fpexc & VFP_FPEXC_EX) {
    429 		ksiginfo_t ksi;
    430 		KASSERT(fpexc & VFP_FPEXC_EN);
    431 
    432 		curcpu()->ci_vfp_evs[2].ev_count++;
    433 
    434 		/*
    435 		 * Need the clear the exception condition so any signal
    436 		 * and future use can proceed.
    437 		 */
    438 		armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
    439 
    440 		pcu_save(&arm_vfp_ops, curlwp);
    441 
    442 		/*
    443 		 * XXX Need to emulate bounce instructions here to get correct
    444 		 * XXX exception codes, etc.
    445 		 */
    446 		KSI_INIT_TRAP(&ksi);
    447 		ksi.ksi_signo = SIGFPE;
    448 		if (fpexc & VFP_FPEXC_IXF)
    449 			ksi.ksi_code = FPE_FLTRES;
    450 		else if (fpexc & VFP_FPEXC_UFF)
    451 			ksi.ksi_code = FPE_FLTUND;
    452 		else if (fpexc & VFP_FPEXC_OFF)
    453 			ksi.ksi_code = FPE_FLTOVF;
    454 		else if (fpexc & VFP_FPEXC_DZF)
    455 			ksi.ksi_code = FPE_FLTDIV;
    456 		else if (fpexc & VFP_FPEXC_IOF)
    457 			ksi.ksi_code = FPE_FLTINV;
    458 		ksi.ksi_addr = (uint32_t *)address;
    459 		ksi.ksi_trap = 0;
    460 		trapsignal(curlwp, &ksi);
    461 		return 0;
    462 	}
    463 
    464 	/* Need to restart the faulted instruction.  */
    465 //	frame->tf_pc -= INSN_SIZE;
    466 	return 0;
    467 }
    468 
    469 #ifdef CPU_CORTEX
    470 /* The real handler for NEON bounces.  */
    471 static int
    472 neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    473 {
    474 	struct cpu_info * const ci = curcpu();
    475 
    476 	if (ci->ci_vfp_id == 0)
    477 		/* No VFP detected, just fault.  */
    478 		return 1;
    479 
    480 	if ((insn & 0xfe000000) != 0xf2000000
    481 	    && (insn & 0xfe000000) != 0xf4000000)
    482 		/* Not NEON instruction, just fault.  */
    483 		return 1;
    484 
    485 	/* This shouldn't ever happen.  */
    486 	if (fault_code != FAULT_USER)
    487 		panic("NEON fault in non-user mode");
    488 
    489 	/* if we already own the FPU and it's enabled, raise SIGILL */
    490 	if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
    491 	    && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
    492 		return 1;
    493 
    494 	pcu_load(&arm_vfp_ops);
    495 
    496 	/* Need to restart the faulted instruction.  */
    497 //	frame->tf_pc -= INSN_SIZE;
    498 	return 0;
    499 }
    500 #endif
    501 
    502 static void
    503 vfp_state_load(lwp_t *l, u_int flags)
    504 {
    505 	struct pcb * const pcb = lwp_getpcb(l);
    506 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    507 
    508 	/*
    509 	 * Instrument VFP usage -- if a process has not previously
    510 	 * used the VFP, mark it as having used VFP for the first time,
    511 	 * and count this event.
    512 	 *
    513 	 * If a process has used the VFP, count a "used VFP, and took
    514 	 * a trap to use it again" event.
    515 	 */
    516 	if (__predict_false((flags & PCU_VALID) == 0)) {
    517 		curcpu()->ci_vfp_evs[0].ev_count++;
    518 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
    519 	} else {
    520 		curcpu()->ci_vfp_evs[1].ev_count++;
    521 	}
    522 
    523 	KASSERT((armreg_fpexc_read() & VFP_FPEXC_EN) == 0);
    524 	/*
    525 	 * If the VFP is already enabled we must be bouncing an instruction.
    526 	 */
    527 	if (flags & PCU_REENABLE) {
    528 		uint32_t fpexc = armreg_fpexc_read();
    529 		armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
    530 		fregs->vfp_fpexc |= VFP_FPEXC_EN;
    531 		return;
    532 	}
    533 	KASSERT((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0);
    534 
    535 	/*
    536 	 * Load and Enable the VFP (so that we can write the registers).
    537 	 */
    538 	bool enabled = fregs->vfp_fpexc & VFP_FPEXC_EN;
    539 	fregs->vfp_fpexc |= VFP_FPEXC_EN;
    540 	armreg_fpexc_write(fregs->vfp_fpexc);
    541 	if (enabled) {
    542 		/*
    543 		 * If we think the VFP is enabled, it must have be
    544 		 * disabled by vfp_state_release for another LWP so
    545 		 * we can now just return.
    546 		 */
    547 		return;
    548 	}
    549 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == NULL);
    550 	KASSERT(l->l_pcu_cpu[PCU_FPU] == NULL);
    551 
    552 	load_vfpregs(fregs);
    553 	armreg_fpscr_write(fregs->vfp_fpscr);
    554 
    555 	if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
    556 		/* Need to restore the exception handling state.  */
    557 		armreg_fpinst_write(fregs->vfp_fpinst);
    558 		if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
    559 			armreg_fpinst2_write(fregs->vfp_fpinst2);
    560 	}
    561 }
    562 
    563 void
    564 vfp_state_save(lwp_t *l)
    565 {
    566 	struct pcb * const pcb = lwp_getpcb(l);
    567 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    568 	uint32_t fpexc = armreg_fpexc_read();
    569 
    570 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == l);
    571 	KASSERT(curcpu() == l->l_pcu_cpu[PCU_FPU]);
    572 	KASSERT(curlwp == l || curlwp->l_pcu_cpu[PCU_FPU] != curcpu());
    573 	/*
    574 	 * Enable the VFP (so we can read the registers).
    575 	 * Make sure the exception bit is cleared so that we can
    576 	 * safely dump the registers.
    577 	 */
    578 	armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
    579 
    580 	fregs->vfp_fpexc = fpexc;
    581 	if (fpexc & VFP_FPEXC_EX) {
    582 		/* Need to save the exception handling state */
    583 		fregs->vfp_fpinst = armreg_fpinst_read();
    584 		if (fpexc & VFP_FPEXC_FP2V)
    585 			fregs->vfp_fpinst2 = armreg_fpinst2_read();
    586 	}
    587 	fregs->vfp_fpscr = armreg_fpscr_read();
    588 	save_vfpregs(fregs);
    589 
    590 	/* Disable the VFP.  */
    591 	armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
    592 }
    593 
    594 void
    595 vfp_state_release(lwp_t *l)
    596 {
    597 	struct pcb * const pcb = lwp_getpcb(l);
    598 
    599 	/*
    600 	 * Now mark the VFP as disabled (and our state
    601 	 * has been already saved or is being discarded).
    602 	 */
    603 	pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
    604 
    605 	/*
    606 	 * Turn off the FPU so the next time a VFP instruction is issued
    607 	 * an exception happens.  We don't know if this LWP's state was
    608 	 * loaded but if we turned off the FPU for some other LWP, when
    609 	 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
    610 	 * is still set so it just restore fpexc and return since its
    611 	 * contents are still sitting in the VFP.
    612 	 */
    613 	armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
    614 }
    615 
    616 void
    617 vfp_savecontext(lwp_t *l)
    618 {
    619 	pcu_save(&arm_vfp_ops, l);
    620 }
    621 
    622 void
    623 vfp_discardcontext(lwp_t *l, bool used_p)
    624 {
    625 	pcu_discard(&arm_vfp_ops, l, used_p);
    626 }
    627 
    628 bool
    629 vfp_used_p(const lwp_t *l)
    630 {
    631 	return pcu_valid_p(&arm_vfp_ops, l);
    632 }
    633 
    634 void
    635 vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
    636 {
    637 	if (vfp_used_p(l)) {
    638 		const struct pcb * const pcb = lwp_getpcb(l);
    639 
    640 		pcu_save(&arm_vfp_ops, l);
    641 		mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
    642 		memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
    643 		    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    644 		*flagsp |= _UC_FPU|_UC_ARM_VFP;
    645 	}
    646 }
    647 
    648 void
    649 vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
    650 {
    651 	struct pcb * const pcb = lwp_getpcb(l);
    652 
    653 	pcu_discard(&arm_vfp_ops, l, true);
    654 	pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
    655 	memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
    656 	    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    657 }
    658 
    659 #endif /* FPU_VFP */
    660