vfp_init.c revision 1.58 1 /* $NetBSD: vfp_init.c,v 1.58 2018/08/15 05:52:15 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2008 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 * products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: vfp_init.c,v 1.58 2018/08/15 05:52:15 skrll Exp $");
34
35 #include <sys/param.h>
36 #include <sys/types.h>
37 #include <sys/systm.h>
38 #include <sys/device.h>
39 #include <sys/proc.h>
40 #include <sys/cpu.h>
41
42 #include <arm/locore.h>
43 #include <arm/pcb.h>
44 #include <arm/undefined.h>
45 #include <arm/vfpreg.h>
46 #include <arm/mcontext.h>
47
48 #include <uvm/uvm_extern.h> /* for pmap.h */
49
50 #ifdef FPU_VFP
51
52 #ifdef CPU_CORTEX
53 #define SETFPU __asm(".fpu\tvfpv4")
54 #else
55 #define SETFPU __asm(".fpu\tvfp")
56 #endif
57 SETFPU;
58
59 /* FLDMD <X>, {d0-d15} */
60 static inline void
61 load_vfpregs_lo(const uint64_t *p)
62 {
63 SETFPU;
64 __asm __volatile("vldmia\t%0, {d0-d15}" :: "r" (p) : "memory");
65 }
66
67 /* FSTMD <X>, {d0-d15} */
68 static inline void
69 save_vfpregs_lo(uint64_t *p)
70 {
71 SETFPU;
72 __asm __volatile("vstmia\t%0, {d0-d15}" :: "r" (p) : "memory");
73 }
74
75 #ifdef CPU_CORTEX
76 /* FLDMD <X>, {d16-d31} */
77 static inline void
78 load_vfpregs_hi(const uint64_t *p)
79 {
80 SETFPU;
81 __asm __volatile("vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
82 }
83
84 /* FLDMD <X>, {d16-d31} */
85 static inline void
86 save_vfpregs_hi(uint64_t *p)
87 {
88 SETFPU;
89 __asm __volatile("vstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
90 }
91 #endif
92
93 static inline void
94 load_vfpregs(const struct vfpreg *fregs)
95 {
96 load_vfpregs_lo(fregs->vfp_regs);
97 #ifdef CPU_CORTEX
98 #ifdef CPU_ARM11
99 switch (curcpu()->ci_vfp_id) {
100 case FPU_VFP_CORTEXA5:
101 case FPU_VFP_CORTEXA7:
102 case FPU_VFP_CORTEXA8:
103 case FPU_VFP_CORTEXA9:
104 case FPU_VFP_CORTEXA15:
105 case FPU_VFP_CORTEXA15_QEMU:
106 case FPU_VFP_CORTEXA53:
107 case FPU_VFP_CORTEXA57:
108 #endif
109 load_vfpregs_hi(fregs->vfp_regs);
110 #ifdef CPU_ARM11
111 break;
112 }
113 #endif
114 #endif
115 }
116
117 static inline void
118 save_vfpregs(struct vfpreg *fregs)
119 {
120 save_vfpregs_lo(fregs->vfp_regs);
121 #ifdef CPU_CORTEX
122 #ifdef CPU_ARM11
123 switch (curcpu()->ci_vfp_id) {
124 case FPU_VFP_CORTEXA5:
125 case FPU_VFP_CORTEXA7:
126 case FPU_VFP_CORTEXA8:
127 case FPU_VFP_CORTEXA9:
128 case FPU_VFP_CORTEXA15:
129 case FPU_VFP_CORTEXA15_QEMU:
130 case FPU_VFP_CORTEXA53:
131 case FPU_VFP_CORTEXA57:
132 #endif
133 save_vfpregs_hi(fregs->vfp_regs);
134 #ifdef CPU_ARM11
135 break;
136 }
137 #endif
138 #endif
139 }
140
141 /* The real handler for VFP bounces. */
142 static int vfp_handler(u_int, u_int, trapframe_t *, int);
143 #ifdef CPU_CORTEX
144 static int neon_handler(u_int, u_int, trapframe_t *, int);
145 #endif
146
147 static void vfp_state_load(lwp_t *, u_int);
148 static void vfp_state_save(lwp_t *);
149 static void vfp_state_release(lwp_t *);
150
151 const pcu_ops_t arm_vfp_ops = {
152 .pcu_id = PCU_FPU,
153 .pcu_state_save = vfp_state_save,
154 .pcu_state_load = vfp_state_load,
155 .pcu_state_release = vfp_state_release,
156 };
157
158 /* determine what bits can be changed */
159 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
160 /* default to run fast */
161 uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
162
163 /*
164 * Used to test for a VFP. The following function is installed as a coproc10
165 * handler on the undefined instruction vector and then we issue a VFP
166 * instruction. If undefined_test is non zero then the VFP did not handle
167 * the instruction so must be absent, or disabled.
168 */
169
170 static int undefined_test;
171
172 static int
173 vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
174 {
175
176 frame->tf_pc += INSN_SIZE;
177 ++undefined_test;
178 return 0;
179 }
180
181 #else
182 /* determine what bits can be changed */
183 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
184 #endif /* FPU_VFP */
185
186 static int
187 vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
188 {
189 struct lwp * const l = curlwp;
190 const u_int regno = (insn >> 12) & 0xf;
191 /*
192 * Only match move to/from the FPSCR register and we
193 * can't be using the SP,LR,PC as a source.
194 */
195 if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
196 return 1;
197
198 struct pcb * const pcb = lwp_getpcb(l);
199
200 #ifdef FPU_VFP
201 /*
202 * If FPU is valid somewhere, let's just reenable VFP and
203 * retry the instruction (only safe thing to do since the
204 * pcb has a stale copy).
205 */
206 if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
207 return 1;
208
209 if (__predict_false(!vfp_used_p(l))) {
210 pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
211 }
212 #endif
213
214 /*
215 * We now know the pcb has the saved copy.
216 */
217 register_t * const regp = &frame->tf_r0 + regno;
218 if (insn & 0x00100000) {
219 *regp = pcb->pcb_vfp.vfp_fpscr;
220 } else {
221 pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
222 pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
223 }
224
225 curcpu()->ci_vfp_evs[0].ev_count++;
226
227 frame->tf_pc += INSN_SIZE;
228 return 0;
229 }
230
231 #ifndef FPU_VFP
232 /*
233 * If we don't want VFP support, we still need to handle emulating VFP FPSCR
234 * instructions.
235 */
236 void
237 vfp_attach(struct cpu_info *ci)
238 {
239 if (CPU_IS_PRIMARY(ci)) {
240 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
241 }
242 evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
243 ci->ci_cpuname, "vfp fpscr traps");
244 }
245
246 #else
247 void
248 vfp_attach(struct cpu_info *ci)
249 {
250 const char *model = NULL;
251
252 if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
253 || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
254 || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
255 #if 0
256 const uint32_t nsacr = armreg_nsacr_read();
257 const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
258 if ((nsacr & nsacr_vfp) != nsacr_vfp) {
259 aprint_normal_dev(ci->ci_dev,
260 "VFP access denied (NSACR=%#x)\n", nsacr);
261 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
262 ci->ci_vfp_id = 0;
263 evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
264 EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
265 "vfp fpscr traps");
266 return;
267 }
268 #endif
269 const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
270 const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
271
272 /*
273 * We first need to enable access to the coprocessors.
274 */
275 uint32_t cpacr = armreg_cpacr_read();
276 cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
277 cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
278 armreg_cpacr_write(cpacr);
279
280 arm_isb();
281
282 /*
283 * If we could enable them, then they exist.
284 */
285 cpacr = armreg_cpacr_read();
286 bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
287 && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
288 if (!vfp_p) {
289 aprint_normal_dev(ci->ci_dev,
290 "VFP access denied (CPACR=%#x)\n", cpacr);
291 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
292 ci->ci_vfp_id = 0;
293 evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
294 EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
295 "vfp fpscr traps");
296 return;
297 }
298 }
299
300 void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
301
302 undefined_test = 0;
303
304 const uint32_t fpsid = armreg_fpsid_read();
305
306 remove_coproc_handler(uh);
307
308 if (undefined_test != 0) {
309 aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
310 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
311 ci->ci_vfp_id = 0;
312 return;
313 }
314
315 ci->ci_vfp_id = fpsid;
316 switch (fpsid & ~ VFP_FPSID_REV_MSK) {
317 case FPU_VFP10_ARM10E:
318 model = "VFP10 R1";
319 break;
320 case FPU_VFP11_ARM11:
321 model = "VFP11";
322 break;
323 case FPU_VFP_MV88SV58XX:
324 model = "VFP3";
325 break;
326 case FPU_VFP_CORTEXA5:
327 case FPU_VFP_CORTEXA7:
328 case FPU_VFP_CORTEXA8:
329 case FPU_VFP_CORTEXA9:
330 case FPU_VFP_CORTEXA15:
331 case FPU_VFP_CORTEXA15_QEMU:
332 case FPU_VFP_CORTEXA53:
333 case FPU_VFP_CORTEXA57:
334 if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
335 model = "VFP 4.0+";
336 } else {
337 model = "NEON MPE (VFP 3.0+)";
338 cpu_neon_present = 1;
339 }
340 break;
341 default:
342 aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
343 fpsid);
344 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
345 vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
346 |VFP_FPSCR_RMODE;
347 vfp_fpscr_default = 0;
348 return;
349 }
350
351 cpu_fpu_present = 1;
352 cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
353 cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
354 if (fpsid != 0) {
355 uint32_t f0 = armreg_mvfr0_read();
356 uint32_t f1 = armreg_mvfr1_read();
357 aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
358 device_unit(ci->ci_dev),
359 device_xname(ci->ci_dev),
360 model,
361 ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
362 ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
363 ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
364 ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
365 aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
366 device_unit(ci->ci_dev), f0, f1);
367 if (CPU_IS_PRIMARY(ci)) {
368 if (f0 & ARM_MVFR0_ROUNDING_MASK) {
369 vfp_fpscr_changable |= VFP_FPSCR_RMODE;
370 }
371 if (f1 & ARM_MVFR0_EXCEPT_MASK) {
372 vfp_fpscr_changable |= VFP_FPSCR_ESUM;
373 }
374 // If hardware supports propagation of NaNs, select it.
375 if (f1 & ARM_MVFR1_D_NAN_MASK) {
376 vfp_fpscr_default &= ~VFP_FPSCR_DN;
377 vfp_fpscr_changable |= VFP_FPSCR_DN;
378 }
379 // If hardware supports denormalized numbers, use it.
380 if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
381 vfp_fpscr_default &= ~VFP_FPSCR_FZ;
382 vfp_fpscr_changable |= VFP_FPSCR_FZ;
383 }
384 }
385 }
386 evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
387 ci->ci_cpuname, "vfp coproc use");
388 evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
389 ci->ci_cpuname, "vfp coproc re-use");
390 evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
391 ci->ci_cpuname, "vfp coproc fault");
392 install_coproc_handler(VFP_COPROC, vfp_handler);
393 install_coproc_handler(VFP_COPROC2, vfp_handler);
394 #ifdef CPU_CORTEX
395 if (cpu_neon_present)
396 install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
397 #endif
398 }
399
400 /* The real handler for VFP bounces. */
401 static int
402 vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
403 {
404 struct cpu_info * const ci = curcpu();
405
406 /* This shouldn't ever happen. */
407 if (fault_code != FAULT_USER)
408 panic("VFP fault at %#x in non-user mode", frame->tf_pc);
409
410 if (ci->ci_vfp_id == 0) {
411 /* No VFP detected, just fault. */
412 return 1;
413 }
414
415 /*
416 * If we already own the FPU and it's enabled (and no exception), raise
417 * SIGILL. If there is an exception, drop through to raise a SIGFPE.
418 */
419 if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
420 && (armreg_fpexc_read() & (VFP_FPEXC_EX|VFP_FPEXC_EN)) == VFP_FPEXC_EN)
421 return 1;
422
423 /*
424 * Make sure we own the FP.
425 */
426 pcu_load(&arm_vfp_ops);
427
428 uint32_t fpexc = armreg_fpexc_read();
429 if (fpexc & VFP_FPEXC_EX) {
430 ksiginfo_t ksi;
431 KASSERT(fpexc & VFP_FPEXC_EN);
432
433 curcpu()->ci_vfp_evs[2].ev_count++;
434
435 /*
436 * Need the clear the exception condition so any signal
437 * and future use can proceed.
438 */
439 armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
440
441 pcu_save(&arm_vfp_ops, curlwp);
442
443 /*
444 * XXX Need to emulate bounce instructions here to get correct
445 * XXX exception codes, etc.
446 */
447 KSI_INIT_TRAP(&ksi);
448 ksi.ksi_signo = SIGFPE;
449 if (fpexc & VFP_FPEXC_IXF)
450 ksi.ksi_code = FPE_FLTRES;
451 else if (fpexc & VFP_FPEXC_UFF)
452 ksi.ksi_code = FPE_FLTUND;
453 else if (fpexc & VFP_FPEXC_OFF)
454 ksi.ksi_code = FPE_FLTOVF;
455 else if (fpexc & VFP_FPEXC_DZF)
456 ksi.ksi_code = FPE_FLTDIV;
457 else if (fpexc & VFP_FPEXC_IOF)
458 ksi.ksi_code = FPE_FLTINV;
459 ksi.ksi_addr = (uint32_t *)address;
460 ksi.ksi_trap = 0;
461 trapsignal(curlwp, &ksi);
462 return 0;
463 }
464
465 /* Need to restart the faulted instruction. */
466 // frame->tf_pc -= INSN_SIZE;
467 return 0;
468 }
469
470 #ifdef CPU_CORTEX
471 /* The real handler for NEON bounces. */
472 static int
473 neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
474 {
475 struct cpu_info * const ci = curcpu();
476
477 if (ci->ci_vfp_id == 0)
478 /* No VFP detected, just fault. */
479 return 1;
480
481 if ((insn & 0xfe000000) != 0xf2000000
482 && (insn & 0xfe000000) != 0xf4000000)
483 /* Not NEON instruction, just fault. */
484 return 1;
485
486 /* This shouldn't ever happen. */
487 if (fault_code != FAULT_USER)
488 panic("NEON fault in non-user mode");
489
490 /* if we already own the FPU and it's enabled, raise SIGILL */
491 if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
492 && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
493 return 1;
494
495 pcu_load(&arm_vfp_ops);
496
497 /* Need to restart the faulted instruction. */
498 // frame->tf_pc -= INSN_SIZE;
499 return 0;
500 }
501 #endif
502
503 static void
504 vfp_state_load(lwp_t *l, u_int flags)
505 {
506 struct pcb * const pcb = lwp_getpcb(l);
507 struct vfpreg * const fregs = &pcb->pcb_vfp;
508
509 /*
510 * Instrument VFP usage -- if a process has not previously
511 * used the VFP, mark it as having used VFP for the first time,
512 * and count this event.
513 *
514 * If a process has used the VFP, count a "used VFP, and took
515 * a trap to use it again" event.
516 */
517 if (__predict_false((flags & PCU_VALID) == 0)) {
518 curcpu()->ci_vfp_evs[0].ev_count++;
519 pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
520 } else {
521 curcpu()->ci_vfp_evs[1].ev_count++;
522 }
523
524 KASSERT((armreg_fpexc_read() & VFP_FPEXC_EN) == 0);
525 /*
526 * If the VFP is already enabled we must be bouncing an instruction.
527 */
528 if (flags & PCU_REENABLE) {
529 uint32_t fpexc = armreg_fpexc_read();
530 armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
531 fregs->vfp_fpexc |= VFP_FPEXC_EN;
532 return;
533 }
534 KASSERT((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0);
535
536 /*
537 * Load and Enable the VFP (so that we can write the registers).
538 */
539 fregs->vfp_fpexc |= VFP_FPEXC_EN;
540 armreg_fpexc_write(fregs->vfp_fpexc);
541 KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == NULL);
542 KASSERT(l->l_pcu_cpu[PCU_FPU] == NULL);
543
544 load_vfpregs(fregs);
545 armreg_fpscr_write(fregs->vfp_fpscr);
546
547 if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
548 /* Need to restore the exception handling state. */
549 armreg_fpinst_write(fregs->vfp_fpinst);
550 if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
551 armreg_fpinst2_write(fregs->vfp_fpinst2);
552 }
553 }
554
555 void
556 vfp_state_save(lwp_t *l)
557 {
558 struct pcb * const pcb = lwp_getpcb(l);
559 struct vfpreg * const fregs = &pcb->pcb_vfp;
560 uint32_t fpexc = armreg_fpexc_read();
561
562 KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == l);
563 KASSERT(curcpu() == l->l_pcu_cpu[PCU_FPU]);
564 KASSERT(curlwp == l || curlwp->l_pcu_cpu[PCU_FPU] != curcpu());
565 /*
566 * Enable the VFP (so we can read the registers).
567 * Make sure the exception bit is cleared so that we can
568 * safely dump the registers.
569 */
570 armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
571
572 fregs->vfp_fpexc = fpexc;
573 if (fpexc & VFP_FPEXC_EX) {
574 /* Need to save the exception handling state */
575 fregs->vfp_fpinst = armreg_fpinst_read();
576 if (fpexc & VFP_FPEXC_FP2V)
577 fregs->vfp_fpinst2 = armreg_fpinst2_read();
578 }
579 fregs->vfp_fpscr = armreg_fpscr_read();
580 save_vfpregs(fregs);
581
582 /* Disable the VFP. */
583 armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
584 }
585
586 void
587 vfp_state_release(lwp_t *l)
588 {
589 struct pcb * const pcb = lwp_getpcb(l);
590
591 /*
592 * Now mark the VFP as disabled (and our state
593 * has been already saved or is being discarded).
594 */
595 pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
596
597 /*
598 * Turn off the FPU so the next time a VFP instruction is issued
599 * an exception happens. We don't know if this LWP's state was
600 * loaded but if we turned off the FPU for some other LWP, when
601 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
602 * is still set so it just restore fpexc and return since its
603 * contents are still sitting in the VFP.
604 */
605 armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
606 }
607
608 void
609 vfp_savecontext(lwp_t *l)
610 {
611 pcu_save(&arm_vfp_ops, l);
612 }
613
614 void
615 vfp_discardcontext(lwp_t *l, bool used_p)
616 {
617 pcu_discard(&arm_vfp_ops, l, used_p);
618 }
619
620 bool
621 vfp_used_p(const lwp_t *l)
622 {
623 return pcu_valid_p(&arm_vfp_ops, l);
624 }
625
626 void
627 vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
628 {
629 if (vfp_used_p(l)) {
630 const struct pcb * const pcb = lwp_getpcb(l);
631
632 pcu_save(&arm_vfp_ops, l);
633 mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
634 memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
635 sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
636 *flagsp |= _UC_FPU|_UC_ARM_VFP;
637 }
638 }
639
640 void
641 vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
642 {
643 struct pcb * const pcb = lwp_getpcb(l);
644
645 pcu_discard(&arm_vfp_ops, l, true);
646 pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
647 memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
648 sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
649 }
650
651 #endif /* FPU_VFP */
652