Home | History | Annotate | Line # | Download | only in vfp
vfp_init.c revision 1.61
      1 /*      $NetBSD: vfp_init.c,v 1.61 2019/03/17 08:41:42 skrll Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2008 ARM Ltd
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the company may not be used to endorse or promote
     16  *    products derived from this software without specific prior written
     17  *    permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
     20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
     23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     25  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     27  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include "opt_cputypes.h"
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: vfp_init.c,v 1.61 2019/03/17 08:41:42 skrll Exp $");
     36 
     37 #include <sys/param.h>
     38 #include <sys/types.h>
     39 #include <sys/systm.h>
     40 #include <sys/device.h>
     41 #include <sys/proc.h>
     42 #include <sys/cpu.h>
     43 
     44 #include <arm/locore.h>
     45 #include <arm/pcb.h>
     46 #include <arm/undefined.h>
     47 #include <arm/vfpreg.h>
     48 #include <arm/mcontext.h>
     49 
     50 #include <uvm/uvm_extern.h>		/* for pmap.h */
     51 
     52 #ifdef FPU_VFP
     53 
     54 #ifdef CPU_CORTEX
     55 #define SETFPU __asm(".fpu\tvfpv4")
     56 #else
     57 #define SETFPU __asm(".fpu\tvfp")
     58 #endif
     59 SETFPU;
     60 
     61 /* FLDMD <X>, {d0-d15} */
     62 static inline void
     63 load_vfpregs_lo(const uint64_t *p)
     64 {
     65 	SETFPU;
     66 	__asm __volatile("vldmia\t%0, {d0-d15}" :: "r" (p) : "memory");
     67 }
     68 
     69 /* FSTMD <X>, {d0-d15} */
     70 static inline void
     71 save_vfpregs_lo(uint64_t *p)
     72 {
     73 	SETFPU;
     74 	__asm __volatile("vstmia\t%0, {d0-d15}" :: "r" (p) : "memory");
     75 }
     76 
     77 #ifdef CPU_CORTEX
     78 /* FLDMD <X>, {d16-d31} */
     79 static inline void
     80 load_vfpregs_hi(const uint64_t *p)
     81 {
     82 	SETFPU;
     83 	__asm __volatile("vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
     84 }
     85 
     86 /* FLDMD <X>, {d16-d31} */
     87 static inline void
     88 save_vfpregs_hi(uint64_t *p)
     89 {
     90 	SETFPU;
     91 	__asm __volatile("vstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
     92 }
     93 #endif
     94 
     95 static inline void
     96 load_vfpregs(const struct vfpreg *fregs)
     97 {
     98 	load_vfpregs_lo(fregs->vfp_regs);
     99 #ifdef CPU_CORTEX
    100 #ifdef CPU_ARM11
    101 	switch (curcpu()->ci_vfp_id) {
    102 	case FPU_VFP_CORTEXA5:
    103 	case FPU_VFP_CORTEXA7:
    104 	case FPU_VFP_CORTEXA8:
    105 	case FPU_VFP_CORTEXA9:
    106 	case FPU_VFP_CORTEXA15:
    107 	case FPU_VFP_CORTEXA15_QEMU:
    108 	case FPU_VFP_CORTEXA53:
    109 	case FPU_VFP_CORTEXA57:
    110 #endif
    111 		load_vfpregs_hi(fregs->vfp_regs);
    112 #ifdef CPU_ARM11
    113 		break;
    114 	}
    115 #endif
    116 #endif
    117 }
    118 
    119 static inline void
    120 save_vfpregs(struct vfpreg *fregs)
    121 {
    122 	save_vfpregs_lo(fregs->vfp_regs);
    123 #ifdef CPU_CORTEX
    124 #ifdef CPU_ARM11
    125 	switch (curcpu()->ci_vfp_id) {
    126 	case FPU_VFP_CORTEXA5:
    127 	case FPU_VFP_CORTEXA7:
    128 	case FPU_VFP_CORTEXA8:
    129 	case FPU_VFP_CORTEXA9:
    130 	case FPU_VFP_CORTEXA15:
    131 	case FPU_VFP_CORTEXA15_QEMU:
    132 	case FPU_VFP_CORTEXA53:
    133 	case FPU_VFP_CORTEXA57:
    134 #endif
    135 		save_vfpregs_hi(fregs->vfp_regs);
    136 #ifdef CPU_ARM11
    137 		break;
    138 	}
    139 #endif
    140 #endif
    141 }
    142 
    143 /* The real handler for VFP bounces.  */
    144 static int vfp_handler(u_int, u_int, trapframe_t *, int);
    145 #ifdef CPU_CORTEX
    146 static int neon_handler(u_int, u_int, trapframe_t *, int);
    147 #endif
    148 
    149 static void vfp_state_load(lwp_t *, u_int);
    150 static void vfp_state_save(lwp_t *);
    151 static void vfp_state_release(lwp_t *);
    152 
    153 const pcu_ops_t arm_vfp_ops = {
    154 	.pcu_id = PCU_FPU,
    155 	.pcu_state_save = vfp_state_save,
    156 	.pcu_state_load = vfp_state_load,
    157 	.pcu_state_release = vfp_state_release,
    158 };
    159 
    160 /* determine what bits can be changed */
    161 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
    162 /* default to run fast */
    163 uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
    164 
    165 /*
    166  * Used to test for a VFP. The following function is installed as a coproc10
    167  * handler on the undefined instruction vector and then we issue a VFP
    168  * instruction. If undefined_test is non zero then the VFP did not handle
    169  * the instruction so must be absent, or disabled.
    170  */
    171 
    172 static int undefined_test;
    173 
    174 static int
    175 vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    176 {
    177 
    178 	frame->tf_pc += INSN_SIZE;
    179 	++undefined_test;
    180 	return 0;
    181 }
    182 
    183 #else
    184 /* determine what bits can be changed */
    185 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
    186 #endif /* FPU_VFP */
    187 
    188 static int
    189 vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    190 {
    191 	struct lwp * const l = curlwp;
    192 	const u_int regno = (insn >> 12) & 0xf;
    193 	/*
    194 	 * Only match move to/from the FPSCR register and we
    195 	 * can't be using the SP,LR,PC as a source.
    196 	 */
    197 	if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
    198 		return 1;
    199 
    200 	struct pcb * const pcb = lwp_getpcb(l);
    201 
    202 #ifdef FPU_VFP
    203 	/*
    204 	 * If FPU is valid somewhere, let's just reenable VFP and
    205 	 * retry the instruction (only safe thing to do since the
    206 	 * pcb has a stale copy).
    207 	 */
    208 	if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
    209 		return 1;
    210 
    211 	if (__predict_false(!vfp_used_p(l))) {
    212 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
    213 	}
    214 #endif
    215 
    216 	/*
    217 	 * We now know the pcb has the saved copy.
    218 	 */
    219 	register_t * const regp = &frame->tf_r0 + regno;
    220 	if (insn & 0x00100000) {
    221 		*regp = pcb->pcb_vfp.vfp_fpscr;
    222 	} else {
    223 		pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
    224 		pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
    225 	}
    226 
    227 	curcpu()->ci_vfp_evs[0].ev_count++;
    228 
    229 	frame->tf_pc += INSN_SIZE;
    230 	return 0;
    231 }
    232 
    233 #ifndef FPU_VFP
    234 /*
    235  * If we don't want VFP support, we still need to handle emulating VFP FPSCR
    236  * instructions.
    237  */
    238 void
    239 vfp_attach(struct cpu_info *ci)
    240 {
    241 	if (CPU_IS_PRIMARY(ci)) {
    242 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    243 	}
    244 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
    245 	    ci->ci_cpuname, "vfp fpscr traps");
    246 }
    247 
    248 #else
    249 void
    250 vfp_attach(struct cpu_info *ci)
    251 {
    252 	const char *model = NULL;
    253 
    254 	if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
    255 	    || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
    256 	    || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
    257 #if 0
    258 		const uint32_t nsacr = armreg_nsacr_read();
    259 		const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
    260 		if ((nsacr & nsacr_vfp) != nsacr_vfp) {
    261 			aprint_normal_dev(ci->ci_dev,
    262 			    "VFP access denied (NSACR=%#x)\n", nsacr);
    263 			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    264 			ci->ci_vfp_id = 0;
    265 			evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
    266 			    EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
    267 			    "vfp fpscr traps");
    268 			return;
    269 		}
    270 #endif
    271 		const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
    272 		const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
    273 
    274 		/*
    275 		 * We first need to enable access to the coprocessors.
    276 		 */
    277 		uint32_t cpacr = armreg_cpacr_read();
    278 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
    279 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
    280 		armreg_cpacr_write(cpacr);
    281 
    282 		arm_isb();
    283 
    284 		/*
    285 		 * If we could enable them, then they exist.
    286 		 */
    287 		cpacr = armreg_cpacr_read();
    288 		bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
    289 		    && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
    290 		if (!vfp_p) {
    291 			aprint_normal_dev(ci->ci_dev,
    292 			    "VFP access denied (CPACR=%#x)\n", cpacr);
    293 			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    294 			ci->ci_vfp_id = 0;
    295 			evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
    296 			    EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
    297 			    "vfp fpscr traps");
    298 			return;
    299 		}
    300 	}
    301 
    302 	void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
    303 
    304 	undefined_test = 0;
    305 
    306 	const uint32_t fpsid = armreg_fpsid_read();
    307 
    308 	remove_coproc_handler(uh);
    309 
    310 	if (undefined_test != 0) {
    311 		aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
    312 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    313 		ci->ci_vfp_id = 0;
    314 		return;
    315 	}
    316 
    317 	ci->ci_vfp_id = fpsid;
    318 	switch (fpsid & ~ VFP_FPSID_REV_MSK) {
    319 	case FPU_VFP10_ARM10E:
    320 		model = "VFP10 R1";
    321 		break;
    322 	case FPU_VFP11_ARM11:
    323 		model = "VFP11";
    324 		break;
    325 	case FPU_VFP_MV88SV58XX:
    326 		model = "VFP3";
    327 		break;
    328 	case FPU_VFP_CORTEXA5:
    329 	case FPU_VFP_CORTEXA7:
    330 	case FPU_VFP_CORTEXA8:
    331 	case FPU_VFP_CORTEXA9:
    332 	case FPU_VFP_CORTEXA15:
    333 	case FPU_VFP_CORTEXA15_QEMU:
    334 	case FPU_VFP_CORTEXA53:
    335 	case FPU_VFP_CORTEXA57:
    336 		if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
    337 			model = "VFP 4.0+";
    338 		} else {
    339 			model = "NEON MPE (VFP 3.0+)";
    340 			cpu_neon_present = 1;
    341 		}
    342 		break;
    343 	default:
    344 		aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
    345 		    fpsid);
    346 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    347 		vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
    348 		    |VFP_FPSCR_RMODE;
    349 		vfp_fpscr_default = 0;
    350 		return;
    351 	}
    352 
    353 	cpu_fpu_present = 1;
    354 	cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
    355 	cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
    356 	if (fpsid != 0) {
    357 		uint32_t f0 = armreg_mvfr0_read();
    358 		uint32_t f1 = armreg_mvfr1_read();
    359 		aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
    360 		    device_unit(ci->ci_dev),
    361 		    device_xname(ci->ci_dev),
    362 		    model,
    363 		    ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
    364 		    ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
    365 		    ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
    366 		    ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
    367 		aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
    368 		    device_unit(ci->ci_dev), f0, f1);
    369 		if (CPU_IS_PRIMARY(ci)) {
    370 			if (f0 & ARM_MVFR0_ROUNDING_MASK) {
    371 				vfp_fpscr_changable |= VFP_FPSCR_RMODE;
    372 			}
    373 			if (f1 & ARM_MVFR0_EXCEPT_MASK) {
    374 				vfp_fpscr_changable |= VFP_FPSCR_ESUM;
    375 			}
    376 			// If hardware supports propagation of NaNs, select it.
    377 			if (f1 & ARM_MVFR1_D_NAN_MASK) {
    378 				vfp_fpscr_default &= ~VFP_FPSCR_DN;
    379 				vfp_fpscr_changable |= VFP_FPSCR_DN;
    380 			}
    381 			// If hardware supports denormalized numbers, use it.
    382 			if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
    383 				vfp_fpscr_default &= ~VFP_FPSCR_FZ;
    384 				vfp_fpscr_changable |= VFP_FPSCR_FZ;
    385 			}
    386 		}
    387 	}
    388 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
    389 	    ci->ci_cpuname, "vfp coproc use");
    390 	evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
    391 	    ci->ci_cpuname, "vfp coproc re-use");
    392 	evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
    393 	    ci->ci_cpuname, "vfp coproc fault");
    394 	install_coproc_handler(VFP_COPROC, vfp_handler);
    395 	install_coproc_handler(VFP_COPROC2, vfp_handler);
    396 #ifdef CPU_CORTEX
    397 	if (cpu_neon_present)
    398 		install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
    399 #endif
    400 }
    401 
    402 /* The real handler for VFP bounces.  */
    403 static int
    404 vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    405 {
    406 	struct cpu_info * const ci = curcpu();
    407 
    408 	/* This shouldn't ever happen.  */
    409 	if (fault_code != FAULT_USER)
    410 		panic("VFP fault at %#x in non-user mode", frame->tf_pc);
    411 
    412 	if (ci->ci_vfp_id == 0) {
    413 		/* No VFP detected, just fault.  */
    414 		return 1;
    415 	}
    416 
    417 	/*
    418 	 * If we already own the FPU and it's enabled (and no exception), raise
    419 	 * SIGILL.  If there is an exception, drop through to raise a SIGFPE.
    420 	 */
    421 	if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
    422 	    && (armreg_fpexc_read() & (VFP_FPEXC_EX|VFP_FPEXC_EN)) == VFP_FPEXC_EN)
    423 		return 1;
    424 
    425 	/*
    426 	 * Make sure we own the FP.
    427 	 */
    428 	pcu_load(&arm_vfp_ops);
    429 
    430 	uint32_t fpexc = armreg_fpexc_read();
    431 	if (fpexc & VFP_FPEXC_EX) {
    432 		ksiginfo_t ksi;
    433 		KASSERT(fpexc & VFP_FPEXC_EN);
    434 
    435 		curcpu()->ci_vfp_evs[2].ev_count++;
    436 
    437 		/*
    438 		 * Need the clear the exception condition so any signal
    439 		 * and future use can proceed.
    440 		 */
    441 		armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
    442 
    443 		pcu_save(&arm_vfp_ops, curlwp);
    444 
    445 		/*
    446 		 * XXX Need to emulate bounce instructions here to get correct
    447 		 * XXX exception codes, etc.
    448 		 */
    449 		KSI_INIT_TRAP(&ksi);
    450 		ksi.ksi_signo = SIGFPE;
    451 		if (fpexc & VFP_FPEXC_IXF)
    452 			ksi.ksi_code = FPE_FLTRES;
    453 		else if (fpexc & VFP_FPEXC_UFF)
    454 			ksi.ksi_code = FPE_FLTUND;
    455 		else if (fpexc & VFP_FPEXC_OFF)
    456 			ksi.ksi_code = FPE_FLTOVF;
    457 		else if (fpexc & VFP_FPEXC_DZF)
    458 			ksi.ksi_code = FPE_FLTDIV;
    459 		else if (fpexc & VFP_FPEXC_IOF)
    460 			ksi.ksi_code = FPE_FLTINV;
    461 		ksi.ksi_addr = (uint32_t *)address;
    462 		ksi.ksi_trap = 0;
    463 		trapsignal(curlwp, &ksi);
    464 		return 0;
    465 	}
    466 
    467 	/* Need to restart the faulted instruction.  */
    468 //	frame->tf_pc -= INSN_SIZE;
    469 	return 0;
    470 }
    471 
    472 #ifdef CPU_CORTEX
    473 /* The real handler for NEON bounces.  */
    474 static int
    475 neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    476 {
    477 	struct cpu_info * const ci = curcpu();
    478 
    479 	if (ci->ci_vfp_id == 0)
    480 		/* No VFP detected, just fault.  */
    481 		return 1;
    482 
    483 	if ((insn & 0xfe000000) != 0xf2000000
    484 	    && (insn & 0xfe000000) != 0xf4000000)
    485 		/* Not NEON instruction, just fault.  */
    486 		return 1;
    487 
    488 	/* This shouldn't ever happen.  */
    489 	if (fault_code != FAULT_USER)
    490 		panic("NEON fault in non-user mode");
    491 
    492 	/* if we already own the FPU and it's enabled, raise SIGILL */
    493 	if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
    494 	    && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
    495 		return 1;
    496 
    497 	pcu_load(&arm_vfp_ops);
    498 
    499 	/* Need to restart the faulted instruction.  */
    500 //	frame->tf_pc -= INSN_SIZE;
    501 	return 0;
    502 }
    503 #endif
    504 
    505 static void
    506 vfp_state_load(lwp_t *l, u_int flags)
    507 {
    508 	struct pcb * const pcb = lwp_getpcb(l);
    509 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    510 
    511 	/*
    512 	 * Instrument VFP usage -- if a process has not previously
    513 	 * used the VFP, mark it as having used VFP for the first time,
    514 	 * and count this event.
    515 	 *
    516 	 * If a process has used the VFP, count a "used VFP, and took
    517 	 * a trap to use it again" event.
    518 	 */
    519 	if (__predict_false((flags & PCU_VALID) == 0)) {
    520 		curcpu()->ci_vfp_evs[0].ev_count++;
    521 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
    522 	} else {
    523 		curcpu()->ci_vfp_evs[1].ev_count++;
    524 	}
    525 
    526 	KASSERT((armreg_fpexc_read() & VFP_FPEXC_EN) == 0);
    527 	/*
    528 	 * If the VFP is already enabled we must be bouncing an instruction.
    529 	 */
    530 	if (flags & PCU_REENABLE) {
    531 		uint32_t fpexc = armreg_fpexc_read();
    532 		armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
    533 		fregs->vfp_fpexc |= VFP_FPEXC_EN;
    534 		return;
    535 	}
    536 	KASSERT((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0);
    537 
    538 	/*
    539 	 * Load and Enable the VFP (so that we can write the registers).
    540 	 */
    541 	fregs->vfp_fpexc |= VFP_FPEXC_EN;
    542 	armreg_fpexc_write(fregs->vfp_fpexc);
    543 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == NULL);
    544 	KASSERT(l->l_pcu_cpu[PCU_FPU] == NULL);
    545 
    546 	load_vfpregs(fregs);
    547 	armreg_fpscr_write(fregs->vfp_fpscr);
    548 
    549 	if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
    550 		/* Need to restore the exception handling state.  */
    551 		armreg_fpinst_write(fregs->vfp_fpinst);
    552 		if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
    553 			armreg_fpinst2_write(fregs->vfp_fpinst2);
    554 	}
    555 }
    556 
    557 void
    558 vfp_state_save(lwp_t *l)
    559 {
    560 	struct pcb * const pcb = lwp_getpcb(l);
    561 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    562 	uint32_t fpexc = armreg_fpexc_read();
    563 
    564 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == l);
    565 	KASSERT(curcpu() == l->l_pcu_cpu[PCU_FPU]);
    566 	KASSERT(curlwp == l || curlwp->l_pcu_cpu[PCU_FPU] != curcpu());
    567 	/*
    568 	 * Enable the VFP (so we can read the registers).
    569 	 * Make sure the exception bit is cleared so that we can
    570 	 * safely dump the registers.
    571 	 */
    572 	armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
    573 
    574 	fregs->vfp_fpexc = fpexc;
    575 	if (fpexc & VFP_FPEXC_EX) {
    576 		/* Need to save the exception handling state */
    577 		fregs->vfp_fpinst = armreg_fpinst_read();
    578 		if (fpexc & VFP_FPEXC_FP2V)
    579 			fregs->vfp_fpinst2 = armreg_fpinst2_read();
    580 	}
    581 	fregs->vfp_fpscr = armreg_fpscr_read();
    582 	save_vfpregs(fregs);
    583 
    584 	/* Disable the VFP.  */
    585 	armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
    586 }
    587 
    588 void
    589 vfp_state_release(lwp_t *l)
    590 {
    591 	struct pcb * const pcb = lwp_getpcb(l);
    592 
    593 	/*
    594 	 * Now mark the VFP as disabled (and our state
    595 	 * has been already saved or is being discarded).
    596 	 */
    597 	pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
    598 
    599 	/*
    600 	 * Turn off the FPU so the next time a VFP instruction is issued
    601 	 * an exception happens.  We don't know if this LWP's state was
    602 	 * loaded but if we turned off the FPU for some other LWP, when
    603 	 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
    604 	 * is still set so it just restore fpexc and return since its
    605 	 * contents are still sitting in the VFP.
    606 	 */
    607 	armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
    608 }
    609 
    610 void
    611 vfp_savecontext(lwp_t *l)
    612 {
    613 	pcu_save(&arm_vfp_ops, l);
    614 }
    615 
    616 void
    617 vfp_discardcontext(lwp_t *l, bool used_p)
    618 {
    619 	pcu_discard(&arm_vfp_ops, l, used_p);
    620 }
    621 
    622 bool
    623 vfp_used_p(const lwp_t *l)
    624 {
    625 	return pcu_valid_p(&arm_vfp_ops, l);
    626 }
    627 
    628 void
    629 vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
    630 {
    631 	if (vfp_used_p(l)) {
    632 		const struct pcb * const pcb = lwp_getpcb(l);
    633 
    634 		pcu_save(&arm_vfp_ops, l);
    635 		mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
    636 		memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
    637 		    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    638 		*flagsp |= _UC_FPU|_UC_ARM_VFP;
    639 	}
    640 }
    641 
    642 void
    643 vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
    644 {
    645 	struct pcb * const pcb = lwp_getpcb(l);
    646 
    647 	pcu_discard(&arm_vfp_ops, l, true);
    648 	pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
    649 	memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
    650 	    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    651 }
    652 
    653 #endif /* FPU_VFP */
    654