vfp_init.c revision 1.7 1 /* $NetBSD: vfp_init.c,v 1.7 2012/09/22 19:45:54 matt Exp $ */
2
3 /*
4 * Copyright (c) 2008 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 * products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/systm.h>
35 #include <sys/device.h>
36 #include <sys/proc.h>
37 #include <sys/cpu.h>
38
39 #include <arm/pcb.h>
40 #include <arm/undefined.h>
41 #include <arm/vfpreg.h>
42
43 /*
44 * Use generic co-processor instructions to avoid assembly problems.
45 */
46
47 /* FMRX <X>, fpsid */
48 static inline uint32_t
49 read_fpsid(void)
50 {
51 uint32_t rv;
52 __asm __volatile("mrc p10, 7, %0, c0, c0, 0" : "=r" (rv));
53 return rv;
54 }
55
56 /* FMRX <X>, fpexc */
57 static inline uint32_t
58 read_fpscr(void)
59 {
60 uint32_t rv;
61 __asm __volatile("mrc p10, 7, %0, c1, c0, 0" : "=r" (rv));
62 return rv;
63 }
64
65 /* FMRX <X>, fpexc */
66 static inline uint32_t
67 read_fpexc(void)
68 {
69 uint32_t rv;
70 __asm __volatile("mrc p10, 7, %0, c8, c0, 0" : "=r" (rv));
71 return rv;
72 }
73
74 /* FMRX <X>, fpinst */
75 static inline uint32_t
76 read_fpinst(void)
77 {
78 uint32_t rv;
79 __asm __volatile("mrc p10, 7, %0, c9, c0, 0" : "=r" (rv));
80 return rv;
81 }
82
83 /* FMRX <X>, fpinst2 */
84 static inline uint32_t
85 read_fpinst2(void)
86 {
87 uint32_t rv;
88 __asm __volatile("mrc p10, 7, %0, c10, c0, 0" : "=r" (rv));
89 return rv;
90 }
91
92 /* FSTMD <X>, {d0-d15} */
93 #define save_vfpregs(X) __asm __volatile("stc p11, c0, [%0], {32}" : \
94 : "r" (X) : "memory")
95
96 /* FMXR <X>, fpscr */
97 #define write_fpscr(X) __asm __volatile("mcr p10, 7, %0, c1, c0, 0" : \
98 : "r" (X))
99 /* FMXR <X>, fpexc */
100 #define write_fpexc(X) __asm __volatile("mcr p10, 7, %0, c8, c0, 0" : \
101 : "r" (X))
102 /* FMXR <X>, fpinst */
103 #define write_fpinst(X) __asm __volatile("mcr p10, 7, %0, c9, c0, 0" : \
104 : "r" (X))
105 /* FMXR <X>, fpinst2 */
106 #define write_fpinst2(X) __asm __volatile("mcr p10, 7, %0, c10, c0, 0" : \
107 : "r" (X))
108 /* FLDMD <X>, {d0-d15} */
109 #define load_vfpregs(X) __asm __volatile("ldc p11, c0, [%0], {32}" : \
110 : "r" (X) : "memory");
111
112 #ifdef FPU_VFP
113
114 /* The real handler for VFP bounces. */
115 static int vfp_handler(u_int, u_int, trapframe_t *, int);
116 static int vfp_handler(u_int, u_int, trapframe_t *, int);
117
118 static void vfp_state_load(lwp_t *, bool);
119 static void vfp_state_save(lwp_t *);
120 static void vfp_state_release(lwp_t *);
121
122 const pcu_ops_t arm_vfp_ops = {
123 .pcu_id = PCU_FPU,
124 .pcu_state_load = vfp_state_load,
125 .pcu_state_save = vfp_state_save,
126 .pcu_state_release = vfp_state_release,
127 };
128
129 struct evcnt vfpevent_use;
130 struct evcnt vfpevent_reuse;
131
132 /*
133 * Used to test for a VFP. The following function is installed as a coproc10
134 * handler on the undefined instruction vector and then we issue a VFP
135 * instruction. If undefined_test is non zero then the VFP did not handle
136 * the instruction so must be absent, or disabled.
137 */
138
139 static int undefined_test;
140
141 static int
142 vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
143 {
144
145 frame->tf_pc += INSN_SIZE;
146 ++undefined_test;
147 return 0;
148 }
149
150 #endif /* FPU_VFP */
151
152 struct evcnt vfp_fpscr_ev =
153 EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "VFP", "FPSCR traps");
154 EVCNT_ATTACH_STATIC(vfp_fpscr_ev);
155
156 static int
157 vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
158 {
159 struct lwp * const l = curlwp;
160 const u_int regno = (insn >> 12) & 0xf;
161 /*
162 * Only match move to/from the FPSCR register and we
163 * can't be using the SP,LR,PC as a source.
164 */
165 if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
166 return 1;
167
168 struct pcb * const pcb = lwp_getpcb(l);
169
170 #ifdef FPU_VFP
171 /*
172 * If FPU is valid somewhere, let's just reenable VFP and
173 * retry the instruction (only safe thing to do since the
174 * pcb has a stale copy).
175 */
176 if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
177 return 1;
178 #endif
179
180 if (__predict_false((l->l_md.md_flags & MDLWP_VFPUSED) == 0)) {
181 l->l_md.md_flags |= MDLWP_VFPUSED;
182 pcb->pcb_vfp.vfp_fpscr =
183 (VFP_FPSCR_DN | VFP_FPSCR_FZ); /* Runfast */
184 }
185
186 /*
187 * We know know the pcb has the saved copy.
188 */
189 register_t * const regp = &frame->tf_r0 + regno;
190 if (insn & 0x00100000) {
191 *regp = pcb->pcb_vfp.vfp_fpscr;
192 } else {
193 pcb->pcb_vfp.vfp_fpscr = *regp;
194 }
195
196 vfp_fpscr_ev.ev_count++;
197
198 frame->tf_pc += INSN_SIZE;
199 return 0;
200 }
201
202 #ifndef FPU_VFP
203 /*
204 * If we don't want VFP support, we still need to handle emulating VFP FPSCR
205 * instructions.
206 */
207 void
208 vfp_attach(void)
209 {
210 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
211 }
212
213 #else
214 void
215 vfp_attach(void)
216 {
217 struct cpu_info * const ci = curcpu();
218 const char *model = NULL;
219 bool vfp_p = false;
220
221 #ifdef FPU_VFP
222 if (CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid)
223 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
224 const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
225 const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
226
227 /*
228 * We first need to enable access to the coprocessors.
229 */
230 uint32_t cpacr = armreg_cpacr_read();
231 cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
232 cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
233 armreg_cpacr_write(cpacr);
234
235 /*
236 * If we could enable them, then they exist.
237 */
238 cpacr = armreg_cpacr_read();
239 vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) != CPACR_NOACCESS
240 || __SHIFTOUT(cpacr, cpacr_vfp) != CPACR_NOACCESS;
241 }
242 #endif
243
244 void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
245
246 undefined_test = 0;
247
248 const uint32_t fpsid = read_fpsid();
249
250 remove_coproc_handler(uh);
251
252 if (undefined_test != 0) {
253 aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
254 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
255 ci->ci_vfp_id = 0;
256 return;
257 }
258
259 ci->ci_vfp_id = fpsid;
260 switch (fpsid & ~ VFP_FPSID_REV_MSK) {
261 case FPU_VFP10_ARM10E:
262 model = "VFP10 R1";
263 break;
264 case FPU_VFP11_ARM11:
265 model = "VFP11";
266 break;
267 case FPU_VFP_CORTEXA5:
268 case FPU_VFP_CORTEXA7:
269 case FPU_VFP_CORTEXA8:
270 case FPU_VFP_CORTEXA9:
271 model = "NEON MPE (VFP 3.0+)";
272 break;
273 default:
274 aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %x\n",
275 fpsid);
276 install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
277 return;
278 }
279
280 if (fpsid != 0) {
281 aprint_normal("vfp%d at %s: %s\n",
282 device_unit(curcpu()->ci_dev), device_xname(curcpu()->ci_dev),
283 model);
284 }
285 evcnt_attach_dynamic(&vfpevent_use, EVCNT_TYPE_MISC, NULL,
286 "VFP", "proc use");
287 evcnt_attach_dynamic(&vfpevent_reuse, EVCNT_TYPE_MISC, NULL,
288 "VFP", "proc re-use");
289 install_coproc_handler(VFP_COPROC, vfp_handler);
290 install_coproc_handler(VFP_COPROC2, vfp_handler);
291 }
292
293 /* The real handler for VFP bounces. */
294 static int
295 vfp_handler(u_int address, u_int insn, trapframe_t *frame,
296 int fault_code)
297 {
298 struct cpu_info * const ci = curcpu();
299
300 /* This shouldn't ever happen. */
301 if (fault_code != FAULT_USER)
302 panic("VFP fault in non-user mode");
303
304 if (ci->ci_vfp_id == 0)
305 /* No VFP detected, just fault. */
306 return 1;
307
308 /*
309 * If we are just changing/fetching FPSCR, don't bother loading it.
310 */
311 if (!vfp_fpscr_handler(address, insn, frame, fault_code))
312 return 0;
313
314 pcu_load(&arm_vfp_ops);
315
316 /* Need to restart the faulted instruction. */
317 // frame->tf_pc -= INSN_SIZE;
318 return 0;
319 }
320
321 static void
322 vfp_state_load(lwp_t *l, bool used)
323 {
324 struct pcb * const pcb = lwp_getpcb(l);
325 struct vfpreg * const fregs = &pcb->pcb_vfp;
326
327 /*
328 * Instrument VFP usage -- if a process has not previously
329 * used the VFP, mark it as having used VFP for the first time,
330 * and count this event.
331 *
332 * If a process has used the VFP, count a "used VFP, and took
333 * a trap to use it again" event.
334 */
335 if (__predict_false((l->l_md.md_flags & MDLWP_VFPUSED) == 0)) {
336 vfpevent_use.ev_count++;
337 l->l_md.md_flags |= MDLWP_VFPUSED;
338 pcb->pcb_vfp.vfp_fpscr =
339 (VFP_FPSCR_DN | VFP_FPSCR_FZ); /* Runfast */
340 } else {
341 vfpevent_reuse.ev_count++;
342 }
343
344 if (fregs->vfp_fpexc & VFP_FPEXC_EN) {
345 /*
346 * If we think the VFP is enabled, it must have be disabled by
347 * vfp_state_release for another LWP so we can just restore
348 * FPEXC and return since our VFP state is still loaded.
349 */
350 write_fpexc(fregs->vfp_fpexc);
351 return;
352 }
353
354 /* Enable the VFP (so that we can write the registers). */
355 uint32_t fpexc = read_fpexc();
356 KDASSERT((fpexc & VFP_FPEXC_EX) == 0);
357 write_fpexc(fpexc | VFP_FPEXC_EN);
358
359 load_vfpregs(fregs->vfp_regs);
360 write_fpscr(fregs->vfp_fpscr);
361
362 if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
363 struct cpu_info * const ci = curcpu();
364 /* Need to restore the exception handling state. */
365 switch (ci->ci_vfp_id) {
366 case FPU_VFP10_ARM10E:
367 case FPU_VFP11_ARM11:
368 write_fpinst2(fregs->vfp_fpinst2);
369 write_fpinst(fregs->vfp_fpinst);
370 break;
371 default:
372 panic("%s: Unsupported VFP %#x",
373 __func__, ci->ci_vfp_id);
374 }
375 }
376
377 /* Finally, restore the FPEXC but don't enable the VFP. */
378 fregs->vfp_fpexc |= VFP_FPEXC_EN;
379 write_fpexc(fregs->vfp_fpexc);
380 }
381
382 void
383 vfp_state_save(lwp_t *l)
384 {
385 struct pcb * const pcb = lwp_getpcb(l);
386 struct vfpreg * const fregs = &pcb->pcb_vfp;
387
388 /*
389 * If it's already disabled, then the state has been saved
390 * (or discarded).
391 */
392 if ((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0)
393 return;
394
395 /*
396 * Enable the VFP (so we can read the registers).
397 * Make sure the exception bit is cleared so that we can
398 * safely dump the registers.
399 */
400 uint32_t fpexc = read_fpexc();
401 write_fpexc((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
402
403 fregs->vfp_fpexc = fpexc;
404 if (fpexc & VFP_FPEXC_EX) {
405 struct cpu_info * const ci = curcpu();
406 /* Need to save the exception handling state */
407 switch (ci->ci_vfp_id) {
408 case FPU_VFP10_ARM10E:
409 case FPU_VFP11_ARM11:
410 fregs->vfp_fpinst = read_fpinst();
411 fregs->vfp_fpinst2 = read_fpinst2();
412 break;
413 default:
414 panic("%s: Unsupported VFP %#x",
415 __func__, ci->ci_vfp_id);
416 }
417 }
418 fregs->vfp_fpscr = read_fpscr();
419 save_vfpregs(fregs->vfp_regs);
420
421 /* Disable the VFP. */
422 write_fpexc(fpexc);
423 }
424
425 void
426 vfp_state_release(lwp_t *l)
427 {
428 struct pcb * const pcb = lwp_getpcb(l);
429
430 /*
431 * Now mark the VFP as disabled (and our state has been already
432 * saved or is being discarded).
433 */
434 pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
435
436 /*
437 * Turn off the FPU so the next time a VFP instruction is issued
438 * an exception happens. We don't know if this LWP's state was
439 * loaded but if we turned off the FPU for some other LWP, when
440 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
441 * is still set so it just restroe fpexc and return since its
442 * contents are still sitting in the VFP.
443 */
444 write_fpexc(read_fpexc() & ~VFP_FPEXC_EN);
445 }
446
447 void
448 vfp_savecontext(void)
449 {
450 pcu_save(&arm_vfp_ops);
451 }
452
453 void
454 vfp_discardcontext(void)
455 {
456 pcu_discard(&arm_vfp_ops);
457 }
458
459 #endif /* FPU_VFP */
460