Home | History | Annotate | Line # | Download | only in vfp
vfp_init.c revision 1.74
      1 /*      $NetBSD: vfp_init.c,v 1.74 2021/06/01 00:30:22 rin Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2008 ARM Ltd
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the company may not be used to endorse or promote
     16  *    products derived from this software without specific prior written
     17  *    permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
     20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
     23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     25  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     27  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include "opt_cputypes.h"
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: vfp_init.c,v 1.74 2021/06/01 00:30:22 rin Exp $");
     36 
     37 #include <sys/param.h>
     38 #include <sys/types.h>
     39 #include <sys/systm.h>
     40 #include <sys/device.h>
     41 #include <sys/kthread.h>
     42 #include <sys/proc.h>
     43 #include <sys/cpu.h>
     44 
     45 #include <arm/locore.h>
     46 #include <arm/pcb.h>
     47 #include <arm/undefined.h>
     48 #include <arm/vfpreg.h>
     49 #include <arm/mcontext.h>
     50 #include <arm/fpu.h>
     51 
     52 #include <uvm/uvm_extern.h>		/* for pmap.h */
     53 
     54 #include <crypto/aes/aes_impl.h>
     55 #include <crypto/aes/arch/arm/aes_neon.h>
     56 #include <crypto/chacha/arch/arm/chacha_neon.h>
     57 #include <crypto/chacha/chacha_impl.h>
     58 
     59 #ifdef FPU_VFP
     60 
     61 #ifdef CPU_CORTEX
     62 #define SETFPU __asm(".fpu\tvfpv4")
     63 #else
     64 #define SETFPU __asm(".fpu\tvfp")
     65 #endif
     66 SETFPU;
     67 
     68 /* FLDMD <X>, {d0-d15} */
     69 static inline void
     70 load_vfpregs_lo(const uint64_t *p)
     71 {
     72 	SETFPU;
     73 	__asm __volatile(".fpu vfp\n vldmia\t%0, {d0-d15}" :: "r" (p) : "memory");
     74 }
     75 
     76 /* FSTMD <X>, {d0-d15} */
     77 static inline void
     78 save_vfpregs_lo(uint64_t *p)
     79 {
     80 	SETFPU;
     81 	__asm __volatile(".fpu vfp\n vstmia\t%0, {d0-d15}" :: "r" (p) : "memory");
     82 }
     83 
     84 #ifdef CPU_CORTEX
     85 /* FLDMD <X>, {d16-d31} */
     86 static inline void
     87 load_vfpregs_hi(const uint64_t *p)
     88 {
     89 	SETFPU;
     90 	__asm __volatile(".fpu neon-vfpv4\n vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
     91 }
     92 
     93 /* FLDMD <X>, {d16-d31} */
     94 static inline void
     95 save_vfpregs_hi(uint64_t *p)
     96 {
     97 	SETFPU;
     98 	__asm __volatile(".fpu neon-vfpv4\nvstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
     99 }
    100 #endif
    101 
    102 static inline void
    103 load_vfpregs(const struct vfpreg *fregs)
    104 {
    105 	load_vfpregs_lo(fregs->vfp_regs);
    106 #ifdef CPU_CORTEX
    107 #ifdef CPU_ARM11
    108 	switch (curcpu()->ci_vfp_id) {
    109 	case FPU_VFP_CORTEXA5:
    110 	case FPU_VFP_CORTEXA7:
    111 	case FPU_VFP_CORTEXA8:
    112 	case FPU_VFP_CORTEXA9:
    113 	case FPU_VFP_CORTEXA15:
    114 	case FPU_VFP_CORTEXA15_QEMU:
    115 	case FPU_VFP_CORTEXA53:
    116 	case FPU_VFP_CORTEXA57:
    117 #endif
    118 		load_vfpregs_hi(fregs->vfp_regs);
    119 #ifdef CPU_ARM11
    120 		break;
    121 	}
    122 #endif
    123 #endif
    124 }
    125 
    126 static inline void
    127 save_vfpregs(struct vfpreg *fregs)
    128 {
    129 	save_vfpregs_lo(fregs->vfp_regs);
    130 #ifdef CPU_CORTEX
    131 #ifdef CPU_ARM11
    132 	switch (curcpu()->ci_vfp_id) {
    133 	case FPU_VFP_CORTEXA5:
    134 	case FPU_VFP_CORTEXA7:
    135 	case FPU_VFP_CORTEXA8:
    136 	case FPU_VFP_CORTEXA9:
    137 	case FPU_VFP_CORTEXA15:
    138 	case FPU_VFP_CORTEXA15_QEMU:
    139 	case FPU_VFP_CORTEXA53:
    140 	case FPU_VFP_CORTEXA57:
    141 #endif
    142 		save_vfpregs_hi(fregs->vfp_regs);
    143 #ifdef CPU_ARM11
    144 		break;
    145 	}
    146 #endif
    147 #endif
    148 }
    149 
    150 /* The real handler for VFP bounces.  */
    151 static int vfp_handler(u_int, u_int, trapframe_t *, int);
    152 #ifdef CPU_CORTEX
    153 static int neon_handler(u_int, u_int, trapframe_t *, int);
    154 #endif
    155 
    156 static void vfp_state_load(lwp_t *, u_int);
    157 static void vfp_state_save(lwp_t *);
    158 static void vfp_state_release(lwp_t *);
    159 
    160 const pcu_ops_t arm_vfp_ops = {
    161 	.pcu_id = PCU_FPU,
    162 	.pcu_state_save = vfp_state_save,
    163 	.pcu_state_load = vfp_state_load,
    164 	.pcu_state_release = vfp_state_release,
    165 };
    166 
    167 /* determine what bits can be changed */
    168 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
    169 /* default to run fast */
    170 uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
    171 
    172 /*
    173  * Used to test for a VFP. The following function is installed as a coproc10
    174  * handler on the undefined instruction vector and then we issue a VFP
    175  * instruction. If undefined_test is non zero then the VFP did not handle
    176  * the instruction so must be absent, or disabled.
    177  */
    178 
    179 static int undefined_test;
    180 
    181 static int
    182 vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    183 {
    184 
    185 	frame->tf_pc += INSN_SIZE;
    186 	++undefined_test;
    187 	return 0;
    188 }
    189 
    190 #else
    191 /* determine what bits can be changed */
    192 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
    193 #endif /* FPU_VFP */
    194 
    195 static int
    196 vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    197 {
    198 	struct lwp * const l = curlwp;
    199 	const u_int regno = (insn >> 12) & 0xf;
    200 	/*
    201 	 * Only match move to/from the FPSCR register and we
    202 	 * can't be using the SP,LR,PC as a source.
    203 	 */
    204 	if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
    205 		return 1;
    206 
    207 	struct pcb * const pcb = lwp_getpcb(l);
    208 
    209 #ifdef FPU_VFP
    210 	/*
    211 	 * If FPU is valid somewhere, let's just reenable VFP and
    212 	 * retry the instruction (only safe thing to do since the
    213 	 * pcb has a stale copy).
    214 	 */
    215 	if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
    216 		return 1;
    217 
    218 	if (__predict_false(!vfp_used_p(l))) {
    219 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
    220 	}
    221 #endif
    222 
    223 	/*
    224 	 * We now know the pcb has the saved copy.
    225 	 */
    226 	register_t * const regp = &frame->tf_r0 + regno;
    227 	if (insn & 0x00100000) {
    228 		*regp = pcb->pcb_vfp.vfp_fpscr;
    229 	} else {
    230 		pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
    231 		pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
    232 	}
    233 
    234 	curcpu()->ci_vfp_evs[0].ev_count++;
    235 
    236 	frame->tf_pc += INSN_SIZE;
    237 	return 0;
    238 }
    239 
    240 #ifndef FPU_VFP
    241 /*
    242  * If we don't want VFP support, we still need to handle emulating VFP FPSCR
    243  * instructions.
    244  */
    245 void
    246 vfp_attach(struct cpu_info *ci)
    247 {
    248 	if (CPU_IS_PRIMARY(ci)) {
    249 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    250 	}
    251 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
    252 	    ci->ci_cpuname, "vfp fpscr traps");
    253 }
    254 
    255 #else
    256 void
    257 vfp_attach(struct cpu_info *ci)
    258 {
    259 	const char *model = NULL;
    260 
    261 	if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
    262 	    || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
    263 	    || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
    264 #if 0
    265 		const uint32_t nsacr = armreg_nsacr_read();
    266 		const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
    267 		if ((nsacr & nsacr_vfp) != nsacr_vfp) {
    268 			aprint_normal_dev(ci->ci_dev,
    269 			    "VFP access denied (NSACR=%#x)\n", nsacr);
    270 			if (CPU_IS_PRIMARY(ci))
    271 				install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    272 			ci->ci_vfp_id = 0;
    273 			evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
    274 			    EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
    275 			    "vfp fpscr traps");
    276 			return;
    277 		}
    278 #endif
    279 		const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
    280 		const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
    281 
    282 		/*
    283 		 * We first need to enable access to the coprocessors.
    284 		 */
    285 		uint32_t cpacr = armreg_cpacr_read();
    286 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
    287 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
    288 		armreg_cpacr_write(cpacr);
    289 
    290 		isb();
    291 
    292 		/*
    293 		 * If we could enable them, then they exist.
    294 		 */
    295 		cpacr = armreg_cpacr_read();
    296 		bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
    297 		    && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
    298 		if (!vfp_p) {
    299 			aprint_normal_dev(ci->ci_dev,
    300 			    "VFP access denied (CPACR=%#x)\n", cpacr);
    301 			if (CPU_IS_PRIMARY(ci))
    302 				install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    303 			ci->ci_vfp_id = 0;
    304 			evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
    305 			    EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
    306 			    "vfp fpscr traps");
    307 			return;
    308 		}
    309 	}
    310 
    311 	void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
    312 
    313 	undefined_test = 0;
    314 
    315 	const uint32_t fpsid = armreg_fpsid_read();
    316 
    317 	remove_coproc_handler(uh);
    318 
    319 	if (undefined_test != 0) {
    320 		aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
    321 		if (CPU_IS_PRIMARY(ci))
    322 			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    323 		ci->ci_vfp_id = 0;
    324 		return;
    325 	}
    326 
    327 	ci->ci_vfp_id = fpsid;
    328 	switch (fpsid & ~ VFP_FPSID_REV_MSK) {
    329 	case FPU_VFP10_ARM10E:
    330 		model = "VFP10 R1";
    331 		break;
    332 	case FPU_VFP11_ARM11:
    333 		model = "VFP11";
    334 		break;
    335 	case FPU_VFP_MV88SV58XX:
    336 		model = "VFP3";
    337 		break;
    338 	case FPU_VFP_CORTEXA5:
    339 	case FPU_VFP_CORTEXA7:
    340 	case FPU_VFP_CORTEXA8:
    341 	case FPU_VFP_CORTEXA9:
    342 	case FPU_VFP_CORTEXA12:
    343 	case FPU_VFP_CORTEXA15:
    344 	case FPU_VFP_CORTEXA15_QEMU:
    345 	case FPU_VFP_CORTEXA17:
    346 	case FPU_VFP_CORTEXA53:
    347 	case FPU_VFP_CORTEXA57:
    348 		if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
    349 			model = "VFP 4.0+";
    350 		} else {
    351 			model = "NEON MPE (VFP 3.0+)";
    352 			cpu_neon_present = 1;
    353 		}
    354 		break;
    355 	default:
    356 		aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
    357 		    fpsid);
    358 		if (CPU_IS_PRIMARY(ci))
    359 			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    360 		vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
    361 		    |VFP_FPSCR_RMODE;
    362 		vfp_fpscr_default = 0;
    363 		return;
    364 	}
    365 
    366 	cpu_fpu_present = 1;
    367 	cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
    368 	cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
    369 	if (fpsid != 0) {
    370 		uint32_t f0 = armreg_mvfr0_read();
    371 		uint32_t f1 = armreg_mvfr1_read();
    372 		aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
    373 		    device_unit(ci->ci_dev),
    374 		    device_xname(ci->ci_dev),
    375 		    model,
    376 		    ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
    377 		    ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
    378 		    ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
    379 		    ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
    380 		aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
    381 		    device_unit(ci->ci_dev), f0, f1);
    382 		if (CPU_IS_PRIMARY(ci)) {
    383 			if (f0 & ARM_MVFR0_ROUNDING_MASK) {
    384 				vfp_fpscr_changable |= VFP_FPSCR_RMODE;
    385 			}
    386 			if (f1 & ARM_MVFR0_EXCEPT_MASK) {
    387 				vfp_fpscr_changable |= VFP_FPSCR_ESUM;
    388 			}
    389 			// If hardware supports propagation of NaNs, select it.
    390 			if (f1 & ARM_MVFR1_D_NAN_MASK) {
    391 				vfp_fpscr_default &= ~VFP_FPSCR_DN;
    392 				vfp_fpscr_changable |= VFP_FPSCR_DN;
    393 			}
    394 			// If hardware supports denormalized numbers, use it.
    395 			if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
    396 				vfp_fpscr_default &= ~VFP_FPSCR_FZ;
    397 				vfp_fpscr_changable |= VFP_FPSCR_FZ;
    398 			}
    399 		}
    400 	}
    401 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
    402 	    ci->ci_cpuname, "vfp coproc use");
    403 	evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
    404 	    ci->ci_cpuname, "vfp coproc re-use");
    405 	evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
    406 	    ci->ci_cpuname, "vfp coproc fault");
    407 	if (CPU_IS_PRIMARY(ci)) {
    408 		install_coproc_handler(VFP_COPROC, vfp_handler);
    409 		install_coproc_handler(VFP_COPROC2, vfp_handler);
    410 #ifdef CPU_CORTEX
    411 		if (cpu_neon_present) {
    412 			install_coproc_handler(CORE_UNKNOWN_HANDLER,
    413 			    neon_handler);
    414 			aes_md_init(&aes_neon_impl);
    415 			chacha_md_init(&chacha_neon_impl);
    416 		}
    417 #endif
    418 	}
    419 }
    420 
    421 /* The real handler for VFP bounces.  */
    422 static int
    423 vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    424 {
    425 	struct cpu_info * const ci = curcpu();
    426 	uint32_t fpexc;
    427 
    428 	/* This shouldn't ever happen.  */
    429 	if (fault_code != FAULT_USER &&
    430 	    (curlwp->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) == LW_SYSTEM)
    431 		panic("VFP fault at %#x in non-user mode", frame->tf_pc);
    432 
    433 	if (ci->ci_vfp_id == 0) {
    434 		/* No VFP detected, just fault.  */
    435 		return 1;
    436 	}
    437 
    438 	/*
    439 	 * If we already own the FPU and it's enabled (and no exception), raise
    440 	 * SIGILL.  If there is an exception, raise SIGFPE.
    441 	 */
    442 	if (curlwp->l_pcu_cpu[PCU_FPU] == ci) {
    443 		KASSERT(ci->ci_pcu_curlwp[PCU_FPU] == curlwp);
    444 
    445 		fpexc = armreg_fpexc_read();
    446 		if (fpexc & VFP_FPEXC_EN) {
    447 			if ((fpexc & VFP_FPEXC_EX) == 0) {
    448 				return 1;	/* SIGILL */
    449 			} else {
    450 				goto fpe;	/* SIGFPE; skip pcu_load(9) */
    451 			}
    452 		}
    453 	}
    454 
    455 	/*
    456 	 * Make sure we own the FP.
    457 	 */
    458 	pcu_load(&arm_vfp_ops);
    459 
    460 	fpexc = armreg_fpexc_read();
    461 	if (fpexc & VFP_FPEXC_EX) {
    462 		ksiginfo_t ksi;
    463 		KASSERT(fpexc & VFP_FPEXC_EN);
    464 
    465 fpe:
    466 		curcpu()->ci_vfp_evs[2].ev_count++;
    467 
    468 		/*
    469 		 * Need the clear the exception condition so any signal
    470 		 * and future use can proceed.
    471 		 */
    472 		armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
    473 
    474 		pcu_save(&arm_vfp_ops, curlwp);
    475 
    476 		/*
    477 		 * XXX Need to emulate bounce instructions here to get correct
    478 		 * XXX exception codes, etc.
    479 		 */
    480 		KSI_INIT_TRAP(&ksi);
    481 		ksi.ksi_signo = SIGFPE;
    482 		if (fpexc & VFP_FPEXC_IXF)
    483 			ksi.ksi_code = FPE_FLTRES;
    484 		else if (fpexc & VFP_FPEXC_UFF)
    485 			ksi.ksi_code = FPE_FLTUND;
    486 		else if (fpexc & VFP_FPEXC_OFF)
    487 			ksi.ksi_code = FPE_FLTOVF;
    488 		else if (fpexc & VFP_FPEXC_DZF)
    489 			ksi.ksi_code = FPE_FLTDIV;
    490 		else if (fpexc & VFP_FPEXC_IOF)
    491 			ksi.ksi_code = FPE_FLTINV;
    492 		ksi.ksi_addr = (uint32_t *)address;
    493 		ksi.ksi_trap = 0;
    494 		trapsignal(curlwp, &ksi);
    495 		return 0;
    496 	}
    497 
    498 	/* Need to restart the faulted instruction.  */
    499 //	frame->tf_pc -= INSN_SIZE;
    500 	return 0;
    501 }
    502 
    503 #ifdef CPU_CORTEX
    504 /* The real handler for NEON bounces.  */
    505 static int
    506 neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    507 {
    508 	struct cpu_info * const ci = curcpu();
    509 
    510 	if (ci->ci_vfp_id == 0)
    511 		/* No VFP detected, just fault.  */
    512 		return 1;
    513 
    514 	if ((insn & 0xfe000000) != 0xf2000000
    515 	    && (insn & 0xfe000000) != 0xf4000000)
    516 		/* Not NEON instruction, just fault.  */
    517 		return 1;
    518 
    519 	/* This shouldn't ever happen.  */
    520 	if (fault_code != FAULT_USER &&
    521 	    (curlwp->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) == LW_SYSTEM)
    522 		panic("NEON fault in non-user mode");
    523 
    524 	/* if we already own the FPU and it's enabled, raise SIGILL */
    525 	if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
    526 	    && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
    527 		return 1;
    528 
    529 	pcu_load(&arm_vfp_ops);
    530 
    531 	/* Need to restart the faulted instruction.  */
    532 //	frame->tf_pc -= INSN_SIZE;
    533 	return 0;
    534 }
    535 #endif
    536 
    537 static void
    538 vfp_state_load(lwp_t *l, u_int flags)
    539 {
    540 	struct pcb * const pcb = lwp_getpcb(l);
    541 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    542 
    543 	/*
    544 	 * Instrument VFP usage -- if a process has not previously
    545 	 * used the VFP, mark it as having used VFP for the first time,
    546 	 * and count this event.
    547 	 *
    548 	 * If a process has used the VFP, count a "used VFP, and took
    549 	 * a trap to use it again" event.
    550 	 */
    551 	if (__predict_false((flags & PCU_VALID) == 0)) {
    552 		curcpu()->ci_vfp_evs[0].ev_count++;
    553 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
    554 	} else {
    555 		curcpu()->ci_vfp_evs[1].ev_count++;
    556 	}
    557 
    558 	KASSERT((armreg_fpexc_read() & VFP_FPEXC_EN) == 0);
    559 	/*
    560 	 * If the VFP is already enabled we must be bouncing an instruction.
    561 	 */
    562 	if (flags & PCU_REENABLE) {
    563 		uint32_t fpexc = armreg_fpexc_read();
    564 		armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
    565 		fregs->vfp_fpexc |= VFP_FPEXC_EN;
    566 		return;
    567 	}
    568 	KASSERT((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0);
    569 
    570 	/*
    571 	 * Load and Enable the VFP (so that we can write the registers).
    572 	 */
    573 	fregs->vfp_fpexc |= VFP_FPEXC_EN;
    574 	armreg_fpexc_write(fregs->vfp_fpexc);
    575 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == NULL);
    576 	KASSERT(l->l_pcu_cpu[PCU_FPU] == NULL);
    577 
    578 	load_vfpregs(fregs);
    579 	armreg_fpscr_write(fregs->vfp_fpscr);
    580 
    581 	if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
    582 		/* Need to restore the exception handling state.  */
    583 		armreg_fpinst_write(fregs->vfp_fpinst);
    584 		if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
    585 			armreg_fpinst2_write(fregs->vfp_fpinst2);
    586 	}
    587 }
    588 
    589 void
    590 vfp_state_save(lwp_t *l)
    591 {
    592 	struct pcb * const pcb = lwp_getpcb(l);
    593 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    594 	uint32_t fpexc = armreg_fpexc_read();
    595 
    596 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == l);
    597 	KASSERT(curcpu() == l->l_pcu_cpu[PCU_FPU]);
    598 	KASSERT(curlwp == l || curlwp->l_pcu_cpu[PCU_FPU] != curcpu());
    599 	/*
    600 	 * Enable the VFP (so we can read the registers).
    601 	 * Make sure the exception bit is cleared so that we can
    602 	 * safely dump the registers.
    603 	 */
    604 	armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
    605 
    606 	fregs->vfp_fpexc = fpexc;
    607 	if (fpexc & VFP_FPEXC_EX) {
    608 		/* Need to save the exception handling state */
    609 		fregs->vfp_fpinst = armreg_fpinst_read();
    610 		if (fpexc & VFP_FPEXC_FP2V)
    611 			fregs->vfp_fpinst2 = armreg_fpinst2_read();
    612 	}
    613 	fregs->vfp_fpscr = armreg_fpscr_read();
    614 	save_vfpregs(fregs);
    615 
    616 	/* Disable the VFP.  */
    617 	armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
    618 }
    619 
    620 void
    621 vfp_state_release(lwp_t *l)
    622 {
    623 	struct pcb * const pcb = lwp_getpcb(l);
    624 
    625 	/*
    626 	 * Now mark the VFP as disabled (and our state
    627 	 * has been already saved or is being discarded).
    628 	 */
    629 	pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
    630 
    631 	/*
    632 	 * Turn off the FPU so the next time a VFP instruction is issued
    633 	 * an exception happens.  We don't know if this LWP's state was
    634 	 * loaded but if we turned off the FPU for some other LWP, when
    635 	 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
    636 	 * is still set so it just restore fpexc and return since its
    637 	 * contents are still sitting in the VFP.
    638 	 */
    639 	armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
    640 }
    641 
    642 void
    643 vfp_savecontext(lwp_t *l)
    644 {
    645 	pcu_save(&arm_vfp_ops, l);
    646 }
    647 
    648 void
    649 vfp_discardcontext(lwp_t *l, bool used_p)
    650 {
    651 	pcu_discard(&arm_vfp_ops, l, used_p);
    652 }
    653 
    654 bool
    655 vfp_used_p(const lwp_t *l)
    656 {
    657 	return pcu_valid_p(&arm_vfp_ops, l);
    658 }
    659 
    660 void
    661 vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
    662 {
    663 	if (vfp_used_p(l)) {
    664 		const struct pcb * const pcb = lwp_getpcb(l);
    665 
    666 		pcu_save(&arm_vfp_ops, l);
    667 		mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
    668 		memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
    669 		    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    670 		*flagsp |= _UC_FPU|_UC_ARM_VFP;
    671 	}
    672 }
    673 
    674 void
    675 vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
    676 {
    677 	struct pcb * const pcb = lwp_getpcb(l);
    678 
    679 	pcu_discard(&arm_vfp_ops, l, true);
    680 	pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
    681 	memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
    682 	    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    683 }
    684 
    685 /*
    686  * True if this is a system thread with its own private FPU state.
    687  */
    688 static inline bool
    689 lwp_system_fpu_p(struct lwp *l)
    690 {
    691 
    692 	return (l->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) ==
    693 	    (LW_SYSTEM|LW_SYSTEM_FPU);
    694 }
    695 
    696 static const struct vfpreg zero_vfpreg;
    697 
    698 void
    699 fpu_kern_enter(void)
    700 {
    701 	struct cpu_info *ci;
    702 	uint32_t fpexc;
    703 	int s;
    704 
    705 	if (lwp_system_fpu_p(curlwp) && !cpu_intr_p()) {
    706 		KASSERT(!cpu_softintr_p());
    707 		return;
    708 	}
    709 
    710 	/*
    711 	 * Block interrupts up to IPL_VM.  We must block preemption
    712 	 * since -- if this is a user thread -- there is nowhere to
    713 	 * save the kernel fpu state, and if we want this to be usable
    714 	 * in interrupts, we can't let interrupts interfere with the
    715 	 * fpu state in use since there's nowhere for them to save it.
    716 	 */
    717 	s = splvm();
    718 	ci = curcpu();
    719 	KASSERTMSG(ci->ci_cpl <= IPL_VM, "cpl=%d", ci->ci_cpl);
    720 	KASSERT(ci->ci_kfpu_spl == -1);
    721 	ci->ci_kfpu_spl = s;
    722 
    723 	/* Save any fpu state on the current CPU.  */
    724 	pcu_save_all_on_cpu();
    725 
    726 	/* Enable the fpu.  */
    727 	fpexc = armreg_fpexc_read();
    728 	fpexc |= VFP_FPEXC_EN;
    729 	fpexc &= ~VFP_FPEXC_EX;
    730 	armreg_fpexc_write(fpexc);
    731 }
    732 
    733 void
    734 fpu_kern_leave(void)
    735 {
    736 	struct cpu_info *ci = curcpu();
    737 	int s;
    738 	uint32_t fpexc;
    739 
    740 	if (lwp_system_fpu_p(curlwp) && !cpu_intr_p()) {
    741 		KASSERT(!cpu_softintr_p());
    742 		return;
    743 	}
    744 
    745 	KASSERT(ci->ci_cpl == IPL_VM);
    746 	KASSERT(ci->ci_kfpu_spl != -1);
    747 
    748 	/*
    749 	 * Zero the fpu registers; otherwise we might leak secrets
    750 	 * through Spectre-class attacks to userland, even if there are
    751 	 * no bugs in fpu state management.
    752 	 */
    753 	load_vfpregs(&zero_vfpreg);
    754 
    755 	/*
    756 	 * Disable the fpu so that the kernel can't accidentally use
    757 	 * it again.
    758 	 */
    759 	fpexc = armreg_fpexc_read();
    760 	fpexc &= ~VFP_FPEXC_EN;
    761 	armreg_fpexc_write(fpexc);
    762 
    763 	/* Restore interrupts.  */
    764 	s = ci->ci_kfpu_spl;
    765 	ci->ci_kfpu_spl = -1;
    766 	splx(s);
    767 }
    768 
    769 void
    770 kthread_fpu_enter_md(void)
    771 {
    772 
    773 	pcu_load(&arm_vfp_ops);
    774 }
    775 
    776 void
    777 kthread_fpu_exit_md(void)
    778 {
    779 
    780 	/* XXX Should vfp_state_release zero the registers itself?  */
    781 	load_vfpregs(&zero_vfpreg);
    782 	vfp_discardcontext(curlwp, 0);
    783 }
    784 
    785 #endif /* FPU_VFP */
    786