Home | History | Annotate | Line # | Download | only in vfp
vfp_init.c revision 1.78
      1 /*      $NetBSD: vfp_init.c,v 1.78 2022/08/20 11:34:08 riastradh Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2008 ARM Ltd
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the company may not be used to endorse or promote
     16  *    products derived from this software without specific prior written
     17  *    permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
     20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
     23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     25  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     27  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include "opt_cputypes.h"
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: vfp_init.c,v 1.78 2022/08/20 11:34:08 riastradh Exp $");
     36 
     37 #include <sys/param.h>
     38 #include <sys/types.h>
     39 #include <sys/systm.h>
     40 #include <sys/device.h>
     41 #include <sys/kernel.h>
     42 #include <sys/kthread.h>
     43 #include <sys/proc.h>
     44 #include <sys/cpu.h>
     45 
     46 #include <arm/locore.h>
     47 #include <arm/pcb.h>
     48 #include <arm/undefined.h>
     49 #include <arm/vfpreg.h>
     50 #include <arm/mcontext.h>
     51 #include <arm/fpu.h>
     52 
     53 #include <uvm/uvm_extern.h>		/* for pmap.h */
     54 
     55 #include <crypto/aes/aes_impl.h>
     56 #include <crypto/aes/arch/arm/aes_neon.h>
     57 #include <crypto/chacha/arch/arm/chacha_neon.h>
     58 #include <crypto/chacha/chacha_impl.h>
     59 
     60 #ifdef FPU_VFP
     61 
     62 #ifdef CPU_CORTEX
     63 #define SETFPU __asm(".fpu\tvfpv4")
     64 #else
     65 #define SETFPU __asm(".fpu\tvfp")
     66 #endif
     67 SETFPU;
     68 
     69 /* FLDMD <X>, {d0-d15} */
     70 static inline void
     71 load_vfpregs_lo(const uint64_t *p)
     72 {
     73 	SETFPU;
     74 	__asm __volatile(".fpu vfp\n vldmia\t%0, {d0-d15}" :: "r" (p) : "memory");
     75 }
     76 
     77 /* FSTMD <X>, {d0-d15} */
     78 static inline void
     79 save_vfpregs_lo(uint64_t *p)
     80 {
     81 	SETFPU;
     82 	__asm __volatile(".fpu vfp\n vstmia\t%0, {d0-d15}" :: "r" (p) : "memory");
     83 }
     84 
     85 #ifdef CPU_CORTEX
     86 /* FLDMD <X>, {d16-d31} */
     87 static inline void
     88 load_vfpregs_hi(const uint64_t *p)
     89 {
     90 	SETFPU;
     91 	__asm __volatile(".fpu neon-vfpv4\n vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
     92 }
     93 
     94 /* FLDMD <X>, {d16-d31} */
     95 static inline void
     96 save_vfpregs_hi(uint64_t *p)
     97 {
     98 	SETFPU;
     99 	__asm __volatile(".fpu neon-vfpv4\nvstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
    100 }
    101 #endif
    102 
    103 static inline void
    104 load_vfpregs(const struct vfpreg *fregs)
    105 {
    106 	load_vfpregs_lo(fregs->vfp_regs);
    107 #ifdef CPU_CORTEX
    108 #ifdef CPU_ARM11
    109 	switch (curcpu()->ci_vfp_id) {
    110 	case FPU_VFP_CORTEXA5:
    111 	case FPU_VFP_CORTEXA7:
    112 	case FPU_VFP_CORTEXA8:
    113 	case FPU_VFP_CORTEXA9:
    114 	case FPU_VFP_CORTEXA15:
    115 	case FPU_VFP_CORTEXA15_QEMU:
    116 	case FPU_VFP_CORTEXA53:
    117 	case FPU_VFP_CORTEXA57:
    118 #endif
    119 		load_vfpregs_hi(fregs->vfp_regs);
    120 #ifdef CPU_ARM11
    121 		break;
    122 	}
    123 #endif
    124 #endif
    125 }
    126 
    127 static inline void
    128 save_vfpregs(struct vfpreg *fregs)
    129 {
    130 	save_vfpregs_lo(fregs->vfp_regs);
    131 #ifdef CPU_CORTEX
    132 #ifdef CPU_ARM11
    133 	switch (curcpu()->ci_vfp_id) {
    134 	case FPU_VFP_CORTEXA5:
    135 	case FPU_VFP_CORTEXA7:
    136 	case FPU_VFP_CORTEXA8:
    137 	case FPU_VFP_CORTEXA9:
    138 	case FPU_VFP_CORTEXA15:
    139 	case FPU_VFP_CORTEXA15_QEMU:
    140 	case FPU_VFP_CORTEXA53:
    141 	case FPU_VFP_CORTEXA57:
    142 #endif
    143 		save_vfpregs_hi(fregs->vfp_regs);
    144 #ifdef CPU_ARM11
    145 		break;
    146 	}
    147 #endif
    148 #endif
    149 }
    150 
    151 /* The real handler for VFP bounces.  */
    152 static int vfp_handler(u_int, u_int, trapframe_t *, int);
    153 #ifdef CPU_CORTEX
    154 static int neon_handler(u_int, u_int, trapframe_t *, int);
    155 #endif
    156 
    157 static void vfp_state_load(lwp_t *, u_int);
    158 static void vfp_state_save(lwp_t *);
    159 static void vfp_state_release(lwp_t *);
    160 
    161 const pcu_ops_t arm_vfp_ops = {
    162 	.pcu_id = PCU_FPU,
    163 	.pcu_state_save = vfp_state_save,
    164 	.pcu_state_load = vfp_state_load,
    165 	.pcu_state_release = vfp_state_release,
    166 };
    167 
    168 /* determine what bits can be changed */
    169 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
    170 /* default to run fast */
    171 uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
    172 
    173 #else
    174 /* determine what bits can be changed */
    175 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
    176 #endif /* FPU_VFP */
    177 
    178 static int
    179 vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    180 {
    181 	struct lwp * const l = curlwp;
    182 	const u_int regno = (insn >> 12) & 0xf;
    183 	/*
    184 	 * Only match move to/from the FPSCR register and we
    185 	 * can't be using the SP,LR,PC as a source.
    186 	 */
    187 	if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
    188 		return 1;
    189 
    190 	struct pcb * const pcb = lwp_getpcb(l);
    191 
    192 #ifdef FPU_VFP
    193 	/*
    194 	 * If FPU is valid somewhere, let's just reenable VFP and
    195 	 * retry the instruction (only safe thing to do since the
    196 	 * pcb has a stale copy).
    197 	 */
    198 	if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
    199 		return 1;
    200 
    201 	if (__predict_false(!vfp_used_p(l))) {
    202 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
    203 	}
    204 #endif
    205 
    206 	/*
    207 	 * We now know the pcb has the saved copy.
    208 	 */
    209 	register_t * const regp = &frame->tf_r0 + regno;
    210 	if (insn & 0x00100000) {
    211 		*regp = pcb->pcb_vfp.vfp_fpscr;
    212 	} else {
    213 		pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
    214 		pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
    215 	}
    216 
    217 	curcpu()->ci_vfp_evs[0].ev_count++;
    218 
    219 	frame->tf_pc += INSN_SIZE;
    220 	return 0;
    221 }
    222 
    223 #ifndef FPU_VFP
    224 void
    225 vfp_detect(struct cpu_info *ci)
    226 {
    227 	ci->ci_vfp_id = 0;
    228 	return;
    229 }
    230 /*
    231  * If we don't want VFP support, we still need to handle emulating VFP FPSCR
    232  * instructions.
    233  */
    234 void
    235 vfp_attach(struct cpu_info *ci)
    236 {
    237 	if (CPU_IS_PRIMARY(ci)) {
    238 		replace_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    239 	}
    240 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
    241 	    ci->ci_cpuname, "vfp fpscr traps");
    242 }
    243 
    244 #else
    245 void
    246 vfp_detect(struct cpu_info *ci)
    247 {
    248 
    249 	if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
    250 	    || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
    251 	    || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
    252 #if 0
    253 		const uint32_t nsacr = armreg_nsacr_read();
    254 		const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
    255 		if ((nsacr & nsacr_vfp) != nsacr_vfp) {
    256 			ci->ci_fp_id = 0;
    257 			return;
    258 		}
    259 #endif
    260 		const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
    261 		const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
    262 
    263 		/*
    264 		 * We first need to enable access to the coprocessors.
    265 		 */
    266 		uint32_t cpacr = armreg_cpacr_read();
    267 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
    268 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
    269 		armreg_cpacr_write(cpacr);
    270 
    271 		isb();
    272 
    273 		/*
    274 		 * If we could enable them, then they exist.
    275 		 */
    276 		cpacr = armreg_cpacr_read();
    277 		bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
    278 		    && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
    279 		if (!vfp_p) {
    280 			ci->ci_vfp_id = 0;
    281 			return;
    282 		}
    283 	}
    284 
    285 	/* borrow the ci_vfd_id field for VFP detection */
    286 	ci->ci_vfp_id = -1;
    287 
    288 	const uint32_t fpsid = armreg_fpsid_read();
    289 	if (ci->ci_vfp_id == 0) {
    290 		return;
    291 	}
    292 
    293 	ci->ci_vfp_id = fpsid;
    294 
    295 	ci->ci_mvfr[0] = armreg_mvfr0_read();
    296 	ci->ci_mvfr[1] = armreg_mvfr1_read();
    297 
    298 }
    299 
    300 void
    301 vfp_attach(struct cpu_info *ci)
    302 {
    303 	const char *model = NULL;
    304 
    305 	switch (ci->ci_vfp_id & ~ VFP_FPSID_REV_MSK) {
    306 	case FPU_VFP10_ARM10E:
    307 		model = "VFP10 R1";
    308 		break;
    309 	case FPU_VFP11_ARM11:
    310 		model = "VFP11";
    311 		break;
    312 	case FPU_VFP_MV88SV58XX:
    313 		model = "VFP3";
    314 		break;
    315 	case FPU_VFP_CORTEXA5:
    316 	case FPU_VFP_CORTEXA7:
    317 	case FPU_VFP_CORTEXA8:
    318 	case FPU_VFP_CORTEXA9:
    319 	case FPU_VFP_CORTEXA12:
    320 	case FPU_VFP_CORTEXA15:
    321 	case FPU_VFP_CORTEXA15_QEMU:
    322 	case FPU_VFP_CORTEXA17:
    323 	case FPU_VFP_CORTEXA53:
    324 	case FPU_VFP_CORTEXA57:
    325 		if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
    326 			model = "VFP 4.0+";
    327 		} else {
    328 			model = "NEON MPE (VFP 3.0+)";
    329 			cpu_neon_present = 1;
    330 		}
    331 		break;
    332 	default:
    333 		aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
    334 		    ci->ci_vfp_id);
    335 		if (CPU_IS_PRIMARY(ci))
    336 			replace_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    337 		vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
    338 		    |VFP_FPSCR_RMODE;
    339 		vfp_fpscr_default = 0;
    340 		return;
    341 	}
    342 
    343 	cpu_fpu_present = 1;
    344 
    345 	const uint32_t f0 = ci->ci_mvfr[0];
    346 	const uint32_t f1 = ci->ci_mvfr[1];
    347 	aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
    348 	    device_unit(ci->ci_dev),
    349 	    device_xname(ci->ci_dev),
    350 	    model,
    351 	    ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
    352 	    ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
    353 	    ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
    354 	    ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
    355 
    356 	aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
    357 	    device_unit(ci->ci_dev), f0, f1);
    358 
    359 	if (CPU_IS_PRIMARY(ci)) {
    360 		cpu_media_and_vfp_features[0] = f0;
    361 		cpu_media_and_vfp_features[1] = f1;
    362 
    363 		if (f0 & ARM_MVFR0_ROUNDING_MASK) {
    364 			vfp_fpscr_changable |= VFP_FPSCR_RMODE;
    365 		}
    366 		if (f1 & ARM_MVFR0_EXCEPT_MASK) {
    367 			vfp_fpscr_changable |= VFP_FPSCR_ESUM;
    368 		}
    369 		// If hardware supports propagation of NaNs, select it.
    370 		if (f1 & ARM_MVFR1_D_NAN_MASK) {
    371 			vfp_fpscr_default &= ~VFP_FPSCR_DN;
    372 			vfp_fpscr_changable |= VFP_FPSCR_DN;
    373 		}
    374 		// If hardware supports denormalized numbers, use it.
    375 		if (f1 & ARM_MVFR1_FTZ_MASK) {
    376 			vfp_fpscr_default &= ~VFP_FPSCR_FZ;
    377 			vfp_fpscr_changable |= VFP_FPSCR_FZ;
    378 		}
    379 
    380 		replace_coproc_handler(VFP_COPROC, vfp_handler);
    381 		install_coproc_handler(VFP_COPROC2, vfp_handler);
    382 #ifdef CPU_CORTEX
    383 		if (cpu_neon_present) {
    384 			install_coproc_handler(CORE_UNKNOWN_HANDLER,
    385 			    neon_handler);
    386 			aes_md_init(&aes_neon_impl);
    387 			chacha_md_init(&chacha_neon_impl);
    388 		}
    389 #endif
    390 	}
    391 
    392 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
    393 	    ci->ci_cpuname, "vfp coproc use");
    394 	evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
    395 	    ci->ci_cpuname, "vfp coproc re-use");
    396 	evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
    397 	    ci->ci_cpuname, "vfp coproc fault");
    398 }
    399 
    400 /* The real handler for VFP bounces.  */
    401 static int
    402 vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    403 {
    404 	struct cpu_info * const ci = curcpu();
    405 	uint32_t fpexc;
    406 
    407 	/* This shouldn't ever happen.  */
    408 	if (fault_code != FAULT_USER &&
    409 	    (curlwp->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) == LW_SYSTEM)
    410 		panic("VFP fault at %#x in non-user mode", frame->tf_pc);
    411 
    412 	if (ci->ci_vfp_id == 0) {
    413 		/* No VFP detected, just fault.  */
    414 		return 1;
    415 	}
    416 
    417 	/*
    418 	 * If we already own the FPU and it's enabled (and no exception), raise
    419 	 * SIGILL.  If there is an exception, raise SIGFPE.
    420 	 */
    421 	if (curlwp->l_pcu_cpu[PCU_FPU] == ci) {
    422 		KASSERT(ci->ci_pcu_curlwp[PCU_FPU] == curlwp);
    423 
    424 		fpexc = armreg_fpexc_read();
    425 		if (fpexc & VFP_FPEXC_EN) {
    426 			if ((fpexc & VFP_FPEXC_EX) == 0) {
    427 				return 1;	/* SIGILL */
    428 			} else {
    429 				goto fpe;	/* SIGFPE; skip pcu_load(9) */
    430 			}
    431 		}
    432 	}
    433 
    434 	/*
    435 	 * Make sure we own the FP.
    436 	 */
    437 	pcu_load(&arm_vfp_ops);
    438 
    439 	fpexc = armreg_fpexc_read();
    440 	if (fpexc & VFP_FPEXC_EX) {
    441 		ksiginfo_t ksi;
    442 		KASSERT(fpexc & VFP_FPEXC_EN);
    443 
    444 fpe:
    445 		curcpu()->ci_vfp_evs[2].ev_count++;
    446 
    447 		/*
    448 		 * Need the clear the exception condition so any signal
    449 		 * and future use can proceed.
    450 		 */
    451 		armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
    452 
    453 		pcu_save(&arm_vfp_ops, curlwp);
    454 
    455 		/*
    456 		 * XXX Need to emulate bounce instructions here to get correct
    457 		 * XXX exception codes, etc.
    458 		 */
    459 		KSI_INIT_TRAP(&ksi);
    460 		ksi.ksi_signo = SIGFPE;
    461 		if (fpexc & VFP_FPEXC_IXF)
    462 			ksi.ksi_code = FPE_FLTRES;
    463 		else if (fpexc & VFP_FPEXC_UFF)
    464 			ksi.ksi_code = FPE_FLTUND;
    465 		else if (fpexc & VFP_FPEXC_OFF)
    466 			ksi.ksi_code = FPE_FLTOVF;
    467 		else if (fpexc & VFP_FPEXC_DZF)
    468 			ksi.ksi_code = FPE_FLTDIV;
    469 		else if (fpexc & VFP_FPEXC_IOF)
    470 			ksi.ksi_code = FPE_FLTINV;
    471 		ksi.ksi_addr = (uint32_t *)address;
    472 		ksi.ksi_trap = 0;
    473 		trapsignal(curlwp, &ksi);
    474 		return 0;
    475 	}
    476 
    477 	/* Need to restart the faulted instruction.  */
    478 //	frame->tf_pc -= INSN_SIZE;
    479 	return 0;
    480 }
    481 
    482 #ifdef CPU_CORTEX
    483 /* The real handler for NEON bounces.  */
    484 static int
    485 neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    486 {
    487 	struct cpu_info * const ci = curcpu();
    488 
    489 	if (ci->ci_vfp_id == 0)
    490 		/* No VFP detected, just fault.  */
    491 		return 1;
    492 
    493 	if ((insn & 0xfe000000) != 0xf2000000
    494 	    && (insn & 0xfe000000) != 0xf4000000)
    495 		/* Not NEON instruction, just fault.  */
    496 		return 1;
    497 
    498 	/* This shouldn't ever happen.  */
    499 	if (fault_code != FAULT_USER &&
    500 	    (curlwp->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) == LW_SYSTEM)
    501 		panic("NEON fault in non-user mode");
    502 
    503 	/* if we already own the FPU and it's enabled, raise SIGILL */
    504 	if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
    505 	    && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
    506 		return 1;
    507 
    508 	pcu_load(&arm_vfp_ops);
    509 
    510 	/* Need to restart the faulted instruction.  */
    511 //	frame->tf_pc -= INSN_SIZE;
    512 	return 0;
    513 }
    514 #endif
    515 
    516 static void
    517 vfp_state_load(lwp_t *l, u_int flags)
    518 {
    519 	struct pcb * const pcb = lwp_getpcb(l);
    520 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    521 
    522 	/*
    523 	 * Instrument VFP usage -- if a process has not previously
    524 	 * used the VFP, mark it as having used VFP for the first time,
    525 	 * and count this event.
    526 	 *
    527 	 * If a process has used the VFP, count a "used VFP, and took
    528 	 * a trap to use it again" event.
    529 	 */
    530 	if (__predict_false((flags & PCU_VALID) == 0)) {
    531 		curcpu()->ci_vfp_evs[0].ev_count++;
    532 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
    533 	} else {
    534 		curcpu()->ci_vfp_evs[1].ev_count++;
    535 	}
    536 
    537 	KASSERT((armreg_fpexc_read() & VFP_FPEXC_EN) == 0);
    538 	/*
    539 	 * If the VFP is already enabled we must be bouncing an instruction.
    540 	 */
    541 	if (flags & PCU_REENABLE) {
    542 		uint32_t fpexc = armreg_fpexc_read();
    543 		armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
    544 		fregs->vfp_fpexc |= VFP_FPEXC_EN;
    545 		return;
    546 	}
    547 	KASSERT((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0);
    548 
    549 	/*
    550 	 * Load and Enable the VFP (so that we can write the registers).
    551 	 */
    552 	fregs->vfp_fpexc |= VFP_FPEXC_EN;
    553 	armreg_fpexc_write(fregs->vfp_fpexc);
    554 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == NULL);
    555 	KASSERT(l->l_pcu_cpu[PCU_FPU] == NULL);
    556 
    557 	load_vfpregs(fregs);
    558 	armreg_fpscr_write(fregs->vfp_fpscr);
    559 
    560 	if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
    561 		/* Need to restore the exception handling state.  */
    562 		armreg_fpinst_write(fregs->vfp_fpinst);
    563 		if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
    564 			armreg_fpinst2_write(fregs->vfp_fpinst2);
    565 	}
    566 }
    567 
    568 void
    569 vfp_state_save(lwp_t *l)
    570 {
    571 	struct pcb * const pcb = lwp_getpcb(l);
    572 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    573 	uint32_t fpexc = armreg_fpexc_read();
    574 
    575 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == l);
    576 	KASSERT(curcpu() == l->l_pcu_cpu[PCU_FPU]);
    577 	KASSERT(curlwp == l || curlwp->l_pcu_cpu[PCU_FPU] != curcpu());
    578 	/*
    579 	 * Enable the VFP (so we can read the registers).
    580 	 * Make sure the exception bit is cleared so that we can
    581 	 * safely dump the registers.
    582 	 */
    583 	armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
    584 
    585 	fregs->vfp_fpexc = fpexc;
    586 	if (fpexc & VFP_FPEXC_EX) {
    587 		/* Need to save the exception handling state */
    588 		fregs->vfp_fpinst = armreg_fpinst_read();
    589 		if (fpexc & VFP_FPEXC_FP2V)
    590 			fregs->vfp_fpinst2 = armreg_fpinst2_read();
    591 	}
    592 	fregs->vfp_fpscr = armreg_fpscr_read();
    593 	save_vfpregs(fregs);
    594 
    595 	/* Disable the VFP.  */
    596 	armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
    597 }
    598 
    599 void
    600 vfp_state_release(lwp_t *l)
    601 {
    602 	struct pcb * const pcb = lwp_getpcb(l);
    603 
    604 	/*
    605 	 * Now mark the VFP as disabled (and our state
    606 	 * has been already saved or is being discarded).
    607 	 */
    608 	pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
    609 
    610 	/*
    611 	 * Turn off the FPU so the next time a VFP instruction is issued
    612 	 * an exception happens.  We don't know if this LWP's state was
    613 	 * loaded but if we turned off the FPU for some other LWP, when
    614 	 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
    615 	 * is still set so it just restore fpexc and return since its
    616 	 * contents are still sitting in the VFP.
    617 	 */
    618 	armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
    619 }
    620 
    621 void
    622 vfp_savecontext(lwp_t *l)
    623 {
    624 	pcu_save(&arm_vfp_ops, l);
    625 }
    626 
    627 void
    628 vfp_discardcontext(lwp_t *l, bool used_p)
    629 {
    630 	pcu_discard(&arm_vfp_ops, l, used_p);
    631 }
    632 
    633 bool
    634 vfp_used_p(const lwp_t *l)
    635 {
    636 	return pcu_valid_p(&arm_vfp_ops, l);
    637 }
    638 
    639 void
    640 vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
    641 {
    642 	if (vfp_used_p(l)) {
    643 		const struct pcb * const pcb = lwp_getpcb(l);
    644 
    645 		pcu_save(&arm_vfp_ops, l);
    646 		mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
    647 		memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
    648 		    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    649 		*flagsp |= _UC_FPU|_UC_ARM_VFP;
    650 	}
    651 }
    652 
    653 void
    654 vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
    655 {
    656 	struct pcb * const pcb = lwp_getpcb(l);
    657 
    658 	pcu_discard(&arm_vfp_ops, l, true);
    659 	pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
    660 	memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
    661 	    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    662 }
    663 
    664 /*
    665  * True if this is a system thread with its own private FPU state.
    666  */
    667 static inline bool
    668 lwp_system_fpu_p(struct lwp *l)
    669 {
    670 
    671 	return (l->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) ==
    672 	    (LW_SYSTEM|LW_SYSTEM_FPU);
    673 }
    674 
    675 static const struct vfpreg zero_vfpreg;
    676 
    677 void
    678 fpu_kern_enter(void)
    679 {
    680 	struct cpu_info *ci;
    681 	uint32_t fpexc;
    682 	int s;
    683 
    684 	if (lwp_system_fpu_p(curlwp) && !cpu_intr_p()) {
    685 		KASSERT(!cpu_softintr_p());
    686 		return;
    687 	}
    688 
    689 	/*
    690 	 * Block interrupts up to IPL_VM.  We must block preemption
    691 	 * since -- if this is a user thread -- there is nowhere to
    692 	 * save the kernel fpu state, and if we want this to be usable
    693 	 * in interrupts, we can't let interrupts interfere with the
    694 	 * fpu state in use since there's nowhere for them to save it.
    695 	 */
    696 	s = splvm();
    697 	ci = curcpu();
    698 #if 0
    699 	/*
    700 	 * Can't assert this because if the caller holds a spin lock at
    701 	 * IPL_VM, and previously held and released a spin lock at
    702 	 * higher IPL, the IPL remains raised above IPL_VM.
    703 	 */
    704 	KASSERTMSG(ci->ci_cpl <= IPL_VM || cold, "cpl=%d", ci->ci_cpl);
    705 #endif
    706 	KASSERT(ci->ci_kfpu_spl == -1);
    707 	ci->ci_kfpu_spl = s;
    708 
    709 	/* Save any fpu state on the current CPU.  */
    710 	pcu_save_all_on_cpu();
    711 
    712 	/* Enable the fpu.  */
    713 	fpexc = armreg_fpexc_read();
    714 	fpexc |= VFP_FPEXC_EN;
    715 	fpexc &= ~VFP_FPEXC_EX;
    716 	armreg_fpexc_write(fpexc);
    717 }
    718 
    719 void
    720 fpu_kern_leave(void)
    721 {
    722 	struct cpu_info *ci = curcpu();
    723 	int s;
    724 	uint32_t fpexc;
    725 
    726 	if (lwp_system_fpu_p(curlwp) && !cpu_intr_p()) {
    727 		KASSERT(!cpu_softintr_p());
    728 		return;
    729 	}
    730 
    731 #if 0
    732 	/*
    733 	 * Can't assert this because if the caller holds a spin lock at
    734 	 * IPL_VM, and previously held and released a spin lock at
    735 	 * higher IPL, the IPL remains raised above IPL_VM.
    736 	 */
    737 	KASSERT(ci->ci_cpl == IPL_VM || cold);
    738 #endif
    739 	KASSERT(ci->ci_kfpu_spl != -1);
    740 
    741 	/*
    742 	 * Zero the fpu registers; otherwise we might leak secrets
    743 	 * through Spectre-class attacks to userland, even if there are
    744 	 * no bugs in fpu state management.
    745 	 */
    746 	load_vfpregs(&zero_vfpreg);
    747 
    748 	/*
    749 	 * Disable the fpu so that the kernel can't accidentally use
    750 	 * it again.
    751 	 */
    752 	fpexc = armreg_fpexc_read();
    753 	fpexc &= ~VFP_FPEXC_EN;
    754 	armreg_fpexc_write(fpexc);
    755 
    756 	/* Restore interrupts.  */
    757 	s = ci->ci_kfpu_spl;
    758 	ci->ci_kfpu_spl = -1;
    759 	splx(s);
    760 }
    761 
    762 void
    763 kthread_fpu_enter_md(void)
    764 {
    765 
    766 	pcu_load(&arm_vfp_ops);
    767 }
    768 
    769 void
    770 kthread_fpu_exit_md(void)
    771 {
    772 
    773 	/* XXX Should vfp_state_release zero the registers itself?  */
    774 	load_vfpregs(&zero_vfpreg);
    775 	vfp_discardcontext(curlwp, 0);
    776 }
    777 
    778 #endif /* FPU_VFP */
    779