i80321_icu.c revision 1.13 1 1.13 scw /* $NetBSD: i80321_icu.c,v 1.13 2006/11/08 23:45:41 scw Exp $ */
2 1.1 thorpej
3 1.1 thorpej /*
4 1.13 scw * Copyright (c) 2001, 2002, 2006 Wasabi Systems, Inc.
5 1.1 thorpej * All rights reserved.
6 1.1 thorpej *
7 1.13 scw * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc.
8 1.1 thorpej *
9 1.1 thorpej * Redistribution and use in source and binary forms, with or without
10 1.1 thorpej * modification, are permitted provided that the following conditions
11 1.1 thorpej * are met:
12 1.1 thorpej * 1. Redistributions of source code must retain the above copyright
13 1.1 thorpej * notice, this list of conditions and the following disclaimer.
14 1.1 thorpej * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 thorpej * notice, this list of conditions and the following disclaimer in the
16 1.1 thorpej * documentation and/or other materials provided with the distribution.
17 1.1 thorpej * 3. All advertising materials mentioning features or use of this software
18 1.1 thorpej * must display the following acknowledgement:
19 1.1 thorpej * This product includes software developed for the NetBSD Project by
20 1.1 thorpej * Wasabi Systems, Inc.
21 1.1 thorpej * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.1 thorpej * or promote products derived from this software without specific prior
23 1.1 thorpej * written permission.
24 1.1 thorpej *
25 1.1 thorpej * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.1 thorpej * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.1 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 thorpej * POSSIBILITY OF SUCH DAMAGE.
36 1.1 thorpej */
37 1.8 lukem
38 1.8 lukem #include <sys/cdefs.h>
39 1.13 scw __KERNEL_RCSID(0, "$NetBSD: i80321_icu.c,v 1.13 2006/11/08 23:45:41 scw Exp $");
40 1.1 thorpej
41 1.6 thorpej #ifndef EVBARM_SPL_NOINLINE
42 1.6 thorpej #define EVBARM_SPL_NOINLINE
43 1.6 thorpej #endif
44 1.6 thorpej
45 1.1 thorpej /*
46 1.1 thorpej * Interrupt support for the Intel i80321 I/O Processor.
47 1.1 thorpej */
48 1.1 thorpej
49 1.1 thorpej #include <sys/param.h>
50 1.1 thorpej #include <sys/systm.h>
51 1.1 thorpej #include <sys/malloc.h>
52 1.1 thorpej
53 1.1 thorpej #include <uvm/uvm_extern.h>
54 1.1 thorpej
55 1.1 thorpej #include <machine/bus.h>
56 1.1 thorpej #include <machine/intr.h>
57 1.1 thorpej
58 1.1 thorpej #include <arm/cpufunc.h>
59 1.1 thorpej
60 1.1 thorpej #include <arm/xscale/i80321reg.h>
61 1.1 thorpej #include <arm/xscale/i80321var.h>
62 1.1 thorpej
63 1.1 thorpej /* Interrupt handler queues. */
64 1.1 thorpej struct intrq intrq[NIRQ];
65 1.1 thorpej
66 1.1 thorpej /* Interrupts to mask at each level. */
67 1.5 briggs int i80321_imask[NIPL];
68 1.1 thorpej
69 1.1 thorpej /* Current interrupt priority level. */
70 1.11 perry volatile int current_spl_level;
71 1.1 thorpej
72 1.1 thorpej /* Interrupts pending. */
73 1.11 perry volatile int i80321_ipending;
74 1.1 thorpej
75 1.1 thorpej /* Software copy of the IRQs we have enabled. */
76 1.11 perry volatile uint32_t intr_enabled;
77 1.1 thorpej
78 1.1 thorpej /* Mask if interrupts steered to FIQs. */
79 1.1 thorpej uint32_t intr_steer;
80 1.1 thorpej
81 1.1 thorpej /*
82 1.1 thorpej * Map a software interrupt queue index (to the unused bits in the
83 1.1 thorpej * ICU registers -- XXX will need to revisit this if those bits are
84 1.1 thorpej * ever used in future steppings).
85 1.1 thorpej */
86 1.1 thorpej static const uint32_t si_to_irqbit[SI_NQUEUES] = {
87 1.1 thorpej ICU_INT_bit26, /* SI_SOFT */
88 1.1 thorpej ICU_INT_bit22, /* SI_SOFTCLOCK */
89 1.1 thorpej ICU_INT_bit5, /* SI_SOFTNET */
90 1.1 thorpej ICU_INT_bit4, /* SI_SOFTSERIAL */
91 1.1 thorpej };
92 1.1 thorpej
93 1.1 thorpej #define SI_TO_IRQBIT(si) (1U << si_to_irqbit[(si)])
94 1.1 thorpej
95 1.1 thorpej /*
96 1.1 thorpej * Map a software interrupt queue to an interrupt priority level.
97 1.1 thorpej */
98 1.1 thorpej static const int si_to_ipl[SI_NQUEUES] = {
99 1.1 thorpej IPL_SOFT, /* SI_SOFT */
100 1.1 thorpej IPL_SOFTCLOCK, /* SI_SOFTCLOCK */
101 1.1 thorpej IPL_SOFTNET, /* SI_SOFTNET */
102 1.1 thorpej IPL_SOFTSERIAL, /* SI_SOFTSERIAL */
103 1.1 thorpej };
104 1.1 thorpej
105 1.3 thorpej /*
106 1.3 thorpej * Interrupt bit names.
107 1.3 thorpej */
108 1.3 thorpej const char *i80321_irqnames[] = {
109 1.3 thorpej "DMA0 EOT",
110 1.3 thorpej "DMA0 EOC",
111 1.3 thorpej "DMA1 EOT",
112 1.3 thorpej "DMA1 EOC",
113 1.3 thorpej "irq 4",
114 1.3 thorpej "irq 5",
115 1.3 thorpej "AAU EOT",
116 1.3 thorpej "AAU EOC",
117 1.3 thorpej "core PMU",
118 1.3 thorpej "TMR0 (hardclock)",
119 1.3 thorpej "TMR1",
120 1.3 thorpej "I2C0",
121 1.3 thorpej "I2C1",
122 1.3 thorpej "MU",
123 1.3 thorpej "BIST",
124 1.3 thorpej "periph PMU",
125 1.3 thorpej "XScale PMU",
126 1.3 thorpej "BIU error",
127 1.3 thorpej "ATU error",
128 1.3 thorpej "MCU error",
129 1.3 thorpej "DMA0 error",
130 1.3 thorpej "DMA1 error",
131 1.3 thorpej "irq 22",
132 1.3 thorpej "AAU error",
133 1.3 thorpej "MU error",
134 1.3 thorpej "SSP",
135 1.3 thorpej "irq 26",
136 1.3 thorpej "irq 27",
137 1.3 thorpej "irq 28",
138 1.3 thorpej "irq 29",
139 1.3 thorpej "irq 30",
140 1.3 thorpej "irq 31",
141 1.3 thorpej };
142 1.3 thorpej
143 1.1 thorpej void i80321_intr_dispatch(struct clockframe *frame);
144 1.1 thorpej
145 1.11 perry static inline uint32_t
146 1.1 thorpej i80321_iintsrc_read(void)
147 1.1 thorpej {
148 1.1 thorpej uint32_t iintsrc;
149 1.1 thorpej
150 1.11 perry __asm volatile("mrc p6, 0, %0, c8, c0, 0"
151 1.1 thorpej : "=r" (iintsrc));
152 1.1 thorpej
153 1.1 thorpej /*
154 1.1 thorpej * The IINTSRC register shows bits that are active even
155 1.1 thorpej * if they are masked in INTCTL, so we have to mask them
156 1.1 thorpej * off with the interrupts we consider enabled.
157 1.1 thorpej */
158 1.1 thorpej return (iintsrc & intr_enabled);
159 1.1 thorpej }
160 1.1 thorpej
161 1.11 perry static inline void
162 1.1 thorpej i80321_set_intrsteer(void)
163 1.1 thorpej {
164 1.1 thorpej
165 1.11 perry __asm volatile("mcr p6, 0, %0, c4, c0, 0"
166 1.1 thorpej :
167 1.1 thorpej : "r" (intr_steer & ICU_INT_HWMASK));
168 1.1 thorpej }
169 1.1 thorpej
170 1.11 perry static inline void
171 1.1 thorpej i80321_enable_irq(int irq)
172 1.1 thorpej {
173 1.1 thorpej
174 1.1 thorpej intr_enabled |= (1U << irq);
175 1.1 thorpej i80321_set_intrmask();
176 1.1 thorpej }
177 1.1 thorpej
178 1.11 perry static inline void
179 1.1 thorpej i80321_disable_irq(int irq)
180 1.1 thorpej {
181 1.1 thorpej
182 1.1 thorpej intr_enabled &= ~(1U << irq);
183 1.1 thorpej i80321_set_intrmask();
184 1.1 thorpej }
185 1.1 thorpej
186 1.1 thorpej /*
187 1.1 thorpej * NOTE: This routine must be called with interrupts disabled in the CPSR.
188 1.1 thorpej */
189 1.1 thorpej static void
190 1.1 thorpej i80321_intr_calculate_masks(void)
191 1.1 thorpej {
192 1.1 thorpej struct intrq *iq;
193 1.1 thorpej struct intrhand *ih;
194 1.1 thorpej int irq, ipl;
195 1.1 thorpej
196 1.1 thorpej /* First, figure out which IPLs each IRQ has. */
197 1.1 thorpej for (irq = 0; irq < NIRQ; irq++) {
198 1.1 thorpej int levels = 0;
199 1.1 thorpej iq = &intrq[irq];
200 1.1 thorpej i80321_disable_irq(irq);
201 1.1 thorpej for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
202 1.1 thorpej ih = TAILQ_NEXT(ih, ih_list))
203 1.1 thorpej levels |= (1U << ih->ih_ipl);
204 1.1 thorpej iq->iq_levels = levels;
205 1.1 thorpej }
206 1.1 thorpej
207 1.1 thorpej /* Next, figure out which IRQs are used by each IPL. */
208 1.1 thorpej for (ipl = 0; ipl < NIPL; ipl++) {
209 1.1 thorpej int irqs = 0;
210 1.1 thorpej for (irq = 0; irq < NIRQ; irq++) {
211 1.1 thorpej if (intrq[irq].iq_levels & (1U << ipl))
212 1.1 thorpej irqs |= (1U << irq);
213 1.1 thorpej }
214 1.5 briggs i80321_imask[ipl] = irqs;
215 1.1 thorpej }
216 1.1 thorpej
217 1.5 briggs i80321_imask[IPL_NONE] = 0;
218 1.1 thorpej
219 1.1 thorpej /*
220 1.1 thorpej * Initialize the soft interrupt masks to block themselves.
221 1.1 thorpej */
222 1.5 briggs i80321_imask[IPL_SOFT] = SI_TO_IRQBIT(SI_SOFT);
223 1.5 briggs i80321_imask[IPL_SOFTCLOCK] = SI_TO_IRQBIT(SI_SOFTCLOCK);
224 1.5 briggs i80321_imask[IPL_SOFTNET] = SI_TO_IRQBIT(SI_SOFTNET);
225 1.5 briggs i80321_imask[IPL_SOFTSERIAL] = SI_TO_IRQBIT(SI_SOFTSERIAL);
226 1.1 thorpej
227 1.1 thorpej /*
228 1.1 thorpej * splsoftclock() is the only interface that users of the
229 1.1 thorpej * generic software interrupt facility have to block their
230 1.1 thorpej * soft intrs, so splsoftclock() must also block IPL_SOFT.
231 1.1 thorpej */
232 1.5 briggs i80321_imask[IPL_SOFTCLOCK] |= i80321_imask[IPL_SOFT];
233 1.1 thorpej
234 1.1 thorpej /*
235 1.1 thorpej * splsoftnet() must also block splsoftclock(), since we don't
236 1.1 thorpej * want timer-driven network events to occur while we're
237 1.1 thorpej * processing incoming packets.
238 1.1 thorpej */
239 1.5 briggs i80321_imask[IPL_SOFTNET] |= i80321_imask[IPL_SOFTCLOCK];
240 1.1 thorpej
241 1.1 thorpej /*
242 1.1 thorpej * Enforce a heirarchy that gives "slow" device (or devices with
243 1.1 thorpej * limited input buffer space/"real-time" requirements) a better
244 1.1 thorpej * chance at not dropping data.
245 1.1 thorpej */
246 1.5 briggs i80321_imask[IPL_BIO] |= i80321_imask[IPL_SOFTNET];
247 1.5 briggs i80321_imask[IPL_NET] |= i80321_imask[IPL_BIO];
248 1.5 briggs i80321_imask[IPL_SOFTSERIAL] |= i80321_imask[IPL_NET];
249 1.5 briggs i80321_imask[IPL_TTY] |= i80321_imask[IPL_SOFTSERIAL];
250 1.1 thorpej
251 1.1 thorpej /*
252 1.1 thorpej * splvm() blocks all interrupts that use the kernel memory
253 1.1 thorpej * allocation facilities.
254 1.1 thorpej */
255 1.7 thorpej i80321_imask[IPL_VM] |= i80321_imask[IPL_TTY];
256 1.1 thorpej
257 1.1 thorpej /*
258 1.1 thorpej * Audio devices are not allowed to perform memory allocation
259 1.1 thorpej * in their interrupt routines, and they have fairly "real-time"
260 1.1 thorpej * requirements, so give them a high interrupt priority.
261 1.1 thorpej */
262 1.7 thorpej i80321_imask[IPL_AUDIO] |= i80321_imask[IPL_VM];
263 1.1 thorpej
264 1.1 thorpej /*
265 1.1 thorpej * splclock() must block anything that uses the scheduler.
266 1.1 thorpej */
267 1.5 briggs i80321_imask[IPL_CLOCK] |= i80321_imask[IPL_AUDIO];
268 1.1 thorpej
269 1.1 thorpej /*
270 1.1 thorpej * No separate statclock on the IQ80310.
271 1.1 thorpej */
272 1.5 briggs i80321_imask[IPL_STATCLOCK] |= i80321_imask[IPL_CLOCK];
273 1.1 thorpej
274 1.1 thorpej /*
275 1.1 thorpej * splhigh() must block "everything".
276 1.1 thorpej */
277 1.5 briggs i80321_imask[IPL_HIGH] |= i80321_imask[IPL_STATCLOCK];
278 1.1 thorpej
279 1.1 thorpej /*
280 1.1 thorpej * XXX We need serial drivers to run at the absolute highest priority
281 1.1 thorpej * in order to avoid overruns, so serial > high.
282 1.1 thorpej */
283 1.5 briggs i80321_imask[IPL_SERIAL] |= i80321_imask[IPL_HIGH];
284 1.1 thorpej
285 1.1 thorpej /*
286 1.1 thorpej * Now compute which IRQs must be blocked when servicing any
287 1.1 thorpej * given IRQ.
288 1.1 thorpej */
289 1.1 thorpej for (irq = 0; irq < NIRQ; irq++) {
290 1.1 thorpej int irqs = (1U << irq);
291 1.1 thorpej iq = &intrq[irq];
292 1.1 thorpej if (TAILQ_FIRST(&iq->iq_list) != NULL)
293 1.1 thorpej i80321_enable_irq(irq);
294 1.1 thorpej for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
295 1.1 thorpej ih = TAILQ_NEXT(ih, ih_list))
296 1.5 briggs irqs |= i80321_imask[ih->ih_ipl];
297 1.1 thorpej iq->iq_mask = irqs;
298 1.1 thorpej }
299 1.1 thorpej }
300 1.1 thorpej
301 1.12 mrg void
302 1.1 thorpej i80321_do_pending(void)
303 1.1 thorpej {
304 1.1 thorpej static __cpu_simple_lock_t processing = __SIMPLELOCK_UNLOCKED;
305 1.1 thorpej int new, oldirqstate;
306 1.1 thorpej
307 1.1 thorpej if (__cpu_simple_lock_try(&processing) == 0)
308 1.1 thorpej return;
309 1.1 thorpej
310 1.1 thorpej new = current_spl_level;
311 1.1 thorpej
312 1.1 thorpej oldirqstate = disable_interrupts(I32_bit);
313 1.1 thorpej
314 1.1 thorpej #define DO_SOFTINT(si) \
315 1.6 thorpej if ((i80321_ipending & ~new) & SI_TO_IRQBIT(si)) { \
316 1.6 thorpej i80321_ipending &= ~SI_TO_IRQBIT(si); \
317 1.6 thorpej current_spl_level |= i80321_imask[si_to_ipl[(si)]]; \
318 1.1 thorpej restore_interrupts(oldirqstate); \
319 1.1 thorpej softintr_dispatch(si); \
320 1.1 thorpej oldirqstate = disable_interrupts(I32_bit); \
321 1.1 thorpej current_spl_level = new; \
322 1.1 thorpej }
323 1.1 thorpej
324 1.1 thorpej DO_SOFTINT(SI_SOFTSERIAL);
325 1.1 thorpej DO_SOFTINT(SI_SOFTNET);
326 1.1 thorpej DO_SOFTINT(SI_SOFTCLOCK);
327 1.1 thorpej DO_SOFTINT(SI_SOFT);
328 1.1 thorpej
329 1.1 thorpej __cpu_simple_unlock(&processing);
330 1.1 thorpej
331 1.1 thorpej restore_interrupts(oldirqstate);
332 1.1 thorpej }
333 1.1 thorpej
334 1.6 thorpej void
335 1.1 thorpej splx(int new)
336 1.1 thorpej {
337 1.1 thorpej
338 1.6 thorpej i80321_splx(new);
339 1.5 briggs }
340 1.5 briggs
341 1.5 briggs int
342 1.1 thorpej _spllower(int ipl)
343 1.1 thorpej {
344 1.5 briggs
345 1.6 thorpej return (i80321_spllower(ipl));
346 1.5 briggs }
347 1.5 briggs
348 1.5 briggs int
349 1.5 briggs _splraise(int ipl)
350 1.5 briggs {
351 1.6 thorpej
352 1.6 thorpej return (i80321_splraise(ipl));
353 1.1 thorpej }
354 1.5 briggs
355 1.1 thorpej void
356 1.1 thorpej _setsoftintr(int si)
357 1.1 thorpej {
358 1.1 thorpej int oldirqstate;
359 1.1 thorpej
360 1.1 thorpej oldirqstate = disable_interrupts(I32_bit);
361 1.5 briggs i80321_ipending |= SI_TO_IRQBIT(si);
362 1.1 thorpej restore_interrupts(oldirqstate);
363 1.1 thorpej
364 1.1 thorpej /* Process unmasked pending soft interrupts. */
365 1.5 briggs if ((i80321_ipending & INT_SWMASK) & ~current_spl_level)
366 1.1 thorpej i80321_do_pending();
367 1.1 thorpej }
368 1.1 thorpej
369 1.1 thorpej /*
370 1.1 thorpej * i80321_icu_init:
371 1.1 thorpej *
372 1.1 thorpej * Initialize the i80321 ICU. Called early in bootstrap
373 1.1 thorpej * to make sure the ICU is in a pristine state.
374 1.1 thorpej */
375 1.1 thorpej void
376 1.1 thorpej i80321_icu_init(void)
377 1.1 thorpej {
378 1.1 thorpej
379 1.1 thorpej intr_enabled = 0; /* All interrupts disabled */
380 1.1 thorpej i80321_set_intrmask();
381 1.1 thorpej
382 1.1 thorpej intr_steer = 0; /* All interrupts steered to IRQ */
383 1.1 thorpej i80321_set_intrsteer();
384 1.1 thorpej }
385 1.1 thorpej
386 1.1 thorpej /*
387 1.1 thorpej * i80321_intr_init:
388 1.1 thorpej *
389 1.1 thorpej * Initialize the rest of the interrupt subsystem, making it
390 1.1 thorpej * ready to handle interrupts from devices.
391 1.1 thorpej */
392 1.1 thorpej void
393 1.1 thorpej i80321_intr_init(void)
394 1.1 thorpej {
395 1.1 thorpej struct intrq *iq;
396 1.1 thorpej int i;
397 1.1 thorpej
398 1.1 thorpej intr_enabled = 0;
399 1.1 thorpej
400 1.1 thorpej for (i = 0; i < NIRQ; i++) {
401 1.1 thorpej iq = &intrq[i];
402 1.1 thorpej TAILQ_INIT(&iq->iq_list);
403 1.1 thorpej
404 1.1 thorpej evcnt_attach_dynamic(&iq->iq_ev, EVCNT_TYPE_INTR,
405 1.3 thorpej NULL, "iop321", i80321_irqnames[i]);
406 1.1 thorpej }
407 1.1 thorpej
408 1.1 thorpej i80321_intr_calculate_masks();
409 1.1 thorpej
410 1.1 thorpej /* Enable IRQs (don't yet use FIQs). */
411 1.1 thorpej enable_interrupts(I32_bit);
412 1.1 thorpej }
413 1.1 thorpej
414 1.1 thorpej void *
415 1.1 thorpej i80321_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
416 1.1 thorpej {
417 1.1 thorpej struct intrq *iq;
418 1.1 thorpej struct intrhand *ih;
419 1.1 thorpej u_int oldirqstate;
420 1.1 thorpej
421 1.1 thorpej if (irq < 0 || irq > NIRQ)
422 1.1 thorpej panic("i80321_intr_establish: IRQ %d out of range", irq);
423 1.1 thorpej
424 1.1 thorpej ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
425 1.1 thorpej if (ih == NULL)
426 1.1 thorpej return (NULL);
427 1.1 thorpej
428 1.1 thorpej ih->ih_func = func;
429 1.1 thorpej ih->ih_arg = arg;
430 1.1 thorpej ih->ih_ipl = ipl;
431 1.1 thorpej ih->ih_irq = irq;
432 1.1 thorpej
433 1.1 thorpej iq = &intrq[irq];
434 1.1 thorpej
435 1.1 thorpej /* All IOP321 interrupts are level-triggered. */
436 1.1 thorpej iq->iq_ist = IST_LEVEL;
437 1.1 thorpej
438 1.1 thorpej oldirqstate = disable_interrupts(I32_bit);
439 1.1 thorpej
440 1.1 thorpej TAILQ_INSERT_TAIL(&iq->iq_list, ih, ih_list);
441 1.1 thorpej
442 1.1 thorpej i80321_intr_calculate_masks();
443 1.1 thorpej
444 1.1 thorpej restore_interrupts(oldirqstate);
445 1.1 thorpej
446 1.1 thorpej return (ih);
447 1.1 thorpej }
448 1.1 thorpej
449 1.1 thorpej void
450 1.1 thorpej i80321_intr_disestablish(void *cookie)
451 1.1 thorpej {
452 1.1 thorpej struct intrhand *ih = cookie;
453 1.1 thorpej struct intrq *iq = &intrq[ih->ih_irq];
454 1.1 thorpej int oldirqstate;
455 1.1 thorpej
456 1.1 thorpej oldirqstate = disable_interrupts(I32_bit);
457 1.1 thorpej
458 1.1 thorpej TAILQ_REMOVE(&iq->iq_list, ih, ih_list);
459 1.1 thorpej
460 1.1 thorpej i80321_intr_calculate_masks();
461 1.1 thorpej
462 1.1 thorpej restore_interrupts(oldirqstate);
463 1.1 thorpej }
464 1.1 thorpej
465 1.13 scw /*
466 1.13 scw * Hardware interrupt handler.
467 1.13 scw *
468 1.13 scw * If I80321_HPI_ENABLED is defined, this code attempts to deal with
469 1.13 scw * HPI interrupts as best it can.
470 1.13 scw *
471 1.13 scw * The problem is that HPIs cannot be masked at the interrupt controller;
472 1.13 scw * they can only be masked by disabling IRQs in the XScale core.
473 1.13 scw *
474 1.13 scw * So, if an HPI comes in and we determine that it should be masked at
475 1.13 scw * the current IPL then we mark it pending in the usual way and set
476 1.13 scw * I32_bit in the interrupt frame. This ensures that when we return from
477 1.13 scw * i80321_intr_dispatch(), IRQs will be disabled in the XScale core. (To
478 1.13 scw * ensure IRQs are enabled later, i80321_splx() has been modified to do
479 1.13 scw * just that when a pending HPI interrupt is unmasked.) Additionally,
480 1.13 scw * because HPIs are level-triggered, the registered handler for the HPI
481 1.13 scw * interrupt will also be invoked with IRQs disabled. If a masked HPI
482 1.13 scw * occurs at the same time as another unmasked higher priority interrupt,
483 1.13 scw * the higher priority handler will also be invoked with IRQs disabled.
484 1.13 scw * As a result, the system could end up executing a lot of code with IRQs
485 1.13 scw * completely disabled if the HPI's IPL is relatively low.
486 1.13 scw *
487 1.13 scw * At the present time, the only known use of HPI is for the console UART
488 1.13 scw * on a couple of boards. This is probably the least intrusive use of HPI
489 1.13 scw * as IPL_SERIAL is the highest priority IPL in the system anyway. The
490 1.13 scw * code has not been tested with HPI hooked up to a class of device which
491 1.13 scw * interrupts below IPL_SERIAL. Indeed, such a configuration is likely to
492 1.13 scw * perform very poorly if at all, even though the following code has been
493 1.13 scw * designed (hopefully) to cope with it.
494 1.13 scw */
495 1.13 scw
496 1.1 thorpej void
497 1.1 thorpej i80321_intr_dispatch(struct clockframe *frame)
498 1.1 thorpej {
499 1.1 thorpej struct intrq *iq;
500 1.1 thorpej struct intrhand *ih;
501 1.1 thorpej int oldirqstate, pcpl, irq, ibit, hwpend;
502 1.13 scw #ifdef I80321_HPI_ENABLED
503 1.13 scw int oldpending;
504 1.13 scw #endif
505 1.1 thorpej
506 1.1 thorpej pcpl = current_spl_level;
507 1.1 thorpej
508 1.1 thorpej hwpend = i80321_iintsrc_read();
509 1.1 thorpej
510 1.1 thorpej /*
511 1.1 thorpej * Disable all the interrupts that are pending. We will
512 1.1 thorpej * reenable them once they are processed and not masked.
513 1.1 thorpej */
514 1.1 thorpej intr_enabled &= ~hwpend;
515 1.1 thorpej i80321_set_intrmask();
516 1.1 thorpej
517 1.13 scw #ifdef I80321_HPI_ENABLED
518 1.13 scw oldirqstate = 0; /* XXX: quell gcc warning */
519 1.13 scw #endif
520 1.13 scw
521 1.1 thorpej while (hwpend != 0) {
522 1.13 scw #ifdef I80321_HPI_ENABLED
523 1.13 scw /* Deal with HPI interrupt first */
524 1.13 scw if (__predict_false(hwpend & INT_HPIMASK))
525 1.13 scw irq = ICU_INT_HPI;
526 1.13 scw else
527 1.13 scw #endif
528 1.1 thorpej irq = ffs(hwpend) - 1;
529 1.1 thorpej ibit = (1U << irq);
530 1.1 thorpej
531 1.1 thorpej hwpend &= ~ibit;
532 1.1 thorpej
533 1.1 thorpej if (pcpl & ibit) {
534 1.1 thorpej /*
535 1.1 thorpej * IRQ is masked; mark it as pending and check
536 1.1 thorpej * the next one. Note: the IRQ is already disabled.
537 1.1 thorpej */
538 1.13 scw #ifdef I80321_HPI_ENABLED
539 1.13 scw if (__predict_false(irq == ICU_INT_HPI)) {
540 1.13 scw /*
541 1.13 scw * This is an HPI. We *must* disable
542 1.13 scw * IRQs in the interrupt frame until
543 1.13 scw * INT_HPIMASK is cleared by a later
544 1.13 scw * call to splx(). Otherwise the level-
545 1.13 scw * triggered interrupt will just keep
546 1.13 scw * coming back.
547 1.13 scw */
548 1.13 scw frame->cf_if.if_spsr |= I32_bit;
549 1.13 scw }
550 1.13 scw #endif
551 1.5 briggs i80321_ipending |= ibit;
552 1.1 thorpej continue;
553 1.1 thorpej }
554 1.1 thorpej
555 1.13 scw #ifdef I80321_HPI_ENABLED
556 1.13 scw oldpending = i80321_ipending | ibit;
557 1.13 scw #endif
558 1.5 briggs i80321_ipending &= ~ibit;
559 1.1 thorpej
560 1.1 thorpej iq = &intrq[irq];
561 1.1 thorpej iq->iq_ev.ev_count++;
562 1.1 thorpej uvmexp.intrs++;
563 1.1 thorpej current_spl_level |= iq->iq_mask;
564 1.13 scw #ifdef I80321_HPI_ENABLED
565 1.13 scw /*
566 1.13 scw * Re-enable interrupts iff an HPI is not pending
567 1.13 scw */
568 1.13 scw if (__predict_true((oldpending & INT_HPIMASK) == 0))
569 1.13 scw #endif
570 1.1 thorpej oldirqstate = enable_interrupts(I32_bit);
571 1.1 thorpej for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
572 1.1 thorpej ih = TAILQ_NEXT(ih, ih_list)) {
573 1.1 thorpej (void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
574 1.1 thorpej }
575 1.13 scw #ifdef I80321_HPI_ENABLED
576 1.13 scw if (__predict_true((oldpending & INT_HPIMASK) == 0))
577 1.13 scw #endif
578 1.1 thorpej restore_interrupts(oldirqstate);
579 1.13 scw #ifdef I80321_HPI_ENABLED
580 1.13 scw else if (irq == ICU_INT_HPI) {
581 1.13 scw /*
582 1.13 scw * We've just handled the HPI. Make sure IRQs
583 1.13 scw * are enabled in the interrupt frame.
584 1.13 scw * Here's hoping the handler really did clear
585 1.13 scw * down the source...
586 1.13 scw */
587 1.13 scw frame->cf_if.if_spsr &= ~I32_bit;
588 1.13 scw }
589 1.13 scw #endif
590 1.1 thorpej current_spl_level = pcpl;
591 1.1 thorpej
592 1.1 thorpej /* Re-enable this interrupt now that's it's cleared. */
593 1.1 thorpej intr_enabled |= ibit;
594 1.1 thorpej i80321_set_intrmask();
595 1.9 scw
596 1.9 scw /*
597 1.9 scw * Don't forget to include interrupts which may have
598 1.9 scw * arrived in the meantime.
599 1.9 scw */
600 1.9 scw hwpend |= ((i80321_ipending & ICU_INT_HWMASK) & ~pcpl);
601 1.1 thorpej }
602 1.1 thorpej
603 1.1 thorpej /* Check for pendings soft intrs. */
604 1.5 briggs if ((i80321_ipending & INT_SWMASK) & ~current_spl_level) {
605 1.13 scw #ifdef I80321_HPI_ENABLED
606 1.13 scw /* XXX: This is only necessary if HPI is < IPL_SOFT* */
607 1.13 scw if (__predict_true((i80321_ipending & INT_HPIMASK) == 0))
608 1.13 scw #endif
609 1.1 thorpej oldirqstate = enable_interrupts(I32_bit);
610 1.1 thorpej i80321_do_pending();
611 1.13 scw #ifdef I80321_HPI_ENABLED
612 1.13 scw /* XXX: This is only necessary if HPI is < IPL_NET* */
613 1.13 scw if (__predict_true((i80321_ipending & INT_HPIMASK) == 0))
614 1.13 scw #endif
615 1.1 thorpej restore_interrupts(oldirqstate);
616 1.1 thorpej }
617 1.1 thorpej }
618