i80321_icu.c revision 1.15 1 1.15 ad /* $NetBSD: i80321_icu.c,v 1.15 2007/12/03 15:33:20 ad Exp $ */
2 1.1 thorpej
3 1.1 thorpej /*
4 1.13 scw * Copyright (c) 2001, 2002, 2006 Wasabi Systems, Inc.
5 1.1 thorpej * All rights reserved.
6 1.1 thorpej *
7 1.13 scw * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc.
8 1.1 thorpej *
9 1.1 thorpej * Redistribution and use in source and binary forms, with or without
10 1.1 thorpej * modification, are permitted provided that the following conditions
11 1.1 thorpej * are met:
12 1.1 thorpej * 1. Redistributions of source code must retain the above copyright
13 1.1 thorpej * notice, this list of conditions and the following disclaimer.
14 1.1 thorpej * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 thorpej * notice, this list of conditions and the following disclaimer in the
16 1.1 thorpej * documentation and/or other materials provided with the distribution.
17 1.1 thorpej * 3. All advertising materials mentioning features or use of this software
18 1.1 thorpej * must display the following acknowledgement:
19 1.1 thorpej * This product includes software developed for the NetBSD Project by
20 1.1 thorpej * Wasabi Systems, Inc.
21 1.1 thorpej * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.1 thorpej * or promote products derived from this software without specific prior
23 1.1 thorpej * written permission.
24 1.1 thorpej *
25 1.1 thorpej * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.1 thorpej * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.1 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 thorpej * POSSIBILITY OF SUCH DAMAGE.
36 1.1 thorpej */
37 1.8 lukem
38 1.8 lukem #include <sys/cdefs.h>
39 1.15 ad __KERNEL_RCSID(0, "$NetBSD: i80321_icu.c,v 1.15 2007/12/03 15:33:20 ad Exp $");
40 1.1 thorpej
41 1.6 thorpej #ifndef EVBARM_SPL_NOINLINE
42 1.6 thorpej #define EVBARM_SPL_NOINLINE
43 1.6 thorpej #endif
44 1.6 thorpej
45 1.1 thorpej /*
46 1.1 thorpej * Interrupt support for the Intel i80321 I/O Processor.
47 1.1 thorpej */
48 1.1 thorpej
49 1.1 thorpej #include <sys/param.h>
50 1.1 thorpej #include <sys/systm.h>
51 1.1 thorpej #include <sys/malloc.h>
52 1.1 thorpej
53 1.1 thorpej #include <uvm/uvm_extern.h>
54 1.1 thorpej
55 1.1 thorpej #include <machine/bus.h>
56 1.1 thorpej #include <machine/intr.h>
57 1.1 thorpej
58 1.1 thorpej #include <arm/cpufunc.h>
59 1.1 thorpej
60 1.1 thorpej #include <arm/xscale/i80321reg.h>
61 1.1 thorpej #include <arm/xscale/i80321var.h>
62 1.1 thorpej
63 1.1 thorpej /* Interrupt handler queues. */
64 1.1 thorpej struct intrq intrq[NIRQ];
65 1.1 thorpej
66 1.1 thorpej /* Interrupts to mask at each level. */
67 1.5 briggs int i80321_imask[NIPL];
68 1.1 thorpej
69 1.1 thorpej /* Current interrupt priority level. */
70 1.11 perry volatile int current_spl_level;
71 1.1 thorpej
72 1.1 thorpej /* Interrupts pending. */
73 1.11 perry volatile int i80321_ipending;
74 1.1 thorpej
75 1.1 thorpej /* Software copy of the IRQs we have enabled. */
76 1.11 perry volatile uint32_t intr_enabled;
77 1.1 thorpej
78 1.1 thorpej /* Mask if interrupts steered to FIQs. */
79 1.1 thorpej uint32_t intr_steer;
80 1.1 thorpej
81 1.1 thorpej /*
82 1.1 thorpej * Map a software interrupt queue index (to the unused bits in the
83 1.1 thorpej * ICU registers -- XXX will need to revisit this if those bits are
84 1.1 thorpej * ever used in future steppings).
85 1.1 thorpej */
86 1.15 ad static const uint32_t si_to_irqbit[4] = {
87 1.15 ad ICU_INT_bit26, /* SI_SOFTCLOCK */
88 1.15 ad ICU_INT_bit22, /* SI_SOFTBIO */
89 1.1 thorpej ICU_INT_bit5, /* SI_SOFTNET */
90 1.1 thorpej ICU_INT_bit4, /* SI_SOFTSERIAL */
91 1.1 thorpej };
92 1.1 thorpej
93 1.1 thorpej #define SI_TO_IRQBIT(si) (1U << si_to_irqbit[(si)])
94 1.1 thorpej
95 1.1 thorpej /*
96 1.1 thorpej * Map a software interrupt queue to an interrupt priority level.
97 1.1 thorpej */
98 1.15 ad static const int si_to_ipl[4] = {
99 1.1 thorpej IPL_SOFTCLOCK, /* SI_SOFTCLOCK */
100 1.15 ad IPL_SOFTBIO, /* SI_SOFTBIO */
101 1.1 thorpej IPL_SOFTNET, /* SI_SOFTNET */
102 1.1 thorpej IPL_SOFTSERIAL, /* SI_SOFTSERIAL */
103 1.1 thorpej };
104 1.1 thorpej
105 1.3 thorpej /*
106 1.3 thorpej * Interrupt bit names.
107 1.3 thorpej */
108 1.3 thorpej const char *i80321_irqnames[] = {
109 1.3 thorpej "DMA0 EOT",
110 1.3 thorpej "DMA0 EOC",
111 1.3 thorpej "DMA1 EOT",
112 1.3 thorpej "DMA1 EOC",
113 1.3 thorpej "irq 4",
114 1.3 thorpej "irq 5",
115 1.3 thorpej "AAU EOT",
116 1.3 thorpej "AAU EOC",
117 1.3 thorpej "core PMU",
118 1.3 thorpej "TMR0 (hardclock)",
119 1.3 thorpej "TMR1",
120 1.3 thorpej "I2C0",
121 1.3 thorpej "I2C1",
122 1.3 thorpej "MU",
123 1.3 thorpej "BIST",
124 1.3 thorpej "periph PMU",
125 1.3 thorpej "XScale PMU",
126 1.3 thorpej "BIU error",
127 1.3 thorpej "ATU error",
128 1.3 thorpej "MCU error",
129 1.3 thorpej "DMA0 error",
130 1.3 thorpej "DMA1 error",
131 1.3 thorpej "irq 22",
132 1.3 thorpej "AAU error",
133 1.3 thorpej "MU error",
134 1.3 thorpej "SSP",
135 1.3 thorpej "irq 26",
136 1.3 thorpej "irq 27",
137 1.3 thorpej "irq 28",
138 1.3 thorpej "irq 29",
139 1.3 thorpej "irq 30",
140 1.3 thorpej "irq 31",
141 1.3 thorpej };
142 1.3 thorpej
143 1.1 thorpej void i80321_intr_dispatch(struct clockframe *frame);
144 1.1 thorpej
145 1.11 perry static inline uint32_t
146 1.1 thorpej i80321_iintsrc_read(void)
147 1.1 thorpej {
148 1.1 thorpej uint32_t iintsrc;
149 1.1 thorpej
150 1.11 perry __asm volatile("mrc p6, 0, %0, c8, c0, 0"
151 1.1 thorpej : "=r" (iintsrc));
152 1.1 thorpej
153 1.1 thorpej /*
154 1.1 thorpej * The IINTSRC register shows bits that are active even
155 1.1 thorpej * if they are masked in INTCTL, so we have to mask them
156 1.1 thorpej * off with the interrupts we consider enabled.
157 1.1 thorpej */
158 1.1 thorpej return (iintsrc & intr_enabled);
159 1.1 thorpej }
160 1.1 thorpej
161 1.11 perry static inline void
162 1.1 thorpej i80321_set_intrsteer(void)
163 1.1 thorpej {
164 1.1 thorpej
165 1.11 perry __asm volatile("mcr p6, 0, %0, c4, c0, 0"
166 1.1 thorpej :
167 1.1 thorpej : "r" (intr_steer & ICU_INT_HWMASK));
168 1.1 thorpej }
169 1.1 thorpej
170 1.11 perry static inline void
171 1.1 thorpej i80321_enable_irq(int irq)
172 1.1 thorpej {
173 1.1 thorpej
174 1.1 thorpej intr_enabled |= (1U << irq);
175 1.1 thorpej i80321_set_intrmask();
176 1.1 thorpej }
177 1.1 thorpej
178 1.11 perry static inline void
179 1.1 thorpej i80321_disable_irq(int irq)
180 1.1 thorpej {
181 1.1 thorpej
182 1.1 thorpej intr_enabled &= ~(1U << irq);
183 1.1 thorpej i80321_set_intrmask();
184 1.1 thorpej }
185 1.1 thorpej
186 1.1 thorpej /*
187 1.1 thorpej * NOTE: This routine must be called with interrupts disabled in the CPSR.
188 1.1 thorpej */
189 1.1 thorpej static void
190 1.1 thorpej i80321_intr_calculate_masks(void)
191 1.1 thorpej {
192 1.1 thorpej struct intrq *iq;
193 1.1 thorpej struct intrhand *ih;
194 1.1 thorpej int irq, ipl;
195 1.1 thorpej
196 1.1 thorpej /* First, figure out which IPLs each IRQ has. */
197 1.1 thorpej for (irq = 0; irq < NIRQ; irq++) {
198 1.1 thorpej int levels = 0;
199 1.1 thorpej iq = &intrq[irq];
200 1.1 thorpej i80321_disable_irq(irq);
201 1.1 thorpej for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
202 1.1 thorpej ih = TAILQ_NEXT(ih, ih_list))
203 1.1 thorpej levels |= (1U << ih->ih_ipl);
204 1.1 thorpej iq->iq_levels = levels;
205 1.1 thorpej }
206 1.1 thorpej
207 1.1 thorpej /* Next, figure out which IRQs are used by each IPL. */
208 1.1 thorpej for (ipl = 0; ipl < NIPL; ipl++) {
209 1.1 thorpej int irqs = 0;
210 1.1 thorpej for (irq = 0; irq < NIRQ; irq++) {
211 1.1 thorpej if (intrq[irq].iq_levels & (1U << ipl))
212 1.1 thorpej irqs |= (1U << irq);
213 1.1 thorpej }
214 1.5 briggs i80321_imask[ipl] = irqs;
215 1.1 thorpej }
216 1.1 thorpej
217 1.5 briggs i80321_imask[IPL_NONE] = 0;
218 1.1 thorpej
219 1.1 thorpej /*
220 1.15 ad * Enforce a hierarchy that gives "slow" device (or devices with
221 1.15 ad * limited input buffer space/"real-time" requirements) a better
222 1.15 ad * chance at not dropping data.
223 1.1 thorpej */
224 1.5 briggs i80321_imask[IPL_SOFTCLOCK] = SI_TO_IRQBIT(SI_SOFTCLOCK);
225 1.15 ad i80321_imask[IPL_SOFTBIO] = SI_TO_IRQBIT(SI_SOFTBIO);
226 1.5 briggs i80321_imask[IPL_SOFTNET] = SI_TO_IRQBIT(SI_SOFTNET);
227 1.5 briggs i80321_imask[IPL_SOFTSERIAL] = SI_TO_IRQBIT(SI_SOFTSERIAL);
228 1.1 thorpej
229 1.15 ad i80321_imask[IPL_SOFTBIO] |= i80321_imask[IPL_SOFTCLOCK];
230 1.15 ad i80321_imask[IPL_SOFTNET] |= i80321_imask[IPL_SOFTBIO];
231 1.15 ad i80321_imask[IPL_SOFTSERIAL] |= i80321_imask[IPL_SOFTNET];
232 1.15 ad i80321_imask[IPL_VM] |= i80321_imask[IPL_SOFTSERIAL];
233 1.15 ad i80321_imask[IPL_HIGH] |= i80321_imask[IPL_SCHED];
234 1.1 thorpej
235 1.1 thorpej /*
236 1.1 thorpej * Now compute which IRQs must be blocked when servicing any
237 1.1 thorpej * given IRQ.
238 1.1 thorpej */
239 1.1 thorpej for (irq = 0; irq < NIRQ; irq++) {
240 1.1 thorpej int irqs = (1U << irq);
241 1.1 thorpej iq = &intrq[irq];
242 1.1 thorpej if (TAILQ_FIRST(&iq->iq_list) != NULL)
243 1.1 thorpej i80321_enable_irq(irq);
244 1.1 thorpej for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
245 1.1 thorpej ih = TAILQ_NEXT(ih, ih_list))
246 1.5 briggs irqs |= i80321_imask[ih->ih_ipl];
247 1.1 thorpej iq->iq_mask = irqs;
248 1.1 thorpej }
249 1.1 thorpej }
250 1.1 thorpej
251 1.12 mrg void
252 1.1 thorpej i80321_do_pending(void)
253 1.1 thorpej {
254 1.15 ad #ifdef __HAVE_FAST_SOFTINTS
255 1.1 thorpej static __cpu_simple_lock_t processing = __SIMPLELOCK_UNLOCKED;
256 1.1 thorpej int new, oldirqstate;
257 1.1 thorpej
258 1.1 thorpej if (__cpu_simple_lock_try(&processing) == 0)
259 1.1 thorpej return;
260 1.1 thorpej
261 1.1 thorpej new = current_spl_level;
262 1.1 thorpej
263 1.1 thorpej oldirqstate = disable_interrupts(I32_bit);
264 1.1 thorpej
265 1.1 thorpej #define DO_SOFTINT(si) \
266 1.6 thorpej if ((i80321_ipending & ~new) & SI_TO_IRQBIT(si)) { \
267 1.6 thorpej i80321_ipending &= ~SI_TO_IRQBIT(si); \
268 1.6 thorpej current_spl_level |= i80321_imask[si_to_ipl[(si)]]; \
269 1.1 thorpej restore_interrupts(oldirqstate); \
270 1.1 thorpej softintr_dispatch(si); \
271 1.1 thorpej oldirqstate = disable_interrupts(I32_bit); \
272 1.1 thorpej current_spl_level = new; \
273 1.1 thorpej }
274 1.1 thorpej
275 1.1 thorpej DO_SOFTINT(SI_SOFTSERIAL);
276 1.1 thorpej DO_SOFTINT(SI_SOFTNET);
277 1.1 thorpej DO_SOFTINT(SI_SOFTCLOCK);
278 1.1 thorpej DO_SOFTINT(SI_SOFT);
279 1.1 thorpej
280 1.1 thorpej __cpu_simple_unlock(&processing);
281 1.1 thorpej
282 1.1 thorpej restore_interrupts(oldirqstate);
283 1.15 ad #endif
284 1.1 thorpej }
285 1.1 thorpej
286 1.6 thorpej void
287 1.1 thorpej splx(int new)
288 1.1 thorpej {
289 1.1 thorpej
290 1.6 thorpej i80321_splx(new);
291 1.5 briggs }
292 1.5 briggs
293 1.5 briggs int
294 1.1 thorpej _spllower(int ipl)
295 1.1 thorpej {
296 1.5 briggs
297 1.6 thorpej return (i80321_spllower(ipl));
298 1.5 briggs }
299 1.5 briggs
300 1.5 briggs int
301 1.5 briggs _splraise(int ipl)
302 1.5 briggs {
303 1.6 thorpej
304 1.6 thorpej return (i80321_splraise(ipl));
305 1.1 thorpej }
306 1.5 briggs
307 1.1 thorpej void
308 1.1 thorpej _setsoftintr(int si)
309 1.1 thorpej {
310 1.1 thorpej int oldirqstate;
311 1.1 thorpej
312 1.1 thorpej oldirqstate = disable_interrupts(I32_bit);
313 1.5 briggs i80321_ipending |= SI_TO_IRQBIT(si);
314 1.1 thorpej restore_interrupts(oldirqstate);
315 1.1 thorpej
316 1.1 thorpej /* Process unmasked pending soft interrupts. */
317 1.5 briggs if ((i80321_ipending & INT_SWMASK) & ~current_spl_level)
318 1.1 thorpej i80321_do_pending();
319 1.1 thorpej }
320 1.1 thorpej
321 1.1 thorpej /*
322 1.1 thorpej * i80321_icu_init:
323 1.1 thorpej *
324 1.1 thorpej * Initialize the i80321 ICU. Called early in bootstrap
325 1.1 thorpej * to make sure the ICU is in a pristine state.
326 1.1 thorpej */
327 1.1 thorpej void
328 1.1 thorpej i80321_icu_init(void)
329 1.1 thorpej {
330 1.1 thorpej
331 1.1 thorpej intr_enabled = 0; /* All interrupts disabled */
332 1.1 thorpej i80321_set_intrmask();
333 1.1 thorpej
334 1.1 thorpej intr_steer = 0; /* All interrupts steered to IRQ */
335 1.1 thorpej i80321_set_intrsteer();
336 1.1 thorpej }
337 1.1 thorpej
338 1.1 thorpej /*
339 1.1 thorpej * i80321_intr_init:
340 1.1 thorpej *
341 1.1 thorpej * Initialize the rest of the interrupt subsystem, making it
342 1.1 thorpej * ready to handle interrupts from devices.
343 1.1 thorpej */
344 1.1 thorpej void
345 1.1 thorpej i80321_intr_init(void)
346 1.1 thorpej {
347 1.1 thorpej struct intrq *iq;
348 1.1 thorpej int i;
349 1.1 thorpej
350 1.1 thorpej intr_enabled = 0;
351 1.1 thorpej
352 1.1 thorpej for (i = 0; i < NIRQ; i++) {
353 1.1 thorpej iq = &intrq[i];
354 1.1 thorpej TAILQ_INIT(&iq->iq_list);
355 1.1 thorpej
356 1.1 thorpej evcnt_attach_dynamic(&iq->iq_ev, EVCNT_TYPE_INTR,
357 1.3 thorpej NULL, "iop321", i80321_irqnames[i]);
358 1.1 thorpej }
359 1.1 thorpej
360 1.1 thorpej i80321_intr_calculate_masks();
361 1.1 thorpej
362 1.1 thorpej /* Enable IRQs (don't yet use FIQs). */
363 1.1 thorpej enable_interrupts(I32_bit);
364 1.1 thorpej }
365 1.1 thorpej
366 1.1 thorpej void *
367 1.1 thorpej i80321_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
368 1.1 thorpej {
369 1.1 thorpej struct intrq *iq;
370 1.1 thorpej struct intrhand *ih;
371 1.1 thorpej u_int oldirqstate;
372 1.1 thorpej
373 1.1 thorpej if (irq < 0 || irq > NIRQ)
374 1.1 thorpej panic("i80321_intr_establish: IRQ %d out of range", irq);
375 1.1 thorpej
376 1.1 thorpej ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
377 1.1 thorpej if (ih == NULL)
378 1.1 thorpej return (NULL);
379 1.1 thorpej
380 1.1 thorpej ih->ih_func = func;
381 1.1 thorpej ih->ih_arg = arg;
382 1.1 thorpej ih->ih_ipl = ipl;
383 1.1 thorpej ih->ih_irq = irq;
384 1.1 thorpej
385 1.1 thorpej iq = &intrq[irq];
386 1.1 thorpej
387 1.1 thorpej /* All IOP321 interrupts are level-triggered. */
388 1.1 thorpej iq->iq_ist = IST_LEVEL;
389 1.1 thorpej
390 1.1 thorpej oldirqstate = disable_interrupts(I32_bit);
391 1.1 thorpej
392 1.1 thorpej TAILQ_INSERT_TAIL(&iq->iq_list, ih, ih_list);
393 1.1 thorpej
394 1.1 thorpej i80321_intr_calculate_masks();
395 1.1 thorpej
396 1.1 thorpej restore_interrupts(oldirqstate);
397 1.1 thorpej
398 1.1 thorpej return (ih);
399 1.1 thorpej }
400 1.1 thorpej
401 1.1 thorpej void
402 1.1 thorpej i80321_intr_disestablish(void *cookie)
403 1.1 thorpej {
404 1.1 thorpej struct intrhand *ih = cookie;
405 1.1 thorpej struct intrq *iq = &intrq[ih->ih_irq];
406 1.1 thorpej int oldirqstate;
407 1.1 thorpej
408 1.1 thorpej oldirqstate = disable_interrupts(I32_bit);
409 1.1 thorpej
410 1.1 thorpej TAILQ_REMOVE(&iq->iq_list, ih, ih_list);
411 1.1 thorpej
412 1.1 thorpej i80321_intr_calculate_masks();
413 1.1 thorpej
414 1.1 thorpej restore_interrupts(oldirqstate);
415 1.1 thorpej }
416 1.1 thorpej
417 1.13 scw /*
418 1.13 scw * Hardware interrupt handler.
419 1.13 scw *
420 1.13 scw * If I80321_HPI_ENABLED is defined, this code attempts to deal with
421 1.13 scw * HPI interrupts as best it can.
422 1.13 scw *
423 1.13 scw * The problem is that HPIs cannot be masked at the interrupt controller;
424 1.13 scw * they can only be masked by disabling IRQs in the XScale core.
425 1.13 scw *
426 1.13 scw * So, if an HPI comes in and we determine that it should be masked at
427 1.13 scw * the current IPL then we mark it pending in the usual way and set
428 1.13 scw * I32_bit in the interrupt frame. This ensures that when we return from
429 1.13 scw * i80321_intr_dispatch(), IRQs will be disabled in the XScale core. (To
430 1.13 scw * ensure IRQs are enabled later, i80321_splx() has been modified to do
431 1.13 scw * just that when a pending HPI interrupt is unmasked.) Additionally,
432 1.13 scw * because HPIs are level-triggered, the registered handler for the HPI
433 1.13 scw * interrupt will also be invoked with IRQs disabled. If a masked HPI
434 1.13 scw * occurs at the same time as another unmasked higher priority interrupt,
435 1.13 scw * the higher priority handler will also be invoked with IRQs disabled.
436 1.13 scw * As a result, the system could end up executing a lot of code with IRQs
437 1.13 scw * completely disabled if the HPI's IPL is relatively low.
438 1.13 scw *
439 1.13 scw * At the present time, the only known use of HPI is for the console UART
440 1.13 scw * on a couple of boards. This is probably the least intrusive use of HPI
441 1.13 scw * as IPL_SERIAL is the highest priority IPL in the system anyway. The
442 1.13 scw * code has not been tested with HPI hooked up to a class of device which
443 1.13 scw * interrupts below IPL_SERIAL. Indeed, such a configuration is likely to
444 1.13 scw * perform very poorly if at all, even though the following code has been
445 1.13 scw * designed (hopefully) to cope with it.
446 1.13 scw */
447 1.13 scw
448 1.1 thorpej void
449 1.1 thorpej i80321_intr_dispatch(struct clockframe *frame)
450 1.1 thorpej {
451 1.1 thorpej struct intrq *iq;
452 1.1 thorpej struct intrhand *ih;
453 1.1 thorpej int oldirqstate, pcpl, irq, ibit, hwpend;
454 1.13 scw #ifdef I80321_HPI_ENABLED
455 1.13 scw int oldpending;
456 1.13 scw #endif
457 1.1 thorpej
458 1.1 thorpej pcpl = current_spl_level;
459 1.1 thorpej
460 1.1 thorpej hwpend = i80321_iintsrc_read();
461 1.1 thorpej
462 1.1 thorpej /*
463 1.1 thorpej * Disable all the interrupts that are pending. We will
464 1.1 thorpej * reenable them once they are processed and not masked.
465 1.1 thorpej */
466 1.1 thorpej intr_enabled &= ~hwpend;
467 1.1 thorpej i80321_set_intrmask();
468 1.1 thorpej
469 1.13 scw #ifdef I80321_HPI_ENABLED
470 1.13 scw oldirqstate = 0; /* XXX: quell gcc warning */
471 1.13 scw #endif
472 1.13 scw
473 1.1 thorpej while (hwpend != 0) {
474 1.13 scw #ifdef I80321_HPI_ENABLED
475 1.13 scw /* Deal with HPI interrupt first */
476 1.13 scw if (__predict_false(hwpend & INT_HPIMASK))
477 1.13 scw irq = ICU_INT_HPI;
478 1.13 scw else
479 1.13 scw #endif
480 1.1 thorpej irq = ffs(hwpend) - 1;
481 1.1 thorpej ibit = (1U << irq);
482 1.1 thorpej
483 1.1 thorpej hwpend &= ~ibit;
484 1.1 thorpej
485 1.1 thorpej if (pcpl & ibit) {
486 1.1 thorpej /*
487 1.1 thorpej * IRQ is masked; mark it as pending and check
488 1.1 thorpej * the next one. Note: the IRQ is already disabled.
489 1.1 thorpej */
490 1.13 scw #ifdef I80321_HPI_ENABLED
491 1.13 scw if (__predict_false(irq == ICU_INT_HPI)) {
492 1.13 scw /*
493 1.13 scw * This is an HPI. We *must* disable
494 1.13 scw * IRQs in the interrupt frame until
495 1.13 scw * INT_HPIMASK is cleared by a later
496 1.13 scw * call to splx(). Otherwise the level-
497 1.13 scw * triggered interrupt will just keep
498 1.13 scw * coming back.
499 1.13 scw */
500 1.13 scw frame->cf_if.if_spsr |= I32_bit;
501 1.13 scw }
502 1.13 scw #endif
503 1.5 briggs i80321_ipending |= ibit;
504 1.1 thorpej continue;
505 1.1 thorpej }
506 1.1 thorpej
507 1.13 scw #ifdef I80321_HPI_ENABLED
508 1.13 scw oldpending = i80321_ipending | ibit;
509 1.13 scw #endif
510 1.5 briggs i80321_ipending &= ~ibit;
511 1.1 thorpej
512 1.1 thorpej iq = &intrq[irq];
513 1.1 thorpej iq->iq_ev.ev_count++;
514 1.1 thorpej uvmexp.intrs++;
515 1.1 thorpej current_spl_level |= iq->iq_mask;
516 1.13 scw #ifdef I80321_HPI_ENABLED
517 1.13 scw /*
518 1.13 scw * Re-enable interrupts iff an HPI is not pending
519 1.13 scw */
520 1.13 scw if (__predict_true((oldpending & INT_HPIMASK) == 0))
521 1.13 scw #endif
522 1.1 thorpej oldirqstate = enable_interrupts(I32_bit);
523 1.1 thorpej for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
524 1.1 thorpej ih = TAILQ_NEXT(ih, ih_list)) {
525 1.1 thorpej (void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
526 1.1 thorpej }
527 1.13 scw #ifdef I80321_HPI_ENABLED
528 1.13 scw if (__predict_true((oldpending & INT_HPIMASK) == 0))
529 1.13 scw #endif
530 1.1 thorpej restore_interrupts(oldirqstate);
531 1.13 scw #ifdef I80321_HPI_ENABLED
532 1.13 scw else if (irq == ICU_INT_HPI) {
533 1.13 scw /*
534 1.13 scw * We've just handled the HPI. Make sure IRQs
535 1.13 scw * are enabled in the interrupt frame.
536 1.13 scw * Here's hoping the handler really did clear
537 1.13 scw * down the source...
538 1.13 scw */
539 1.13 scw frame->cf_if.if_spsr &= ~I32_bit;
540 1.13 scw }
541 1.13 scw #endif
542 1.1 thorpej current_spl_level = pcpl;
543 1.1 thorpej
544 1.1 thorpej /* Re-enable this interrupt now that's it's cleared. */
545 1.1 thorpej intr_enabled |= ibit;
546 1.1 thorpej i80321_set_intrmask();
547 1.9 scw
548 1.9 scw /*
549 1.9 scw * Don't forget to include interrupts which may have
550 1.9 scw * arrived in the meantime.
551 1.9 scw */
552 1.9 scw hwpend |= ((i80321_ipending & ICU_INT_HWMASK) & ~pcpl);
553 1.1 thorpej }
554 1.1 thorpej
555 1.1 thorpej /* Check for pendings soft intrs. */
556 1.5 briggs if ((i80321_ipending & INT_SWMASK) & ~current_spl_level) {
557 1.13 scw #ifdef I80321_HPI_ENABLED
558 1.13 scw /* XXX: This is only necessary if HPI is < IPL_SOFT* */
559 1.13 scw if (__predict_true((i80321_ipending & INT_HPIMASK) == 0))
560 1.13 scw #endif
561 1.1 thorpej oldirqstate = enable_interrupts(I32_bit);
562 1.1 thorpej i80321_do_pending();
563 1.13 scw #ifdef I80321_HPI_ENABLED
564 1.13 scw /* XXX: This is only necessary if HPI is < IPL_NET* */
565 1.13 scw if (__predict_true((i80321_ipending & INT_HPIMASK) == 0))
566 1.13 scw #endif
567 1.1 thorpej restore_interrupts(oldirqstate);
568 1.1 thorpej }
569 1.1 thorpej }
570