i80321_icu.c revision 1.13 1 /* $NetBSD: i80321_icu.c,v 1.13 2006/11/08 23:45:41 scw Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2006 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: i80321_icu.c,v 1.13 2006/11/08 23:45:41 scw Exp $");
40
41 #ifndef EVBARM_SPL_NOINLINE
42 #define EVBARM_SPL_NOINLINE
43 #endif
44
45 /*
46 * Interrupt support for the Intel i80321 I/O Processor.
47 */
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/malloc.h>
52
53 #include <uvm/uvm_extern.h>
54
55 #include <machine/bus.h>
56 #include <machine/intr.h>
57
58 #include <arm/cpufunc.h>
59
60 #include <arm/xscale/i80321reg.h>
61 #include <arm/xscale/i80321var.h>
62
63 /* Interrupt handler queues. */
64 struct intrq intrq[NIRQ];
65
66 /* Interrupts to mask at each level. */
67 int i80321_imask[NIPL];
68
69 /* Current interrupt priority level. */
70 volatile int current_spl_level;
71
72 /* Interrupts pending. */
73 volatile int i80321_ipending;
74
75 /* Software copy of the IRQs we have enabled. */
76 volatile uint32_t intr_enabled;
77
78 /* Mask if interrupts steered to FIQs. */
79 uint32_t intr_steer;
80
81 /*
82 * Map a software interrupt queue index (to the unused bits in the
83 * ICU registers -- XXX will need to revisit this if those bits are
84 * ever used in future steppings).
85 */
86 static const uint32_t si_to_irqbit[SI_NQUEUES] = {
87 ICU_INT_bit26, /* SI_SOFT */
88 ICU_INT_bit22, /* SI_SOFTCLOCK */
89 ICU_INT_bit5, /* SI_SOFTNET */
90 ICU_INT_bit4, /* SI_SOFTSERIAL */
91 };
92
93 #define SI_TO_IRQBIT(si) (1U << si_to_irqbit[(si)])
94
95 /*
96 * Map a software interrupt queue to an interrupt priority level.
97 */
98 static const int si_to_ipl[SI_NQUEUES] = {
99 IPL_SOFT, /* SI_SOFT */
100 IPL_SOFTCLOCK, /* SI_SOFTCLOCK */
101 IPL_SOFTNET, /* SI_SOFTNET */
102 IPL_SOFTSERIAL, /* SI_SOFTSERIAL */
103 };
104
105 /*
106 * Interrupt bit names.
107 */
108 const char *i80321_irqnames[] = {
109 "DMA0 EOT",
110 "DMA0 EOC",
111 "DMA1 EOT",
112 "DMA1 EOC",
113 "irq 4",
114 "irq 5",
115 "AAU EOT",
116 "AAU EOC",
117 "core PMU",
118 "TMR0 (hardclock)",
119 "TMR1",
120 "I2C0",
121 "I2C1",
122 "MU",
123 "BIST",
124 "periph PMU",
125 "XScale PMU",
126 "BIU error",
127 "ATU error",
128 "MCU error",
129 "DMA0 error",
130 "DMA1 error",
131 "irq 22",
132 "AAU error",
133 "MU error",
134 "SSP",
135 "irq 26",
136 "irq 27",
137 "irq 28",
138 "irq 29",
139 "irq 30",
140 "irq 31",
141 };
142
143 void i80321_intr_dispatch(struct clockframe *frame);
144
145 static inline uint32_t
146 i80321_iintsrc_read(void)
147 {
148 uint32_t iintsrc;
149
150 __asm volatile("mrc p6, 0, %0, c8, c0, 0"
151 : "=r" (iintsrc));
152
153 /*
154 * The IINTSRC register shows bits that are active even
155 * if they are masked in INTCTL, so we have to mask them
156 * off with the interrupts we consider enabled.
157 */
158 return (iintsrc & intr_enabled);
159 }
160
161 static inline void
162 i80321_set_intrsteer(void)
163 {
164
165 __asm volatile("mcr p6, 0, %0, c4, c0, 0"
166 :
167 : "r" (intr_steer & ICU_INT_HWMASK));
168 }
169
170 static inline void
171 i80321_enable_irq(int irq)
172 {
173
174 intr_enabled |= (1U << irq);
175 i80321_set_intrmask();
176 }
177
178 static inline void
179 i80321_disable_irq(int irq)
180 {
181
182 intr_enabled &= ~(1U << irq);
183 i80321_set_intrmask();
184 }
185
186 /*
187 * NOTE: This routine must be called with interrupts disabled in the CPSR.
188 */
189 static void
190 i80321_intr_calculate_masks(void)
191 {
192 struct intrq *iq;
193 struct intrhand *ih;
194 int irq, ipl;
195
196 /* First, figure out which IPLs each IRQ has. */
197 for (irq = 0; irq < NIRQ; irq++) {
198 int levels = 0;
199 iq = &intrq[irq];
200 i80321_disable_irq(irq);
201 for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
202 ih = TAILQ_NEXT(ih, ih_list))
203 levels |= (1U << ih->ih_ipl);
204 iq->iq_levels = levels;
205 }
206
207 /* Next, figure out which IRQs are used by each IPL. */
208 for (ipl = 0; ipl < NIPL; ipl++) {
209 int irqs = 0;
210 for (irq = 0; irq < NIRQ; irq++) {
211 if (intrq[irq].iq_levels & (1U << ipl))
212 irqs |= (1U << irq);
213 }
214 i80321_imask[ipl] = irqs;
215 }
216
217 i80321_imask[IPL_NONE] = 0;
218
219 /*
220 * Initialize the soft interrupt masks to block themselves.
221 */
222 i80321_imask[IPL_SOFT] = SI_TO_IRQBIT(SI_SOFT);
223 i80321_imask[IPL_SOFTCLOCK] = SI_TO_IRQBIT(SI_SOFTCLOCK);
224 i80321_imask[IPL_SOFTNET] = SI_TO_IRQBIT(SI_SOFTNET);
225 i80321_imask[IPL_SOFTSERIAL] = SI_TO_IRQBIT(SI_SOFTSERIAL);
226
227 /*
228 * splsoftclock() is the only interface that users of the
229 * generic software interrupt facility have to block their
230 * soft intrs, so splsoftclock() must also block IPL_SOFT.
231 */
232 i80321_imask[IPL_SOFTCLOCK] |= i80321_imask[IPL_SOFT];
233
234 /*
235 * splsoftnet() must also block splsoftclock(), since we don't
236 * want timer-driven network events to occur while we're
237 * processing incoming packets.
238 */
239 i80321_imask[IPL_SOFTNET] |= i80321_imask[IPL_SOFTCLOCK];
240
241 /*
242 * Enforce a heirarchy that gives "slow" device (or devices with
243 * limited input buffer space/"real-time" requirements) a better
244 * chance at not dropping data.
245 */
246 i80321_imask[IPL_BIO] |= i80321_imask[IPL_SOFTNET];
247 i80321_imask[IPL_NET] |= i80321_imask[IPL_BIO];
248 i80321_imask[IPL_SOFTSERIAL] |= i80321_imask[IPL_NET];
249 i80321_imask[IPL_TTY] |= i80321_imask[IPL_SOFTSERIAL];
250
251 /*
252 * splvm() blocks all interrupts that use the kernel memory
253 * allocation facilities.
254 */
255 i80321_imask[IPL_VM] |= i80321_imask[IPL_TTY];
256
257 /*
258 * Audio devices are not allowed to perform memory allocation
259 * in their interrupt routines, and they have fairly "real-time"
260 * requirements, so give them a high interrupt priority.
261 */
262 i80321_imask[IPL_AUDIO] |= i80321_imask[IPL_VM];
263
264 /*
265 * splclock() must block anything that uses the scheduler.
266 */
267 i80321_imask[IPL_CLOCK] |= i80321_imask[IPL_AUDIO];
268
269 /*
270 * No separate statclock on the IQ80310.
271 */
272 i80321_imask[IPL_STATCLOCK] |= i80321_imask[IPL_CLOCK];
273
274 /*
275 * splhigh() must block "everything".
276 */
277 i80321_imask[IPL_HIGH] |= i80321_imask[IPL_STATCLOCK];
278
279 /*
280 * XXX We need serial drivers to run at the absolute highest priority
281 * in order to avoid overruns, so serial > high.
282 */
283 i80321_imask[IPL_SERIAL] |= i80321_imask[IPL_HIGH];
284
285 /*
286 * Now compute which IRQs must be blocked when servicing any
287 * given IRQ.
288 */
289 for (irq = 0; irq < NIRQ; irq++) {
290 int irqs = (1U << irq);
291 iq = &intrq[irq];
292 if (TAILQ_FIRST(&iq->iq_list) != NULL)
293 i80321_enable_irq(irq);
294 for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
295 ih = TAILQ_NEXT(ih, ih_list))
296 irqs |= i80321_imask[ih->ih_ipl];
297 iq->iq_mask = irqs;
298 }
299 }
300
301 void
302 i80321_do_pending(void)
303 {
304 static __cpu_simple_lock_t processing = __SIMPLELOCK_UNLOCKED;
305 int new, oldirqstate;
306
307 if (__cpu_simple_lock_try(&processing) == 0)
308 return;
309
310 new = current_spl_level;
311
312 oldirqstate = disable_interrupts(I32_bit);
313
314 #define DO_SOFTINT(si) \
315 if ((i80321_ipending & ~new) & SI_TO_IRQBIT(si)) { \
316 i80321_ipending &= ~SI_TO_IRQBIT(si); \
317 current_spl_level |= i80321_imask[si_to_ipl[(si)]]; \
318 restore_interrupts(oldirqstate); \
319 softintr_dispatch(si); \
320 oldirqstate = disable_interrupts(I32_bit); \
321 current_spl_level = new; \
322 }
323
324 DO_SOFTINT(SI_SOFTSERIAL);
325 DO_SOFTINT(SI_SOFTNET);
326 DO_SOFTINT(SI_SOFTCLOCK);
327 DO_SOFTINT(SI_SOFT);
328
329 __cpu_simple_unlock(&processing);
330
331 restore_interrupts(oldirqstate);
332 }
333
334 void
335 splx(int new)
336 {
337
338 i80321_splx(new);
339 }
340
341 int
342 _spllower(int ipl)
343 {
344
345 return (i80321_spllower(ipl));
346 }
347
348 int
349 _splraise(int ipl)
350 {
351
352 return (i80321_splraise(ipl));
353 }
354
355 void
356 _setsoftintr(int si)
357 {
358 int oldirqstate;
359
360 oldirqstate = disable_interrupts(I32_bit);
361 i80321_ipending |= SI_TO_IRQBIT(si);
362 restore_interrupts(oldirqstate);
363
364 /* Process unmasked pending soft interrupts. */
365 if ((i80321_ipending & INT_SWMASK) & ~current_spl_level)
366 i80321_do_pending();
367 }
368
369 /*
370 * i80321_icu_init:
371 *
372 * Initialize the i80321 ICU. Called early in bootstrap
373 * to make sure the ICU is in a pristine state.
374 */
375 void
376 i80321_icu_init(void)
377 {
378
379 intr_enabled = 0; /* All interrupts disabled */
380 i80321_set_intrmask();
381
382 intr_steer = 0; /* All interrupts steered to IRQ */
383 i80321_set_intrsteer();
384 }
385
386 /*
387 * i80321_intr_init:
388 *
389 * Initialize the rest of the interrupt subsystem, making it
390 * ready to handle interrupts from devices.
391 */
392 void
393 i80321_intr_init(void)
394 {
395 struct intrq *iq;
396 int i;
397
398 intr_enabled = 0;
399
400 for (i = 0; i < NIRQ; i++) {
401 iq = &intrq[i];
402 TAILQ_INIT(&iq->iq_list);
403
404 evcnt_attach_dynamic(&iq->iq_ev, EVCNT_TYPE_INTR,
405 NULL, "iop321", i80321_irqnames[i]);
406 }
407
408 i80321_intr_calculate_masks();
409
410 /* Enable IRQs (don't yet use FIQs). */
411 enable_interrupts(I32_bit);
412 }
413
414 void *
415 i80321_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
416 {
417 struct intrq *iq;
418 struct intrhand *ih;
419 u_int oldirqstate;
420
421 if (irq < 0 || irq > NIRQ)
422 panic("i80321_intr_establish: IRQ %d out of range", irq);
423
424 ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
425 if (ih == NULL)
426 return (NULL);
427
428 ih->ih_func = func;
429 ih->ih_arg = arg;
430 ih->ih_ipl = ipl;
431 ih->ih_irq = irq;
432
433 iq = &intrq[irq];
434
435 /* All IOP321 interrupts are level-triggered. */
436 iq->iq_ist = IST_LEVEL;
437
438 oldirqstate = disable_interrupts(I32_bit);
439
440 TAILQ_INSERT_TAIL(&iq->iq_list, ih, ih_list);
441
442 i80321_intr_calculate_masks();
443
444 restore_interrupts(oldirqstate);
445
446 return (ih);
447 }
448
449 void
450 i80321_intr_disestablish(void *cookie)
451 {
452 struct intrhand *ih = cookie;
453 struct intrq *iq = &intrq[ih->ih_irq];
454 int oldirqstate;
455
456 oldirqstate = disable_interrupts(I32_bit);
457
458 TAILQ_REMOVE(&iq->iq_list, ih, ih_list);
459
460 i80321_intr_calculate_masks();
461
462 restore_interrupts(oldirqstate);
463 }
464
465 /*
466 * Hardware interrupt handler.
467 *
468 * If I80321_HPI_ENABLED is defined, this code attempts to deal with
469 * HPI interrupts as best it can.
470 *
471 * The problem is that HPIs cannot be masked at the interrupt controller;
472 * they can only be masked by disabling IRQs in the XScale core.
473 *
474 * So, if an HPI comes in and we determine that it should be masked at
475 * the current IPL then we mark it pending in the usual way and set
476 * I32_bit in the interrupt frame. This ensures that when we return from
477 * i80321_intr_dispatch(), IRQs will be disabled in the XScale core. (To
478 * ensure IRQs are enabled later, i80321_splx() has been modified to do
479 * just that when a pending HPI interrupt is unmasked.) Additionally,
480 * because HPIs are level-triggered, the registered handler for the HPI
481 * interrupt will also be invoked with IRQs disabled. If a masked HPI
482 * occurs at the same time as another unmasked higher priority interrupt,
483 * the higher priority handler will also be invoked with IRQs disabled.
484 * As a result, the system could end up executing a lot of code with IRQs
485 * completely disabled if the HPI's IPL is relatively low.
486 *
487 * At the present time, the only known use of HPI is for the console UART
488 * on a couple of boards. This is probably the least intrusive use of HPI
489 * as IPL_SERIAL is the highest priority IPL in the system anyway. The
490 * code has not been tested with HPI hooked up to a class of device which
491 * interrupts below IPL_SERIAL. Indeed, such a configuration is likely to
492 * perform very poorly if at all, even though the following code has been
493 * designed (hopefully) to cope with it.
494 */
495
496 void
497 i80321_intr_dispatch(struct clockframe *frame)
498 {
499 struct intrq *iq;
500 struct intrhand *ih;
501 int oldirqstate, pcpl, irq, ibit, hwpend;
502 #ifdef I80321_HPI_ENABLED
503 int oldpending;
504 #endif
505
506 pcpl = current_spl_level;
507
508 hwpend = i80321_iintsrc_read();
509
510 /*
511 * Disable all the interrupts that are pending. We will
512 * reenable them once they are processed and not masked.
513 */
514 intr_enabled &= ~hwpend;
515 i80321_set_intrmask();
516
517 #ifdef I80321_HPI_ENABLED
518 oldirqstate = 0; /* XXX: quell gcc warning */
519 #endif
520
521 while (hwpend != 0) {
522 #ifdef I80321_HPI_ENABLED
523 /* Deal with HPI interrupt first */
524 if (__predict_false(hwpend & INT_HPIMASK))
525 irq = ICU_INT_HPI;
526 else
527 #endif
528 irq = ffs(hwpend) - 1;
529 ibit = (1U << irq);
530
531 hwpend &= ~ibit;
532
533 if (pcpl & ibit) {
534 /*
535 * IRQ is masked; mark it as pending and check
536 * the next one. Note: the IRQ is already disabled.
537 */
538 #ifdef I80321_HPI_ENABLED
539 if (__predict_false(irq == ICU_INT_HPI)) {
540 /*
541 * This is an HPI. We *must* disable
542 * IRQs in the interrupt frame until
543 * INT_HPIMASK is cleared by a later
544 * call to splx(). Otherwise the level-
545 * triggered interrupt will just keep
546 * coming back.
547 */
548 frame->cf_if.if_spsr |= I32_bit;
549 }
550 #endif
551 i80321_ipending |= ibit;
552 continue;
553 }
554
555 #ifdef I80321_HPI_ENABLED
556 oldpending = i80321_ipending | ibit;
557 #endif
558 i80321_ipending &= ~ibit;
559
560 iq = &intrq[irq];
561 iq->iq_ev.ev_count++;
562 uvmexp.intrs++;
563 current_spl_level |= iq->iq_mask;
564 #ifdef I80321_HPI_ENABLED
565 /*
566 * Re-enable interrupts iff an HPI is not pending
567 */
568 if (__predict_true((oldpending & INT_HPIMASK) == 0))
569 #endif
570 oldirqstate = enable_interrupts(I32_bit);
571 for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
572 ih = TAILQ_NEXT(ih, ih_list)) {
573 (void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
574 }
575 #ifdef I80321_HPI_ENABLED
576 if (__predict_true((oldpending & INT_HPIMASK) == 0))
577 #endif
578 restore_interrupts(oldirqstate);
579 #ifdef I80321_HPI_ENABLED
580 else if (irq == ICU_INT_HPI) {
581 /*
582 * We've just handled the HPI. Make sure IRQs
583 * are enabled in the interrupt frame.
584 * Here's hoping the handler really did clear
585 * down the source...
586 */
587 frame->cf_if.if_spsr &= ~I32_bit;
588 }
589 #endif
590 current_spl_level = pcpl;
591
592 /* Re-enable this interrupt now that's it's cleared. */
593 intr_enabled |= ibit;
594 i80321_set_intrmask();
595
596 /*
597 * Don't forget to include interrupts which may have
598 * arrived in the meantime.
599 */
600 hwpend |= ((i80321_ipending & ICU_INT_HWMASK) & ~pcpl);
601 }
602
603 /* Check for pendings soft intrs. */
604 if ((i80321_ipending & INT_SWMASK) & ~current_spl_level) {
605 #ifdef I80321_HPI_ENABLED
606 /* XXX: This is only necessary if HPI is < IPL_SOFT* */
607 if (__predict_true((i80321_ipending & INT_HPIMASK) == 0))
608 #endif
609 oldirqstate = enable_interrupts(I32_bit);
610 i80321_do_pending();
611 #ifdef I80321_HPI_ENABLED
612 /* XXX: This is only necessary if HPI is < IPL_NET* */
613 if (__predict_true((i80321_ipending & INT_HPIMASK) == 0))
614 #endif
615 restore_interrupts(oldirqstate);
616 }
617 }
618