i80321_icu.c revision 1.14.24.2 1 /* $NetBSD: i80321_icu.c,v 1.14.24.2 2008/02/28 21:47:46 rjs Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2006 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: i80321_icu.c,v 1.14.24.2 2008/02/28 21:47:46 rjs Exp $");
40
41 #ifndef EVBARM_SPL_NOINLINE
42 #define EVBARM_SPL_NOINLINE
43 #endif
44
45 /*
46 * Interrupt support for the Intel i80321 I/O Processor.
47 */
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/malloc.h>
52
53 #include <uvm/uvm_extern.h>
54
55 #include <machine/bus.h>
56 #include <machine/intr.h>
57
58 #include <arm/cpufunc.h>
59
60 #include <arm/xscale/i80321reg.h>
61 #include <arm/xscale/i80321var.h>
62
63 /* Interrupt handler queues. */
64 struct intrq intrq[NIRQ];
65
66 /* Interrupts to mask at each level. */
67 int i80321_imask[NIPL];
68
69 /* Current interrupt priority level. */
70 volatile int current_spl_level;
71
72 /* Interrupts pending. */
73 volatile int i80321_ipending;
74
75 /* Software copy of the IRQs we have enabled. */
76 volatile uint32_t intr_enabled;
77
78 /* Mask if interrupts steered to FIQs. */
79 uint32_t intr_steer;
80
81 /*
82 * Map a software interrupt queue index (to the unused bits in the
83 * ICU registers -- XXX will need to revisit this if those bits are
84 * ever used in future steppings).
85 */
86 #ifdef __HAVE_FAST_SOFTINTS
87 static const uint32_t si_to_irqbit[4] = {
88 ICU_INT_bit26, /* SI_SOFTCLOCK */
89 ICU_INT_bit22, /* SI_SOFTBIO */
90 ICU_INT_bit5, /* SI_SOFTNET */
91 ICU_INT_bit4, /* SI_SOFTSERIAL */
92 };
93
94 #define SI_TO_IRQBIT(si) (1U << si_to_irqbit[(si)])
95
96 /*
97 * Map a software interrupt queue to an interrupt priority level.
98 */
99 static const int si_to_ipl[4] = {
100 IPL_SOFTCLOCK, /* SI_SOFTCLOCK */
101 IPL_SOFTBIO, /* SI_SOFTBIO */
102 IPL_SOFTNET, /* SI_SOFTNET */
103 IPL_SOFTSERIAL, /* SI_SOFTSERIAL */
104 };
105 #endif
106
107 /*
108 * Interrupt bit names.
109 */
110 const char *i80321_irqnames[] = {
111 "DMA0 EOT",
112 "DMA0 EOC",
113 "DMA1 EOT",
114 "DMA1 EOC",
115 "irq 4",
116 "irq 5",
117 "AAU EOT",
118 "AAU EOC",
119 "core PMU",
120 "TMR0 (hardclock)",
121 "TMR1",
122 "I2C0",
123 "I2C1",
124 "MU",
125 "BIST",
126 "periph PMU",
127 "XScale PMU",
128 "BIU error",
129 "ATU error",
130 "MCU error",
131 "DMA0 error",
132 "DMA1 error",
133 "irq 22",
134 "AAU error",
135 "MU error",
136 "SSP",
137 "irq 26",
138 "irq 27",
139 "irq 28",
140 "irq 29",
141 "irq 30",
142 "irq 31",
143 };
144
145 void i80321_intr_dispatch(struct clockframe *frame);
146
147 static inline uint32_t
148 i80321_iintsrc_read(void)
149 {
150 uint32_t iintsrc;
151
152 __asm volatile("mrc p6, 0, %0, c8, c0, 0"
153 : "=r" (iintsrc));
154
155 /*
156 * The IINTSRC register shows bits that are active even
157 * if they are masked in INTCTL, so we have to mask them
158 * off with the interrupts we consider enabled.
159 */
160 return (iintsrc & intr_enabled);
161 }
162
163 static inline void
164 i80321_set_intrsteer(void)
165 {
166
167 __asm volatile("mcr p6, 0, %0, c4, c0, 0"
168 :
169 : "r" (intr_steer & ICU_INT_HWMASK));
170 }
171
172 static inline void
173 i80321_enable_irq(int irq)
174 {
175
176 intr_enabled |= (1U << irq);
177 i80321_set_intrmask();
178 }
179
180 static inline void
181 i80321_disable_irq(int irq)
182 {
183
184 intr_enabled &= ~(1U << irq);
185 i80321_set_intrmask();
186 }
187
188 /*
189 * NOTE: This routine must be called with interrupts disabled in the CPSR.
190 */
191 static void
192 i80321_intr_calculate_masks(void)
193 {
194 struct intrq *iq;
195 struct intrhand *ih;
196 int irq, ipl;
197
198 /* First, figure out which IPLs each IRQ has. */
199 for (irq = 0; irq < NIRQ; irq++) {
200 int levels = 0;
201 iq = &intrq[irq];
202 i80321_disable_irq(irq);
203 for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
204 ih = TAILQ_NEXT(ih, ih_list))
205 levels |= (1U << ih->ih_ipl);
206 iq->iq_levels = levels;
207 }
208
209 /* Next, figure out which IRQs are used by each IPL. */
210 for (ipl = 0; ipl < NIPL; ipl++) {
211 int irqs = 0;
212 for (irq = 0; irq < NIRQ; irq++) {
213 if (intrq[irq].iq_levels & (1U << ipl))
214 irqs |= (1U << irq);
215 }
216 i80321_imask[ipl] = irqs;
217 }
218
219 i80321_imask[IPL_NONE] = 0;
220
221 /*
222 * Enforce a hierarchy that gives "slow" device (or devices with
223 * limited input buffer space/"real-time" requirements) a better
224 * chance at not dropping data.
225 */
226 #ifdef __HAVE_FAST_SOFTINTS
227 i80321_imask[IPL_SOFTCLOCK] = SI_TO_IRQBIT(SI_SOFTCLOCK);
228 i80321_imask[IPL_SOFTBIO] = SI_TO_IRQBIT(SI_SOFTBIO);
229 i80321_imask[IPL_SOFTNET] = SI_TO_IRQBIT(SI_SOFTNET);
230 i80321_imask[IPL_SOFTSERIAL] = SI_TO_IRQBIT(SI_SOFTSERIAL);
231 #endif
232
233 i80321_imask[IPL_SOFTBIO] |= i80321_imask[IPL_SOFTCLOCK];
234 i80321_imask[IPL_SOFTNET] |= i80321_imask[IPL_SOFTBIO];
235 i80321_imask[IPL_SOFTSERIAL] |= i80321_imask[IPL_SOFTNET];
236 i80321_imask[IPL_VM] |= i80321_imask[IPL_SOFTSERIAL];
237 i80321_imask[IPL_HIGH] |= i80321_imask[IPL_SCHED];
238
239 /*
240 * Now compute which IRQs must be blocked when servicing any
241 * given IRQ.
242 */
243 for (irq = 0; irq < NIRQ; irq++) {
244 int irqs = (1U << irq);
245 iq = &intrq[irq];
246 if (TAILQ_FIRST(&iq->iq_list) != NULL)
247 i80321_enable_irq(irq);
248 for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
249 ih = TAILQ_NEXT(ih, ih_list))
250 irqs |= i80321_imask[ih->ih_ipl];
251 iq->iq_mask = irqs;
252 }
253 }
254
255 void
256 i80321_do_pending(void)
257 {
258 #ifdef __HAVE_FAST_SOFTINTS
259 static __cpu_simple_lock_t processing = __SIMPLELOCK_UNLOCKED;
260 int new, oldirqstate;
261
262 if (__cpu_simple_lock_try(&processing) == 0)
263 return;
264
265 new = current_spl_level;
266
267 oldirqstate = disable_interrupts(I32_bit);
268
269 #define DO_SOFTINT(si) \
270 if ((i80321_ipending & ~new) & SI_TO_IRQBIT(si)) { \
271 i80321_ipending &= ~SI_TO_IRQBIT(si); \
272 current_spl_level |= i80321_imask[si_to_ipl[(si)]]; \
273 restore_interrupts(oldirqstate); \
274 softintr_dispatch(si); \
275 oldirqstate = disable_interrupts(I32_bit); \
276 current_spl_level = new; \
277 }
278
279 DO_SOFTINT(SI_SOFTSERIAL);
280 DO_SOFTINT(SI_SOFTNET);
281 DO_SOFTINT(SI_SOFTCLOCK);
282 DO_SOFTINT(SI_SOFT);
283
284 __cpu_simple_unlock(&processing);
285
286 restore_interrupts(oldirqstate);
287 #endif /* __HAVE_FAST_SOFTINTRS */
288 }
289
290 void
291 splx(int new)
292 {
293
294 i80321_splx(new);
295 }
296
297 int
298 _spllower(int ipl)
299 {
300
301 return (i80321_spllower(ipl));
302 }
303
304 int
305 _splraise(int ipl)
306 {
307
308 return (i80321_splraise(ipl));
309 }
310
311 #if __HAVE_FAST_SOFTINTRS
312 void
313 _setsoftintr(int si)
314 {
315 int oldirqstate;
316
317 oldirqstate = disable_interrupts(I32_bit);
318 i80321_ipending |= SI_TO_IRQBIT(si);
319 restore_interrupts(oldirqstate);
320
321 /* Process unmasked pending soft interrupts. */
322 if ((i80321_ipending & INT_SWMASK) & ~current_spl_level)
323 i80321_do_pending();
324 }
325 #endif /* __HAVE_FAST_SOFTINTRS */
326
327 /*
328 * i80321_icu_init:
329 *
330 * Initialize the i80321 ICU. Called early in bootstrap
331 * to make sure the ICU is in a pristine state.
332 */
333 void
334 i80321_icu_init(void)
335 {
336
337 intr_enabled = 0; /* All interrupts disabled */
338 i80321_set_intrmask();
339
340 intr_steer = 0; /* All interrupts steered to IRQ */
341 i80321_set_intrsteer();
342 }
343
344 /*
345 * i80321_intr_init:
346 *
347 * Initialize the rest of the interrupt subsystem, making it
348 * ready to handle interrupts from devices.
349 */
350 void
351 i80321_intr_init(void)
352 {
353 struct intrq *iq;
354 int i;
355
356 intr_enabled = 0;
357
358 for (i = 0; i < NIRQ; i++) {
359 iq = &intrq[i];
360 TAILQ_INIT(&iq->iq_list);
361
362 evcnt_attach_dynamic(&iq->iq_ev, EVCNT_TYPE_INTR,
363 NULL, "iop321", i80321_irqnames[i]);
364 }
365
366 i80321_intr_calculate_masks();
367
368 /* Enable IRQs (don't yet use FIQs). */
369 enable_interrupts(I32_bit);
370 }
371
372 void *
373 i80321_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
374 {
375 struct intrq *iq;
376 struct intrhand *ih;
377 u_int oldirqstate;
378
379 if (irq < 0 || irq > NIRQ)
380 panic("i80321_intr_establish: IRQ %d out of range", irq);
381
382 ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
383 if (ih == NULL)
384 return (NULL);
385
386 ih->ih_func = func;
387 ih->ih_arg = arg;
388 ih->ih_ipl = ipl;
389 ih->ih_irq = irq;
390
391 iq = &intrq[irq];
392
393 /* All IOP321 interrupts are level-triggered. */
394 iq->iq_ist = IST_LEVEL;
395
396 oldirqstate = disable_interrupts(I32_bit);
397
398 TAILQ_INSERT_TAIL(&iq->iq_list, ih, ih_list);
399
400 i80321_intr_calculate_masks();
401
402 restore_interrupts(oldirqstate);
403
404 return (ih);
405 }
406
407 void
408 i80321_intr_disestablish(void *cookie)
409 {
410 struct intrhand *ih = cookie;
411 struct intrq *iq = &intrq[ih->ih_irq];
412 int oldirqstate;
413
414 oldirqstate = disable_interrupts(I32_bit);
415
416 TAILQ_REMOVE(&iq->iq_list, ih, ih_list);
417
418 i80321_intr_calculate_masks();
419
420 restore_interrupts(oldirqstate);
421 }
422
423 /*
424 * Hardware interrupt handler.
425 *
426 * If I80321_HPI_ENABLED is defined, this code attempts to deal with
427 * HPI interrupts as best it can.
428 *
429 * The problem is that HPIs cannot be masked at the interrupt controller;
430 * they can only be masked by disabling IRQs in the XScale core.
431 *
432 * So, if an HPI comes in and we determine that it should be masked at
433 * the current IPL then we mark it pending in the usual way and set
434 * I32_bit in the interrupt frame. This ensures that when we return from
435 * i80321_intr_dispatch(), IRQs will be disabled in the XScale core. (To
436 * ensure IRQs are enabled later, i80321_splx() has been modified to do
437 * just that when a pending HPI interrupt is unmasked.) Additionally,
438 * because HPIs are level-triggered, the registered handler for the HPI
439 * interrupt will also be invoked with IRQs disabled. If a masked HPI
440 * occurs at the same time as another unmasked higher priority interrupt,
441 * the higher priority handler will also be invoked with IRQs disabled.
442 * As a result, the system could end up executing a lot of code with IRQs
443 * completely disabled if the HPI's IPL is relatively low.
444 *
445 * At the present time, the only known use of HPI is for the console UART
446 * on a couple of boards. This is probably the least intrusive use of HPI
447 * as IPL_SERIAL is the highest priority IPL in the system anyway. The
448 * code has not been tested with HPI hooked up to a class of device which
449 * interrupts below IPL_SERIAL. Indeed, such a configuration is likely to
450 * perform very poorly if at all, even though the following code has been
451 * designed (hopefully) to cope with it.
452 */
453
454 void
455 i80321_intr_dispatch(struct clockframe *frame)
456 {
457 struct intrq *iq;
458 struct intrhand *ih;
459 int oldirqstate, pcpl, irq, ibit, hwpend;
460 struct cpu_info *ci;
461 #ifdef I80321_HPI_ENABLED
462 int oldpending;
463 #endif
464
465 ci = curcpu();
466 ci->ci_idepth++;
467 pcpl = current_spl_level;
468 hwpend = i80321_iintsrc_read();
469
470 /*
471 * Disable all the interrupts that are pending. We will
472 * reenable them once they are processed and not masked.
473 */
474 intr_enabled &= ~hwpend;
475 i80321_set_intrmask();
476
477 #ifdef I80321_HPI_ENABLED
478 oldirqstate = 0; /* XXX: quell gcc warning */
479 #endif
480
481 while (hwpend != 0) {
482 #ifdef I80321_HPI_ENABLED
483 /* Deal with HPI interrupt first */
484 if (__predict_false(hwpend & INT_HPIMASK))
485 irq = ICU_INT_HPI;
486 else
487 #endif
488 irq = ffs(hwpend) - 1;
489 ibit = (1U << irq);
490
491 hwpend &= ~ibit;
492
493 if (pcpl & ibit) {
494 /*
495 * IRQ is masked; mark it as pending and check
496 * the next one. Note: the IRQ is already disabled.
497 */
498 #ifdef I80321_HPI_ENABLED
499 if (__predict_false(irq == ICU_INT_HPI)) {
500 /*
501 * This is an HPI. We *must* disable
502 * IRQs in the interrupt frame until
503 * INT_HPIMASK is cleared by a later
504 * call to splx(). Otherwise the level-
505 * triggered interrupt will just keep
506 * coming back.
507 */
508 frame->cf_if.if_spsr |= I32_bit;
509 }
510 #endif
511 i80321_ipending |= ibit;
512 continue;
513 }
514
515 #ifdef I80321_HPI_ENABLED
516 oldpending = i80321_ipending | ibit;
517 #endif
518 i80321_ipending &= ~ibit;
519
520 iq = &intrq[irq];
521 iq->iq_ev.ev_count++;
522 uvmexp.intrs++;
523 current_spl_level |= iq->iq_mask;
524 #ifdef I80321_HPI_ENABLED
525 /*
526 * Re-enable interrupts iff an HPI is not pending
527 */
528 if (__predict_true((oldpending & INT_HPIMASK) == 0))
529 #endif
530 oldirqstate = enable_interrupts(I32_bit);
531 for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
532 ih = TAILQ_NEXT(ih, ih_list)) {
533 (void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
534 }
535 #ifdef I80321_HPI_ENABLED
536 if (__predict_true((oldpending & INT_HPIMASK) == 0))
537 #endif
538 restore_interrupts(oldirqstate);
539 #ifdef I80321_HPI_ENABLED
540 else if (irq == ICU_INT_HPI) {
541 /*
542 * We've just handled the HPI. Make sure IRQs
543 * are enabled in the interrupt frame.
544 * Here's hoping the handler really did clear
545 * down the source...
546 */
547 frame->cf_if.if_spsr &= ~I32_bit;
548 }
549 #endif
550 current_spl_level = pcpl;
551
552 /* Re-enable this interrupt now that's it's cleared. */
553 intr_enabled |= ibit;
554 i80321_set_intrmask();
555
556 /*
557 * Don't forget to include interrupts which may have
558 * arrived in the meantime.
559 */
560 hwpend |= ((i80321_ipending & ICU_INT_HWMASK) & ~pcpl);
561 }
562 ci->ci_idepth--;
563
564 /* Check for pendings soft intrs. */
565 if ((i80321_ipending & INT_SWMASK) & ~current_spl_level) {
566 #ifdef I80321_HPI_ENABLED
567 /* XXX: This is only necessary if HPI is < IPL_SOFT* */
568 if (__predict_true((i80321_ipending & INT_HPIMASK) == 0))
569 #endif
570 oldirqstate = enable_interrupts(I32_bit);
571 i80321_do_pending();
572 #ifdef I80321_HPI_ENABLED
573 /* XXX: This is only necessary if HPI is < IPL_NET* */
574 if (__predict_true((i80321_ipending & INT_HPIMASK) == 0))
575 #endif
576 restore_interrupts(oldirqstate);
577 }
578 }
579