i80321_icu.c revision 1.15 1 /* $NetBSD: i80321_icu.c,v 1.15 2007/12/03 15:33:20 ad Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2006 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: i80321_icu.c,v 1.15 2007/12/03 15:33:20 ad Exp $");
40
41 #ifndef EVBARM_SPL_NOINLINE
42 #define EVBARM_SPL_NOINLINE
43 #endif
44
45 /*
46 * Interrupt support for the Intel i80321 I/O Processor.
47 */
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/malloc.h>
52
53 #include <uvm/uvm_extern.h>
54
55 #include <machine/bus.h>
56 #include <machine/intr.h>
57
58 #include <arm/cpufunc.h>
59
60 #include <arm/xscale/i80321reg.h>
61 #include <arm/xscale/i80321var.h>
62
63 /* Interrupt handler queues. */
64 struct intrq intrq[NIRQ];
65
66 /* Interrupts to mask at each level. */
67 int i80321_imask[NIPL];
68
69 /* Current interrupt priority level. */
70 volatile int current_spl_level;
71
72 /* Interrupts pending. */
73 volatile int i80321_ipending;
74
75 /* Software copy of the IRQs we have enabled. */
76 volatile uint32_t intr_enabled;
77
78 /* Mask if interrupts steered to FIQs. */
79 uint32_t intr_steer;
80
81 /*
82 * Map a software interrupt queue index (to the unused bits in the
83 * ICU registers -- XXX will need to revisit this if those bits are
84 * ever used in future steppings).
85 */
86 static const uint32_t si_to_irqbit[4] = {
87 ICU_INT_bit26, /* SI_SOFTCLOCK */
88 ICU_INT_bit22, /* SI_SOFTBIO */
89 ICU_INT_bit5, /* SI_SOFTNET */
90 ICU_INT_bit4, /* SI_SOFTSERIAL */
91 };
92
93 #define SI_TO_IRQBIT(si) (1U << si_to_irqbit[(si)])
94
95 /*
96 * Map a software interrupt queue to an interrupt priority level.
97 */
98 static const int si_to_ipl[4] = {
99 IPL_SOFTCLOCK, /* SI_SOFTCLOCK */
100 IPL_SOFTBIO, /* SI_SOFTBIO */
101 IPL_SOFTNET, /* SI_SOFTNET */
102 IPL_SOFTSERIAL, /* SI_SOFTSERIAL */
103 };
104
105 /*
106 * Interrupt bit names.
107 */
108 const char *i80321_irqnames[] = {
109 "DMA0 EOT",
110 "DMA0 EOC",
111 "DMA1 EOT",
112 "DMA1 EOC",
113 "irq 4",
114 "irq 5",
115 "AAU EOT",
116 "AAU EOC",
117 "core PMU",
118 "TMR0 (hardclock)",
119 "TMR1",
120 "I2C0",
121 "I2C1",
122 "MU",
123 "BIST",
124 "periph PMU",
125 "XScale PMU",
126 "BIU error",
127 "ATU error",
128 "MCU error",
129 "DMA0 error",
130 "DMA1 error",
131 "irq 22",
132 "AAU error",
133 "MU error",
134 "SSP",
135 "irq 26",
136 "irq 27",
137 "irq 28",
138 "irq 29",
139 "irq 30",
140 "irq 31",
141 };
142
143 void i80321_intr_dispatch(struct clockframe *frame);
144
145 static inline uint32_t
146 i80321_iintsrc_read(void)
147 {
148 uint32_t iintsrc;
149
150 __asm volatile("mrc p6, 0, %0, c8, c0, 0"
151 : "=r" (iintsrc));
152
153 /*
154 * The IINTSRC register shows bits that are active even
155 * if they are masked in INTCTL, so we have to mask them
156 * off with the interrupts we consider enabled.
157 */
158 return (iintsrc & intr_enabled);
159 }
160
161 static inline void
162 i80321_set_intrsteer(void)
163 {
164
165 __asm volatile("mcr p6, 0, %0, c4, c0, 0"
166 :
167 : "r" (intr_steer & ICU_INT_HWMASK));
168 }
169
170 static inline void
171 i80321_enable_irq(int irq)
172 {
173
174 intr_enabled |= (1U << irq);
175 i80321_set_intrmask();
176 }
177
178 static inline void
179 i80321_disable_irq(int irq)
180 {
181
182 intr_enabled &= ~(1U << irq);
183 i80321_set_intrmask();
184 }
185
186 /*
187 * NOTE: This routine must be called with interrupts disabled in the CPSR.
188 */
189 static void
190 i80321_intr_calculate_masks(void)
191 {
192 struct intrq *iq;
193 struct intrhand *ih;
194 int irq, ipl;
195
196 /* First, figure out which IPLs each IRQ has. */
197 for (irq = 0; irq < NIRQ; irq++) {
198 int levels = 0;
199 iq = &intrq[irq];
200 i80321_disable_irq(irq);
201 for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
202 ih = TAILQ_NEXT(ih, ih_list))
203 levels |= (1U << ih->ih_ipl);
204 iq->iq_levels = levels;
205 }
206
207 /* Next, figure out which IRQs are used by each IPL. */
208 for (ipl = 0; ipl < NIPL; ipl++) {
209 int irqs = 0;
210 for (irq = 0; irq < NIRQ; irq++) {
211 if (intrq[irq].iq_levels & (1U << ipl))
212 irqs |= (1U << irq);
213 }
214 i80321_imask[ipl] = irqs;
215 }
216
217 i80321_imask[IPL_NONE] = 0;
218
219 /*
220 * Enforce a hierarchy that gives "slow" device (or devices with
221 * limited input buffer space/"real-time" requirements) a better
222 * chance at not dropping data.
223 */
224 i80321_imask[IPL_SOFTCLOCK] = SI_TO_IRQBIT(SI_SOFTCLOCK);
225 i80321_imask[IPL_SOFTBIO] = SI_TO_IRQBIT(SI_SOFTBIO);
226 i80321_imask[IPL_SOFTNET] = SI_TO_IRQBIT(SI_SOFTNET);
227 i80321_imask[IPL_SOFTSERIAL] = SI_TO_IRQBIT(SI_SOFTSERIAL);
228
229 i80321_imask[IPL_SOFTBIO] |= i80321_imask[IPL_SOFTCLOCK];
230 i80321_imask[IPL_SOFTNET] |= i80321_imask[IPL_SOFTBIO];
231 i80321_imask[IPL_SOFTSERIAL] |= i80321_imask[IPL_SOFTNET];
232 i80321_imask[IPL_VM] |= i80321_imask[IPL_SOFTSERIAL];
233 i80321_imask[IPL_HIGH] |= i80321_imask[IPL_SCHED];
234
235 /*
236 * Now compute which IRQs must be blocked when servicing any
237 * given IRQ.
238 */
239 for (irq = 0; irq < NIRQ; irq++) {
240 int irqs = (1U << irq);
241 iq = &intrq[irq];
242 if (TAILQ_FIRST(&iq->iq_list) != NULL)
243 i80321_enable_irq(irq);
244 for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
245 ih = TAILQ_NEXT(ih, ih_list))
246 irqs |= i80321_imask[ih->ih_ipl];
247 iq->iq_mask = irqs;
248 }
249 }
250
251 void
252 i80321_do_pending(void)
253 {
254 #ifdef __HAVE_FAST_SOFTINTS
255 static __cpu_simple_lock_t processing = __SIMPLELOCK_UNLOCKED;
256 int new, oldirqstate;
257
258 if (__cpu_simple_lock_try(&processing) == 0)
259 return;
260
261 new = current_spl_level;
262
263 oldirqstate = disable_interrupts(I32_bit);
264
265 #define DO_SOFTINT(si) \
266 if ((i80321_ipending & ~new) & SI_TO_IRQBIT(si)) { \
267 i80321_ipending &= ~SI_TO_IRQBIT(si); \
268 current_spl_level |= i80321_imask[si_to_ipl[(si)]]; \
269 restore_interrupts(oldirqstate); \
270 softintr_dispatch(si); \
271 oldirqstate = disable_interrupts(I32_bit); \
272 current_spl_level = new; \
273 }
274
275 DO_SOFTINT(SI_SOFTSERIAL);
276 DO_SOFTINT(SI_SOFTNET);
277 DO_SOFTINT(SI_SOFTCLOCK);
278 DO_SOFTINT(SI_SOFT);
279
280 __cpu_simple_unlock(&processing);
281
282 restore_interrupts(oldirqstate);
283 #endif
284 }
285
286 void
287 splx(int new)
288 {
289
290 i80321_splx(new);
291 }
292
293 int
294 _spllower(int ipl)
295 {
296
297 return (i80321_spllower(ipl));
298 }
299
300 int
301 _splraise(int ipl)
302 {
303
304 return (i80321_splraise(ipl));
305 }
306
307 void
308 _setsoftintr(int si)
309 {
310 int oldirqstate;
311
312 oldirqstate = disable_interrupts(I32_bit);
313 i80321_ipending |= SI_TO_IRQBIT(si);
314 restore_interrupts(oldirqstate);
315
316 /* Process unmasked pending soft interrupts. */
317 if ((i80321_ipending & INT_SWMASK) & ~current_spl_level)
318 i80321_do_pending();
319 }
320
321 /*
322 * i80321_icu_init:
323 *
324 * Initialize the i80321 ICU. Called early in bootstrap
325 * to make sure the ICU is in a pristine state.
326 */
327 void
328 i80321_icu_init(void)
329 {
330
331 intr_enabled = 0; /* All interrupts disabled */
332 i80321_set_intrmask();
333
334 intr_steer = 0; /* All interrupts steered to IRQ */
335 i80321_set_intrsteer();
336 }
337
338 /*
339 * i80321_intr_init:
340 *
341 * Initialize the rest of the interrupt subsystem, making it
342 * ready to handle interrupts from devices.
343 */
344 void
345 i80321_intr_init(void)
346 {
347 struct intrq *iq;
348 int i;
349
350 intr_enabled = 0;
351
352 for (i = 0; i < NIRQ; i++) {
353 iq = &intrq[i];
354 TAILQ_INIT(&iq->iq_list);
355
356 evcnt_attach_dynamic(&iq->iq_ev, EVCNT_TYPE_INTR,
357 NULL, "iop321", i80321_irqnames[i]);
358 }
359
360 i80321_intr_calculate_masks();
361
362 /* Enable IRQs (don't yet use FIQs). */
363 enable_interrupts(I32_bit);
364 }
365
366 void *
367 i80321_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
368 {
369 struct intrq *iq;
370 struct intrhand *ih;
371 u_int oldirqstate;
372
373 if (irq < 0 || irq > NIRQ)
374 panic("i80321_intr_establish: IRQ %d out of range", irq);
375
376 ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
377 if (ih == NULL)
378 return (NULL);
379
380 ih->ih_func = func;
381 ih->ih_arg = arg;
382 ih->ih_ipl = ipl;
383 ih->ih_irq = irq;
384
385 iq = &intrq[irq];
386
387 /* All IOP321 interrupts are level-triggered. */
388 iq->iq_ist = IST_LEVEL;
389
390 oldirqstate = disable_interrupts(I32_bit);
391
392 TAILQ_INSERT_TAIL(&iq->iq_list, ih, ih_list);
393
394 i80321_intr_calculate_masks();
395
396 restore_interrupts(oldirqstate);
397
398 return (ih);
399 }
400
401 void
402 i80321_intr_disestablish(void *cookie)
403 {
404 struct intrhand *ih = cookie;
405 struct intrq *iq = &intrq[ih->ih_irq];
406 int oldirqstate;
407
408 oldirqstate = disable_interrupts(I32_bit);
409
410 TAILQ_REMOVE(&iq->iq_list, ih, ih_list);
411
412 i80321_intr_calculate_masks();
413
414 restore_interrupts(oldirqstate);
415 }
416
417 /*
418 * Hardware interrupt handler.
419 *
420 * If I80321_HPI_ENABLED is defined, this code attempts to deal with
421 * HPI interrupts as best it can.
422 *
423 * The problem is that HPIs cannot be masked at the interrupt controller;
424 * they can only be masked by disabling IRQs in the XScale core.
425 *
426 * So, if an HPI comes in and we determine that it should be masked at
427 * the current IPL then we mark it pending in the usual way and set
428 * I32_bit in the interrupt frame. This ensures that when we return from
429 * i80321_intr_dispatch(), IRQs will be disabled in the XScale core. (To
430 * ensure IRQs are enabled later, i80321_splx() has been modified to do
431 * just that when a pending HPI interrupt is unmasked.) Additionally,
432 * because HPIs are level-triggered, the registered handler for the HPI
433 * interrupt will also be invoked with IRQs disabled. If a masked HPI
434 * occurs at the same time as another unmasked higher priority interrupt,
435 * the higher priority handler will also be invoked with IRQs disabled.
436 * As a result, the system could end up executing a lot of code with IRQs
437 * completely disabled if the HPI's IPL is relatively low.
438 *
439 * At the present time, the only known use of HPI is for the console UART
440 * on a couple of boards. This is probably the least intrusive use of HPI
441 * as IPL_SERIAL is the highest priority IPL in the system anyway. The
442 * code has not been tested with HPI hooked up to a class of device which
443 * interrupts below IPL_SERIAL. Indeed, such a configuration is likely to
444 * perform very poorly if at all, even though the following code has been
445 * designed (hopefully) to cope with it.
446 */
447
448 void
449 i80321_intr_dispatch(struct clockframe *frame)
450 {
451 struct intrq *iq;
452 struct intrhand *ih;
453 int oldirqstate, pcpl, irq, ibit, hwpend;
454 #ifdef I80321_HPI_ENABLED
455 int oldpending;
456 #endif
457
458 pcpl = current_spl_level;
459
460 hwpend = i80321_iintsrc_read();
461
462 /*
463 * Disable all the interrupts that are pending. We will
464 * reenable them once they are processed and not masked.
465 */
466 intr_enabled &= ~hwpend;
467 i80321_set_intrmask();
468
469 #ifdef I80321_HPI_ENABLED
470 oldirqstate = 0; /* XXX: quell gcc warning */
471 #endif
472
473 while (hwpend != 0) {
474 #ifdef I80321_HPI_ENABLED
475 /* Deal with HPI interrupt first */
476 if (__predict_false(hwpend & INT_HPIMASK))
477 irq = ICU_INT_HPI;
478 else
479 #endif
480 irq = ffs(hwpend) - 1;
481 ibit = (1U << irq);
482
483 hwpend &= ~ibit;
484
485 if (pcpl & ibit) {
486 /*
487 * IRQ is masked; mark it as pending and check
488 * the next one. Note: the IRQ is already disabled.
489 */
490 #ifdef I80321_HPI_ENABLED
491 if (__predict_false(irq == ICU_INT_HPI)) {
492 /*
493 * This is an HPI. We *must* disable
494 * IRQs in the interrupt frame until
495 * INT_HPIMASK is cleared by a later
496 * call to splx(). Otherwise the level-
497 * triggered interrupt will just keep
498 * coming back.
499 */
500 frame->cf_if.if_spsr |= I32_bit;
501 }
502 #endif
503 i80321_ipending |= ibit;
504 continue;
505 }
506
507 #ifdef I80321_HPI_ENABLED
508 oldpending = i80321_ipending | ibit;
509 #endif
510 i80321_ipending &= ~ibit;
511
512 iq = &intrq[irq];
513 iq->iq_ev.ev_count++;
514 uvmexp.intrs++;
515 current_spl_level |= iq->iq_mask;
516 #ifdef I80321_HPI_ENABLED
517 /*
518 * Re-enable interrupts iff an HPI is not pending
519 */
520 if (__predict_true((oldpending & INT_HPIMASK) == 0))
521 #endif
522 oldirqstate = enable_interrupts(I32_bit);
523 for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
524 ih = TAILQ_NEXT(ih, ih_list)) {
525 (void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
526 }
527 #ifdef I80321_HPI_ENABLED
528 if (__predict_true((oldpending & INT_HPIMASK) == 0))
529 #endif
530 restore_interrupts(oldirqstate);
531 #ifdef I80321_HPI_ENABLED
532 else if (irq == ICU_INT_HPI) {
533 /*
534 * We've just handled the HPI. Make sure IRQs
535 * are enabled in the interrupt frame.
536 * Here's hoping the handler really did clear
537 * down the source...
538 */
539 frame->cf_if.if_spsr &= ~I32_bit;
540 }
541 #endif
542 current_spl_level = pcpl;
543
544 /* Re-enable this interrupt now that's it's cleared. */
545 intr_enabled |= ibit;
546 i80321_set_intrmask();
547
548 /*
549 * Don't forget to include interrupts which may have
550 * arrived in the meantime.
551 */
552 hwpend |= ((i80321_ipending & ICU_INT_HWMASK) & ~pcpl);
553 }
554
555 /* Check for pendings soft intrs. */
556 if ((i80321_ipending & INT_SWMASK) & ~current_spl_level) {
557 #ifdef I80321_HPI_ENABLED
558 /* XXX: This is only necessary if HPI is < IPL_SOFT* */
559 if (__predict_true((i80321_ipending & INT_HPIMASK) == 0))
560 #endif
561 oldirqstate = enable_interrupts(I32_bit);
562 i80321_do_pending();
563 #ifdef I80321_HPI_ENABLED
564 /* XXX: This is only necessary if HPI is < IPL_NET* */
565 if (__predict_true((i80321_ipending & INT_HPIMASK) == 0))
566 #endif
567 restore_interrupts(oldirqstate);
568 }
569 }
570