Home | History | Annotate | Line # | Download | only in xscale
i80321_icu.c revision 1.17.10.2
      1 /*	$NetBSD: i80321_icu.c,v 1.17.10.2 2009/05/04 08:10:45 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002, 2006 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: i80321_icu.c,v 1.17.10.2 2009/05/04 08:10:45 yamt Exp $");
     40 
     41 #ifndef EVBARM_SPL_NOINLINE
     42 #define	EVBARM_SPL_NOINLINE
     43 #endif
     44 
     45 /*
     46  * Interrupt support for the Intel i80321 I/O Processor.
     47  */
     48 
     49 #include <sys/param.h>
     50 #include <sys/systm.h>
     51 #include <sys/malloc.h>
     52 
     53 #include <uvm/uvm_extern.h>
     54 
     55 #include <machine/bus.h>
     56 #include <machine/intr.h>
     57 
     58 #include <arm/cpufunc.h>
     59 
     60 #include <arm/xscale/i80321reg.h>
     61 #include <arm/xscale/i80321var.h>
     62 
     63 /* Interrupt handler queues. */
     64 struct intrq intrq[NIRQ];
     65 
     66 /* Interrupts to mask at each level. */
     67 int i80321_imask[NIPL];
     68 
     69 /* Interrupts pending. */
     70 volatile int i80321_ipending;
     71 
     72 /* Software copy of the IRQs we have enabled. */
     73 volatile uint32_t intr_enabled;
     74 
     75 /* Mask if interrupts steered to FIQs. */
     76 uint32_t intr_steer;
     77 
     78 /*
     79  * Interrupt bit names.
     80  */
     81 const char * const i80321_irqnames[] = {
     82 	"DMA0 EOT",
     83 	"DMA0 EOC",
     84 	"DMA1 EOT",
     85 	"DMA1 EOC",
     86 	"irq 4",
     87 	"irq 5",
     88 	"AAU EOT",
     89 	"AAU EOC",
     90 	"core PMU",
     91 	"TMR0 (hardclock)",
     92 	"TMR1",
     93 	"I2C0",
     94 	"I2C1",
     95 	"MU",
     96 	"BIST",
     97 	"periph PMU",
     98 	"XScale PMU",
     99 	"BIU error",
    100 	"ATU error",
    101 	"MCU error",
    102 	"DMA0 error",
    103 	"DMA1 error",
    104 	"irq 22",
    105 	"AAU error",
    106 	"MU error",
    107 	"SSP",
    108 	"irq 26",
    109 	"irq 27",
    110 	"irq 28",
    111 	"irq 29",
    112 	"irq 30",
    113 	"irq 31",
    114 };
    115 
    116 void	i80321_intr_dispatch(struct clockframe *frame);
    117 
    118 static inline uint32_t
    119 i80321_iintsrc_read(void)
    120 {
    121 	uint32_t iintsrc;
    122 
    123 	__asm volatile("mrc p6, 0, %0, c8, c0, 0"
    124 		: "=r" (iintsrc));
    125 
    126 	/*
    127 	 * The IINTSRC register shows bits that are active even
    128 	 * if they are masked in INTCTL, so we have to mask them
    129 	 * off with the interrupts we consider enabled.
    130 	 */
    131 	return (iintsrc & intr_enabled);
    132 }
    133 
    134 static inline void
    135 i80321_set_intrsteer(void)
    136 {
    137 
    138 	__asm volatile("mcr p6, 0, %0, c4, c0, 0"
    139 		:
    140 		: "r" (intr_steer & ICU_INT_HWMASK));
    141 }
    142 
    143 static inline void
    144 i80321_enable_irq(int irq)
    145 {
    146 
    147 	intr_enabled |= (1U << irq);
    148 	i80321_set_intrmask();
    149 }
    150 
    151 static inline void
    152 i80321_disable_irq(int irq)
    153 {
    154 
    155 	intr_enabled &= ~(1U << irq);
    156 	i80321_set_intrmask();
    157 }
    158 
    159 /*
    160  * NOTE: This routine must be called with interrupts disabled in the CPSR.
    161  */
    162 static void
    163 i80321_intr_calculate_masks(void)
    164 {
    165 	struct intrq *iq;
    166 	struct intrhand *ih;
    167 	int irq, ipl;
    168 
    169 	/* First, figure out which IPLs each IRQ has. */
    170 	for (irq = 0; irq < NIRQ; irq++) {
    171 		int levels = 0;
    172 		iq = &intrq[irq];
    173 		i80321_disable_irq(irq);
    174 		for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
    175 		     ih = TAILQ_NEXT(ih, ih_list))
    176 			levels |= (1U << ih->ih_ipl);
    177 		iq->iq_levels = levels;
    178 	}
    179 
    180 	/* Next, figure out which IRQs are used by each IPL. */
    181 	for (ipl = 0; ipl < NIPL; ipl++) {
    182 		int irqs = 0;
    183 		for (irq = 0; irq < NIRQ; irq++) {
    184 			if (intrq[irq].iq_levels & (1U << ipl))
    185 				irqs |= (1U << irq);
    186 		}
    187 		i80321_imask[ipl] = irqs;
    188 	}
    189 
    190 	i80321_imask[IPL_NONE] = 0;
    191 
    192 	/*
    193 	 * Enforce a hierarchy that gives "slow" device (or devices with
    194 	 * limited input buffer space/"real-time" requirements) a better
    195 	 * chance at not dropping data.
    196 	 */
    197 
    198 #if 0
    199 	/*
    200 	 * This assert might be useful, but only after some interrupts
    201 	 * are configured.  As it stands now, it will always fire early
    202 	 * in the initialization phase.  If it's useful enough to re-
    203 	 * enable, it should be conditionalized on something else like
    204 	 * having at least something in the levels/irqs above.
    205 	 */
    206 	KASSERT(i80321_imask[IPL_VM] != 0);
    207 #endif
    208 	i80321_imask[IPL_SCHED] |= i80321_imask[IPL_VM];
    209 	i80321_imask[IPL_HIGH] |= i80321_imask[IPL_SCHED];
    210 
    211 	/*
    212 	 * Now compute which IRQs must be blocked when servicing any
    213 	 * given IRQ.
    214 	 */
    215 	for (irq = 0; irq < NIRQ; irq++) {
    216 		int irqs = (1U << irq);
    217 		iq = &intrq[irq];
    218 		if (TAILQ_FIRST(&iq->iq_list) != NULL)
    219 			i80321_enable_irq(irq);
    220 		for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
    221 		     ih = TAILQ_NEXT(ih, ih_list))
    222 			irqs |= i80321_imask[ih->ih_ipl];
    223 		iq->iq_mask = irqs;
    224 	}
    225 }
    226 
    227 void
    228 splx(int new)
    229 {
    230 	i80321_splx(new);
    231 }
    232 
    233 int
    234 _spllower(int ipl)
    235 {
    236 	return (i80321_spllower(ipl));
    237 }
    238 
    239 int
    240 _splraise(int ipl)
    241 {
    242 	return (i80321_splraise(ipl));
    243 }
    244 
    245 /*
    246  * i80321_icu_init:
    247  *
    248  *	Initialize the i80321 ICU.  Called early in bootstrap
    249  *	to make sure the ICU is in a pristine state.
    250  */
    251 void
    252 i80321_icu_init(void)
    253 {
    254 
    255 	intr_enabled = 0;	/* All interrupts disabled */
    256 	i80321_set_intrmask();
    257 
    258 	intr_steer = 0;		/* All interrupts steered to IRQ */
    259 	i80321_set_intrsteer();
    260 }
    261 
    262 /*
    263  * i80321_intr_init:
    264  *
    265  *	Initialize the rest of the interrupt subsystem, making it
    266  *	ready to handle interrupts from devices.
    267  */
    268 void
    269 i80321_intr_init(void)
    270 {
    271 	struct intrq *iq;
    272 	int i;
    273 
    274 	intr_enabled = 0;
    275 
    276 	for (i = 0; i < NIRQ; i++) {
    277 		iq = &intrq[i];
    278 		TAILQ_INIT(&iq->iq_list);
    279 
    280 		evcnt_attach_dynamic(&iq->iq_ev, EVCNT_TYPE_INTR,
    281 		    NULL, "iop321", i80321_irqnames[i]);
    282 	}
    283 
    284 	i80321_intr_calculate_masks();
    285 
    286 	/* Enable IRQs (don't yet use FIQs). */
    287 	enable_interrupts(I32_bit);
    288 }
    289 
    290 void *
    291 i80321_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
    292 {
    293 	struct intrq *iq;
    294 	struct intrhand *ih;
    295 	u_int oldirqstate;
    296 
    297 	if (irq < 0 || irq > NIRQ)
    298 		panic("i80321_intr_establish: IRQ %d out of range", irq);
    299 
    300 	ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
    301 	if (ih == NULL)
    302 		return (NULL);
    303 
    304 	ih->ih_func = func;
    305 	ih->ih_arg = arg;
    306 	ih->ih_ipl = ipl;
    307 	ih->ih_irq = irq;
    308 
    309 	iq = &intrq[irq];
    310 
    311 	/* All IOP321 interrupts are level-triggered. */
    312 	iq->iq_ist = IST_LEVEL;
    313 
    314 	oldirqstate = disable_interrupts(I32_bit);
    315 
    316 	TAILQ_INSERT_TAIL(&iq->iq_list, ih, ih_list);
    317 
    318 	i80321_intr_calculate_masks();
    319 
    320 	restore_interrupts(oldirqstate);
    321 
    322 	return (ih);
    323 }
    324 
    325 void
    326 i80321_intr_disestablish(void *cookie)
    327 {
    328 	struct intrhand *ih = cookie;
    329 	struct intrq *iq = &intrq[ih->ih_irq];
    330 	int oldirqstate;
    331 
    332 	oldirqstate = disable_interrupts(I32_bit);
    333 
    334 	TAILQ_REMOVE(&iq->iq_list, ih, ih_list);
    335 
    336 	i80321_intr_calculate_masks();
    337 
    338 	restore_interrupts(oldirqstate);
    339 }
    340 
    341 /*
    342  * Hardware interrupt handler.
    343  *
    344  * If I80321_HPI_ENABLED is defined, this code attempts to deal with
    345  * HPI interrupts as best it can.
    346  *
    347  * The problem is that HPIs cannot be masked at the interrupt controller;
    348  * they can only be masked by disabling IRQs in the XScale core.
    349  *
    350  * So, if an HPI comes in and we determine that it should be masked at
    351  * the current IPL then we mark it pending in the usual way and set
    352  * I32_bit in the interrupt frame. This ensures that when we return from
    353  * i80321_intr_dispatch(), IRQs will be disabled in the XScale core. (To
    354  * ensure IRQs are enabled later, i80321_splx() has been modified to do
    355  * just that when a pending HPI interrupt is unmasked.) Additionally,
    356  * because HPIs are level-triggered, the registered handler for the HPI
    357  * interrupt will also be invoked with IRQs disabled. If a masked HPI
    358  * occurs at the same time as another unmasked higher priority interrupt,
    359  * the higher priority handler will also be invoked with IRQs disabled.
    360  * As a result, the system could end up executing a lot of code with IRQs
    361  * completely disabled if the HPI's IPL is relatively low.
    362  *
    363  * At the present time, the only known use of HPI is for the console UART
    364  * on a couple of boards. This is probably the least intrusive use of HPI
    365  * as IPL_SERIAL is the highest priority IPL in the system anyway. The
    366  * code has not been tested with HPI hooked up to a class of device which
    367  * interrupts below IPL_SERIAL. Indeed, such a configuration is likely to
    368  * perform very poorly if at all, even though the following code has been
    369  * designed (hopefully) to cope with it.
    370  */
    371 
    372 void
    373 i80321_intr_dispatch(struct clockframe *frame)
    374 {
    375 	struct intrq *iq;
    376 	struct intrhand *ih;
    377 	int oldirqstate, irq, ibit, hwpend;
    378 #ifdef I80321_HPI_ENABLED
    379 	int oldpending;
    380 #endif
    381 	struct cpu_info * const ci = curcpu();
    382 	const int ppl = ci->ci_cpl;
    383 	const uint32_t imask = i80321_imask[ppl];
    384 
    385 	hwpend = i80321_iintsrc_read();
    386 
    387 	/*
    388 	 * Disable all the interrupts that are pending.  We will
    389 	 * reenable them once they are processed and not masked.
    390 	 */
    391 	intr_enabled &= ~hwpend;
    392 	i80321_set_intrmask();
    393 
    394 #ifdef I80321_HPI_ENABLED
    395 	oldirqstate = 0;	/* XXX: quell gcc warning */
    396 #endif
    397 
    398 	while (hwpend != 0) {
    399 #ifdef I80321_HPI_ENABLED
    400 		/* Deal with HPI interrupt first */
    401 		if (__predict_false(hwpend & INT_HPIMASK))
    402 			irq = ICU_INT_HPI;
    403 		else
    404 #endif
    405 		irq = ffs(hwpend) - 1;
    406 		ibit = (1U << irq);
    407 
    408 		hwpend &= ~ibit;
    409 
    410 		if (imask & ibit) {
    411 			/*
    412 			 * IRQ is masked; mark it as pending and check
    413 			 * the next one.  Note: the IRQ is already disabled.
    414 			 */
    415 #ifdef I80321_HPI_ENABLED
    416 			if (__predict_false(irq == ICU_INT_HPI)) {
    417 				/*
    418 				 * This is an HPI. We *must* disable
    419 				 * IRQs in the interrupt frame until
    420 				 * INT_HPIMASK is cleared by a later
    421 				 * call to splx(). Otherwise the level-
    422 				 * triggered interrupt will just keep
    423 				 * coming back.
    424 				 */
    425 				frame->cf_if.if_spsr |= I32_bit;
    426 			}
    427 #endif
    428 			i80321_ipending |= ibit;
    429 			continue;
    430 		}
    431 
    432 #ifdef I80321_HPI_ENABLED
    433 		oldpending = i80321_ipending | ibit;
    434 #endif
    435 		i80321_ipending &= ~ibit;
    436 
    437 		iq = &intrq[irq];
    438 		iq->iq_ev.ev_count++;
    439 		uvmexp.intrs++;
    440 #ifdef I80321_HPI_ENABLED
    441 		/*
    442 		 * Re-enable interrupts iff an HPI is not pending
    443 		 */
    444 		if (__predict_true((oldpending & INT_HPIMASK) == 0)) {
    445 #endif
    446 			TAILQ_FOREACH (ih, &iq->iq_list, ih_list) {
    447 				ci->ci_cpl = ih->ih_ipl;
    448 				oldirqstate = enable_interrupts(I32_bit);
    449 				(void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
    450 				restore_interrupts(oldirqstate);
    451 			}
    452 #ifdef I80321_HPI_ENABLED
    453 		} else if (irq == ICU_INT_HPI) {
    454 			/*
    455 			 * We've just handled the HPI. Make sure IRQs
    456 			 * are enabled in the interrupt frame.
    457 			 * Here's hoping the handler really did clear
    458 			 * down the source...
    459 			 */
    460 			frame->cf_if.if_spsr &= ~I32_bit;
    461 		}
    462 #endif
    463 		ci->ci_cpl = ppl;
    464 
    465 		/* Re-enable this interrupt now that's it's cleared. */
    466 		intr_enabled |= ibit;
    467 		i80321_set_intrmask();
    468 
    469 		/*
    470 		 * Don't forget to include interrupts which may have
    471 		 * arrived in the meantime.
    472 		 */
    473 		hwpend |= ((i80321_ipending & ICU_INT_HWMASK) & ~imask);
    474 	}
    475 
    476 #ifdef __HAVE_FAST_SOFTINTS
    477 	cpu_dosoftints();
    478 #endif
    479 }
    480