i80321_icu.c revision 1.2.8.2 1 /* $NetBSD: i80321_icu.c,v 1.2.8.2 2002/06/23 17:34:57 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Interrupt support for the Intel i80321 I/O Processor.
40 */
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45
46 #include <uvm/uvm_extern.h>
47
48 #include <machine/bus.h>
49 #include <machine/intr.h>
50
51 #include <arm/cpufunc.h>
52
53 #include <arm/xscale/i80321reg.h>
54 #include <arm/xscale/i80321var.h>
55
56 /* Interrupt handler queues. */
57 struct intrq intrq[NIRQ];
58
59 /* Interrupts to mask at each level. */
60 static int imask[NIPL];
61
62 /* Current interrupt priority level. */
63 __volatile int current_spl_level;
64
65 /* Interrupts pending. */
66 static __volatile int ipending;
67
68 /* Software copy of the IRQs we have enabled. */
69 __volatile uint32_t intr_enabled;
70
71 /* Mask if interrupts steered to FIQs. */
72 uint32_t intr_steer;
73
74 /*
75 * Map a software interrupt queue index (to the unused bits in the
76 * ICU registers -- XXX will need to revisit this if those bits are
77 * ever used in future steppings).
78 */
79 static const uint32_t si_to_irqbit[SI_NQUEUES] = {
80 ICU_INT_bit26, /* SI_SOFT */
81 ICU_INT_bit22, /* SI_SOFTCLOCK */
82 ICU_INT_bit5, /* SI_SOFTNET */
83 ICU_INT_bit4, /* SI_SOFTSERIAL */
84 };
85
86 #define INT_SWMASK \
87 ((1U << ICU_INT_bit26) | (1U << ICU_INT_bit22) | \
88 (1U << ICU_INT_bit5) | (1U << ICU_INT_bit4))
89
90 #define SI_TO_IRQBIT(si) (1U << si_to_irqbit[(si)])
91
92 /*
93 * Map a software interrupt queue to an interrupt priority level.
94 */
95 static const int si_to_ipl[SI_NQUEUES] = {
96 IPL_SOFT, /* SI_SOFT */
97 IPL_SOFTCLOCK, /* SI_SOFTCLOCK */
98 IPL_SOFTNET, /* SI_SOFTNET */
99 IPL_SOFTSERIAL, /* SI_SOFTSERIAL */
100 };
101
102 void i80321_intr_dispatch(struct clockframe *frame);
103
104 static __inline uint32_t
105 i80321_iintsrc_read(void)
106 {
107 uint32_t iintsrc;
108
109 __asm __volatile("mrc p6, 0, %0, c8, c0, 0"
110 : "=r" (iintsrc));
111
112 /*
113 * The IINTSRC register shows bits that are active even
114 * if they are masked in INTCTL, so we have to mask them
115 * off with the interrupts we consider enabled.
116 */
117 return (iintsrc & intr_enabled);
118 }
119
120 static __inline void
121 i80321_set_intrmask(void)
122 {
123
124 __asm __volatile("mcr p6, 0, %0, c0, c0, 0"
125 :
126 : "r" (intr_enabled & ICU_INT_HWMASK));
127 }
128
129 static __inline void
130 i80321_set_intrsteer(void)
131 {
132
133 __asm __volatile("mcr p6, 0, %0, c4, c0, 0"
134 :
135 : "r" (intr_steer & ICU_INT_HWMASK));
136 }
137
138 static __inline void
139 i80321_enable_irq(int irq)
140 {
141
142 intr_enabled |= (1U << irq);
143 i80321_set_intrmask();
144 }
145
146 static __inline void
147 i80321_disable_irq(int irq)
148 {
149
150 intr_enabled &= ~(1U << irq);
151 i80321_set_intrmask();
152 }
153
154 /*
155 * NOTE: This routine must be called with interrupts disabled in the CPSR.
156 */
157 static void
158 i80321_intr_calculate_masks(void)
159 {
160 struct intrq *iq;
161 struct intrhand *ih;
162 int irq, ipl;
163
164 /* First, figure out which IPLs each IRQ has. */
165 for (irq = 0; irq < NIRQ; irq++) {
166 int levels = 0;
167 iq = &intrq[irq];
168 i80321_disable_irq(irq);
169 for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
170 ih = TAILQ_NEXT(ih, ih_list))
171 levels |= (1U << ih->ih_ipl);
172 iq->iq_levels = levels;
173 }
174
175 /* Next, figure out which IRQs are used by each IPL. */
176 for (ipl = 0; ipl < NIPL; ipl++) {
177 int irqs = 0;
178 for (irq = 0; irq < NIRQ; irq++) {
179 if (intrq[irq].iq_levels & (1U << ipl))
180 irqs |= (1U << irq);
181 }
182 imask[ipl] = irqs;
183 }
184
185 imask[IPL_NONE] = 0;
186
187 /*
188 * Initialize the soft interrupt masks to block themselves.
189 */
190 imask[IPL_SOFT] = SI_TO_IRQBIT(SI_SOFT);
191 imask[IPL_SOFTCLOCK] = SI_TO_IRQBIT(SI_SOFTCLOCK);
192 imask[IPL_SOFTNET] = SI_TO_IRQBIT(SI_SOFTNET);
193 imask[IPL_SOFTSERIAL] = SI_TO_IRQBIT(SI_SOFTSERIAL);
194
195 /*
196 * splsoftclock() is the only interface that users of the
197 * generic software interrupt facility have to block their
198 * soft intrs, so splsoftclock() must also block IPL_SOFT.
199 */
200 imask[IPL_SOFTCLOCK] |= imask[IPL_SOFT];
201
202 /*
203 * splsoftnet() must also block splsoftclock(), since we don't
204 * want timer-driven network events to occur while we're
205 * processing incoming packets.
206 */
207 imask[IPL_SOFTNET] |= imask[IPL_SOFTCLOCK];
208
209 /*
210 * Enforce a heirarchy that gives "slow" device (or devices with
211 * limited input buffer space/"real-time" requirements) a better
212 * chance at not dropping data.
213 */
214 imask[IPL_BIO] |= imask[IPL_SOFTNET];
215 imask[IPL_NET] |= imask[IPL_BIO];
216 imask[IPL_SOFTSERIAL] |= imask[IPL_NET];
217 imask[IPL_TTY] |= imask[IPL_SOFTSERIAL];
218
219 /*
220 * splvm() blocks all interrupts that use the kernel memory
221 * allocation facilities.
222 */
223 imask[IPL_IMP] |= imask[IPL_TTY];
224
225 /*
226 * Audio devices are not allowed to perform memory allocation
227 * in their interrupt routines, and they have fairly "real-time"
228 * requirements, so give them a high interrupt priority.
229 */
230 imask[IPL_AUDIO] |= imask[IPL_IMP];
231
232 /*
233 * splclock() must block anything that uses the scheduler.
234 */
235 imask[IPL_CLOCK] |= imask[IPL_AUDIO];
236
237 /*
238 * No separate statclock on the IQ80310.
239 */
240 imask[IPL_STATCLOCK] |= imask[IPL_CLOCK];
241
242 /*
243 * splhigh() must block "everything".
244 */
245 imask[IPL_HIGH] |= imask[IPL_STATCLOCK];
246
247 /*
248 * XXX We need serial drivers to run at the absolute highest priority
249 * in order to avoid overruns, so serial > high.
250 */
251 imask[IPL_SERIAL] |= imask[IPL_HIGH];
252
253 /*
254 * Now compute which IRQs must be blocked when servicing any
255 * given IRQ.
256 */
257 for (irq = 0; irq < NIRQ; irq++) {
258 int irqs = (1U << irq);
259 iq = &intrq[irq];
260 if (TAILQ_FIRST(&iq->iq_list) != NULL)
261 i80321_enable_irq(irq);
262 for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
263 ih = TAILQ_NEXT(ih, ih_list))
264 irqs |= imask[ih->ih_ipl];
265 iq->iq_mask = irqs;
266 }
267 }
268
269 static void
270 i80321_do_pending(void)
271 {
272 static __cpu_simple_lock_t processing = __SIMPLELOCK_UNLOCKED;
273 int new, oldirqstate;
274
275 if (__cpu_simple_lock_try(&processing) == 0)
276 return;
277
278 new = current_spl_level;
279
280 oldirqstate = disable_interrupts(I32_bit);
281
282 #define DO_SOFTINT(si) \
283 if ((ipending & ~new) & SI_TO_IRQBIT(si)) { \
284 ipending &= ~SI_TO_IRQBIT(si); \
285 current_spl_level |= imask[si_to_ipl[(si)]]; \
286 restore_interrupts(oldirqstate); \
287 softintr_dispatch(si); \
288 oldirqstate = disable_interrupts(I32_bit); \
289 current_spl_level = new; \
290 }
291
292 DO_SOFTINT(SI_SOFTSERIAL);
293 DO_SOFTINT(SI_SOFTNET);
294 DO_SOFTINT(SI_SOFTCLOCK);
295 DO_SOFTINT(SI_SOFT);
296
297 __cpu_simple_unlock(&processing);
298
299 restore_interrupts(oldirqstate);
300 }
301
302 int
303 _splraise(int ipl)
304 {
305 int old, oldirqstate;
306
307 oldirqstate = disable_interrupts(I32_bit);
308 old = current_spl_level;
309 current_spl_level |= imask[ipl];
310
311 restore_interrupts(oldirqstate);
312
313 return (old);
314 }
315
316 __inline void
317 splx(int new)
318 {
319 int oldirqstate, hwpend;
320
321 current_spl_level = new;
322
323 /*
324 * If there are pending HW interrupts which are being
325 * unmasked, then enable them in the INTCTL register.
326 * This will cause them to come flooding in.
327 */
328 hwpend = (ipending & ICU_INT_HWMASK) & ~new;
329 if (hwpend != 0) {
330 oldirqstate = disable_interrupts(I32_bit);
331 intr_enabled |= hwpend;
332 i80321_set_intrmask();
333 restore_interrupts(oldirqstate);
334 }
335
336 /* If there are software interrupts to process, do it. */
337 if ((ipending & INT_SWMASK) & ~new)
338 i80321_do_pending();
339 }
340
341 int
342 _spllower(int ipl)
343 {
344 int old = current_spl_level;
345
346 splx(imask[ipl]);
347 return (old);
348 }
349
350 void
351 _setsoftintr(int si)
352 {
353 int oldirqstate;
354
355 oldirqstate = disable_interrupts(I32_bit);
356 ipending |= SI_TO_IRQBIT(si);
357 restore_interrupts(oldirqstate);
358
359 /* Process unmasked pending soft interrupts. */
360 if ((ipending & INT_SWMASK) & ~current_spl_level)
361 i80321_do_pending();
362 }
363
364 /*
365 * i80321_icu_init:
366 *
367 * Initialize the i80321 ICU. Called early in bootstrap
368 * to make sure the ICU is in a pristine state.
369 */
370 void
371 i80321_icu_init(void)
372 {
373
374 intr_enabled = 0; /* All interrupts disabled */
375 i80321_set_intrmask();
376
377 intr_steer = 0; /* All interrupts steered to IRQ */
378 i80321_set_intrsteer();
379 }
380
381 /*
382 * i80321_intr_init:
383 *
384 * Initialize the rest of the interrupt subsystem, making it
385 * ready to handle interrupts from devices.
386 */
387 void
388 i80321_intr_init(void)
389 {
390 struct intrq *iq;
391 int i;
392
393 intr_enabled = 0;
394
395 for (i = 0; i < NIRQ; i++) {
396 iq = &intrq[i];
397 TAILQ_INIT(&iq->iq_list);
398
399 sprintf(iq->iq_name, "irq %d", i);
400 evcnt_attach_dynamic(&iq->iq_ev, EVCNT_TYPE_INTR,
401 NULL, "iop321", iq->iq_name);
402 }
403
404 i80321_intr_calculate_masks();
405
406 /* Enable IRQs (don't yet use FIQs). */
407 enable_interrupts(I32_bit);
408 }
409
410 void *
411 i80321_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
412 {
413 struct intrq *iq;
414 struct intrhand *ih;
415 u_int oldirqstate;
416
417 if (irq < 0 || irq > NIRQ)
418 panic("i80321_intr_establish: IRQ %d out of range", irq);
419
420 ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
421 if (ih == NULL)
422 return (NULL);
423
424 ih->ih_func = func;
425 ih->ih_arg = arg;
426 ih->ih_ipl = ipl;
427 ih->ih_irq = irq;
428
429 iq = &intrq[irq];
430
431 /* All IOP321 interrupts are level-triggered. */
432 iq->iq_ist = IST_LEVEL;
433
434 oldirqstate = disable_interrupts(I32_bit);
435
436 TAILQ_INSERT_TAIL(&iq->iq_list, ih, ih_list);
437
438 i80321_intr_calculate_masks();
439
440 restore_interrupts(oldirqstate);
441
442 return (ih);
443 }
444
445 void
446 i80321_intr_disestablish(void *cookie)
447 {
448 struct intrhand *ih = cookie;
449 struct intrq *iq = &intrq[ih->ih_irq];
450 int oldirqstate;
451
452 oldirqstate = disable_interrupts(I32_bit);
453
454 TAILQ_REMOVE(&iq->iq_list, ih, ih_list);
455
456 i80321_intr_calculate_masks();
457
458 restore_interrupts(oldirqstate);
459 }
460
461 void
462 i80321_intr_dispatch(struct clockframe *frame)
463 {
464 struct intrq *iq;
465 struct intrhand *ih;
466 int oldirqstate, pcpl, irq, ibit, hwpend;
467
468 pcpl = current_spl_level;
469
470 hwpend = i80321_iintsrc_read();
471
472 /*
473 * Disable all the interrupts that are pending. We will
474 * reenable them once they are processed and not masked.
475 */
476 intr_enabled &= ~hwpend;
477 i80321_set_intrmask();
478
479 while (hwpend != 0) {
480 irq = ffs(hwpend) - 1;
481 ibit = (1U << irq);
482
483 hwpend &= ~ibit;
484
485 if (pcpl & ibit) {
486 /*
487 * IRQ is masked; mark it as pending and check
488 * the next one. Note: the IRQ is already disabled.
489 */
490 ipending |= ibit;
491 continue;
492 }
493
494 ipending &= ~ibit;
495
496 iq = &intrq[irq];
497 iq->iq_ev.ev_count++;
498 uvmexp.intrs++;
499 current_spl_level |= iq->iq_mask;
500 oldirqstate = enable_interrupts(I32_bit);
501 for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
502 ih = TAILQ_NEXT(ih, ih_list)) {
503 (void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
504 }
505 restore_interrupts(oldirqstate);
506
507 current_spl_level = pcpl;
508
509 /* Re-enable this interrupt now that's it's cleared. */
510 intr_enabled |= ibit;
511 i80321_set_intrmask();
512 }
513
514 /* Check for pendings soft intrs. */
515 if ((ipending & INT_SWMASK) & ~current_spl_level) {
516 oldirqstate = enable_interrupts(I32_bit);
517 i80321_do_pending();
518 restore_interrupts(oldirqstate);
519 }
520 }
521