i80321_timer.c revision 1.17 1 1.17 ad /* $NetBSD: i80321_timer.c,v 1.17 2007/12/03 15:33:20 ad Exp $ */
2 1.1 thorpej
3 1.1 thorpej /*
4 1.1 thorpej * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5 1.1 thorpej * All rights reserved.
6 1.1 thorpej *
7 1.1 thorpej * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 1.1 thorpej *
9 1.1 thorpej * Redistribution and use in source and binary forms, with or without
10 1.1 thorpej * modification, are permitted provided that the following conditions
11 1.1 thorpej * are met:
12 1.1 thorpej * 1. Redistributions of source code must retain the above copyright
13 1.1 thorpej * notice, this list of conditions and the following disclaimer.
14 1.1 thorpej * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 thorpej * notice, this list of conditions and the following disclaimer in the
16 1.1 thorpej * documentation and/or other materials provided with the distribution.
17 1.1 thorpej * 3. All advertising materials mentioning features or use of this software
18 1.1 thorpej * must display the following acknowledgement:
19 1.1 thorpej * This product includes software developed for the NetBSD Project by
20 1.1 thorpej * Wasabi Systems, Inc.
21 1.1 thorpej * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.1 thorpej * or promote products derived from this software without specific prior
23 1.1 thorpej * written permission.
24 1.1 thorpej *
25 1.1 thorpej * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.1 thorpej * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.1 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 thorpej * POSSIBILITY OF SUCH DAMAGE.
36 1.1 thorpej */
37 1.1 thorpej
38 1.1 thorpej /*
39 1.1 thorpej * Timer/clock support for the Intel i80321 I/O processor.
40 1.1 thorpej */
41 1.5 lukem
42 1.5 lukem #include <sys/cdefs.h>
43 1.17 ad __KERNEL_RCSID(0, "$NetBSD: i80321_timer.c,v 1.17 2007/12/03 15:33:20 ad Exp $");
44 1.1 thorpej
45 1.2 briggs #include "opt_perfctrs.h"
46 1.8 rearnsha #include "opt_i80321.h"
47 1.2 briggs
48 1.1 thorpej #include <sys/param.h>
49 1.1 thorpej #include <sys/systm.h>
50 1.1 thorpej #include <sys/kernel.h>
51 1.1 thorpej #include <sys/time.h>
52 1.15 gavan #include <sys/timetc.h>
53 1.1 thorpej
54 1.6 thorpej #include <dev/clock_subr.h>
55 1.6 thorpej
56 1.1 thorpej #include <machine/bus.h>
57 1.1 thorpej #include <arm/cpufunc.h>
58 1.1 thorpej
59 1.1 thorpej #include <arm/xscale/i80321reg.h>
60 1.1 thorpej #include <arm/xscale/i80321var.h>
61 1.1 thorpej
62 1.3 thorpej #include <arm/xscale/xscalevar.h>
63 1.3 thorpej
64 1.1 thorpej void (*i80321_hardclock_hook)(void);
65 1.1 thorpej
66 1.8 rearnsha #ifndef COUNTS_PER_SEC
67 1.1 thorpej #define COUNTS_PER_SEC 200000000 /* 200MHz */
68 1.8 rearnsha #endif
69 1.1 thorpej #define COUNTS_PER_USEC (COUNTS_PER_SEC / 1000000)
70 1.1 thorpej
71 1.15 gavan #ifdef __HAVE_TIMECOUNTER
72 1.15 gavan static void tmr1_tc_init(void);
73 1.15 gavan #endif
74 1.15 gavan
75 1.1 thorpej static void *clock_ih;
76 1.1 thorpej
77 1.1 thorpej static uint32_t counts_per_hz;
78 1.1 thorpej
79 1.1 thorpej int clockhandler(void *);
80 1.1 thorpej
81 1.13 perry static inline uint32_t
82 1.1 thorpej tmr0_read(void)
83 1.1 thorpej {
84 1.1 thorpej uint32_t rv;
85 1.1 thorpej
86 1.13 perry __asm volatile("mrc p6, 0, %0, c0, c1, 0"
87 1.1 thorpej : "=r" (rv));
88 1.1 thorpej return (rv);
89 1.1 thorpej }
90 1.1 thorpej
91 1.13 perry static inline void
92 1.1 thorpej tmr0_write(uint32_t val)
93 1.1 thorpej {
94 1.1 thorpej
95 1.13 perry __asm volatile("mcr p6, 0, %0, c0, c1, 0"
96 1.1 thorpej :
97 1.1 thorpej : "r" (val));
98 1.1 thorpej }
99 1.1 thorpej
100 1.13 perry static inline uint32_t
101 1.1 thorpej tcr0_read(void)
102 1.1 thorpej {
103 1.1 thorpej uint32_t rv;
104 1.1 thorpej
105 1.13 perry __asm volatile("mrc p6, 0, %0, c2, c1, 0"
106 1.1 thorpej : "=r" (rv));
107 1.1 thorpej return (rv);
108 1.1 thorpej }
109 1.1 thorpej
110 1.13 perry static inline void
111 1.1 thorpej tcr0_write(uint32_t val)
112 1.1 thorpej {
113 1.1 thorpej
114 1.13 perry __asm volatile("mcr p6, 0, %0, c2, c1, 0"
115 1.1 thorpej :
116 1.1 thorpej : "r" (val));
117 1.1 thorpej }
118 1.1 thorpej
119 1.13 perry static inline void
120 1.1 thorpej trr0_write(uint32_t val)
121 1.1 thorpej {
122 1.1 thorpej
123 1.13 perry __asm volatile("mcr p6, 0, %0, c4, c1, 0"
124 1.1 thorpej :
125 1.1 thorpej : "r" (val));
126 1.1 thorpej }
127 1.1 thorpej
128 1.15 gavan #ifdef __HAVE_TIMECOUNTER
129 1.15 gavan
130 1.15 gavan static inline uint32_t
131 1.15 gavan tmr1_read(void)
132 1.15 gavan {
133 1.15 gavan uint32_t rv;
134 1.15 gavan
135 1.15 gavan __asm volatile("mrc p6, 0, %0, c1, c1, 0"
136 1.15 gavan : "=r" (rv));
137 1.15 gavan return (rv);
138 1.15 gavan }
139 1.15 gavan
140 1.15 gavan static inline void
141 1.15 gavan tmr1_write(uint32_t val)
142 1.15 gavan {
143 1.15 gavan
144 1.15 gavan __asm volatile("mcr p6, 0, %0, c1, c1, 0"
145 1.15 gavan :
146 1.15 gavan : "r" (val));
147 1.15 gavan }
148 1.15 gavan
149 1.15 gavan static inline uint32_t
150 1.15 gavan tcr1_read(void)
151 1.15 gavan {
152 1.15 gavan uint32_t rv;
153 1.15 gavan
154 1.15 gavan __asm volatile("mrc p6, 0, %0, c3, c1, 0"
155 1.15 gavan : "=r" (rv));
156 1.15 gavan return (rv);
157 1.15 gavan }
158 1.15 gavan
159 1.15 gavan static inline void
160 1.15 gavan tcr1_write(uint32_t val)
161 1.15 gavan {
162 1.15 gavan
163 1.15 gavan __asm volatile("mcr p6, 0, %0, c3, c1, 0"
164 1.15 gavan :
165 1.15 gavan : "r" (val));
166 1.15 gavan }
167 1.15 gavan
168 1.15 gavan static inline void
169 1.15 gavan trr1_write(uint32_t val)
170 1.15 gavan {
171 1.15 gavan
172 1.15 gavan __asm volatile("mcr p6, 0, %0, c5, c1, 0"
173 1.15 gavan :
174 1.15 gavan : "r" (val));
175 1.15 gavan }
176 1.15 gavan
177 1.15 gavan #endif /* __HAVE_TIMECOUNTER */
178 1.15 gavan
179 1.13 perry static inline void
180 1.1 thorpej tisr_write(uint32_t val)
181 1.1 thorpej {
182 1.1 thorpej
183 1.13 perry __asm volatile("mcr p6, 0, %0, c6, c1, 0"
184 1.1 thorpej :
185 1.1 thorpej : "r" (val));
186 1.1 thorpej }
187 1.1 thorpej
188 1.1 thorpej /*
189 1.1 thorpej * i80321_calibrate_delay:
190 1.1 thorpej *
191 1.1 thorpej * Calibrate the delay loop.
192 1.1 thorpej */
193 1.1 thorpej void
194 1.1 thorpej i80321_calibrate_delay(void)
195 1.1 thorpej {
196 1.1 thorpej
197 1.1 thorpej /*
198 1.1 thorpej * Just use hz=100 for now -- we'll adjust it, if necessary,
199 1.1 thorpej * in cpu_initclocks().
200 1.1 thorpej */
201 1.1 thorpej counts_per_hz = COUNTS_PER_SEC / 100;
202 1.1 thorpej
203 1.1 thorpej tmr0_write(0); /* stop timer */
204 1.1 thorpej tisr_write(TISR_TMR0); /* clear interrupt */
205 1.1 thorpej trr0_write(counts_per_hz); /* reload value */
206 1.1 thorpej tcr0_write(counts_per_hz); /* current value */
207 1.1 thorpej
208 1.1 thorpej tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
209 1.1 thorpej }
210 1.1 thorpej
211 1.1 thorpej /*
212 1.1 thorpej * cpu_initclocks:
213 1.1 thorpej *
214 1.1 thorpej * Initialize the clock and get them going.
215 1.1 thorpej */
216 1.1 thorpej void
217 1.1 thorpej cpu_initclocks(void)
218 1.1 thorpej {
219 1.1 thorpej u_int oldirqstate;
220 1.2 briggs #if defined(PERFCTRS)
221 1.2 briggs void *pmu_ih;
222 1.2 briggs #endif
223 1.1 thorpej
224 1.1 thorpej if (hz < 50 || COUNTS_PER_SEC % hz) {
225 1.4 thorpej aprint_error("Cannot get %d Hz clock; using 100 Hz\n", hz);
226 1.1 thorpej hz = 100;
227 1.1 thorpej }
228 1.15 gavan #ifndef __HAVE_TIMECOUNTER
229 1.1 thorpej tick = 1000000 / hz; /* number of microseconds between interrupts */
230 1.1 thorpej tickfix = 1000000 - (hz * tick);
231 1.1 thorpej if (tickfix) {
232 1.1 thorpej int ftp;
233 1.1 thorpej
234 1.1 thorpej ftp = min(ffs(tickfix), ffs(hz));
235 1.1 thorpej tickfix >>= (ftp - 1);
236 1.1 thorpej tickfixinterval = hz >> (ftp - 1);
237 1.1 thorpej }
238 1.15 gavan #endif
239 1.1 thorpej
240 1.1 thorpej /*
241 1.1 thorpej * We only have one timer available; stathz and profhz are
242 1.1 thorpej * always left as 0 (the upper-layer clock code deals with
243 1.1 thorpej * this situation).
244 1.1 thorpej */
245 1.1 thorpej if (stathz != 0)
246 1.4 thorpej aprint_error("Cannot get %d Hz statclock\n", stathz);
247 1.1 thorpej stathz = 0;
248 1.1 thorpej
249 1.1 thorpej if (profhz != 0)
250 1.4 thorpej aprint_error("Cannot get %d Hz profclock\n", profhz);
251 1.1 thorpej profhz = 0;
252 1.1 thorpej
253 1.1 thorpej /* Report the clock frequency. */
254 1.4 thorpej aprint_normal("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz);
255 1.1 thorpej
256 1.1 thorpej oldirqstate = disable_interrupts(I32_bit);
257 1.1 thorpej
258 1.1 thorpej /* Hook up the clock interrupt handler. */
259 1.1 thorpej clock_ih = i80321_intr_establish(ICU_INT_TMR0, IPL_CLOCK,
260 1.1 thorpej clockhandler, NULL);
261 1.1 thorpej if (clock_ih == NULL)
262 1.1 thorpej panic("cpu_initclocks: unable to register timer interrupt");
263 1.2 briggs
264 1.2 briggs #if defined(PERFCTRS)
265 1.17 ad pmu_ih = i80321_intr_establish(ICU_INT_PMU, IPL_HIGH,
266 1.2 briggs xscale_pmc_dispatch, NULL);
267 1.2 briggs if (pmu_ih == NULL)
268 1.2 briggs panic("cpu_initclocks: unable to register timer interrupt");
269 1.2 briggs #endif
270 1.1 thorpej
271 1.1 thorpej /* Set up the new clock parameters. */
272 1.1 thorpej
273 1.1 thorpej tmr0_write(0); /* stop timer */
274 1.1 thorpej tisr_write(TISR_TMR0); /* clear interrupt */
275 1.1 thorpej
276 1.1 thorpej counts_per_hz = COUNTS_PER_SEC / hz;
277 1.1 thorpej
278 1.1 thorpej trr0_write(counts_per_hz); /* reload value */
279 1.1 thorpej tcr0_write(counts_per_hz); /* current value */
280 1.1 thorpej
281 1.1 thorpej tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
282 1.1 thorpej
283 1.1 thorpej restore_interrupts(oldirqstate);
284 1.15 gavan
285 1.15 gavan #ifdef __HAVE_TIMECOUNTER
286 1.15 gavan tmr1_tc_init();
287 1.15 gavan #endif
288 1.1 thorpej }
289 1.1 thorpej
290 1.1 thorpej /*
291 1.1 thorpej * setstatclockrate:
292 1.1 thorpej *
293 1.1 thorpej * Set the rate of the statistics clock.
294 1.1 thorpej *
295 1.1 thorpej * We assume that hz is either stathz or profhz, and that neither
296 1.1 thorpej * will change after being set by cpu_initclocks(). We could
297 1.1 thorpej * recalculate the intervals here, but that would be a pain.
298 1.1 thorpej */
299 1.1 thorpej void
300 1.11 he setstatclockrate(int newhz)
301 1.1 thorpej {
302 1.1 thorpej
303 1.1 thorpej /*
304 1.1 thorpej * XXX Use TMR1?
305 1.1 thorpej */
306 1.1 thorpej }
307 1.1 thorpej
308 1.15 gavan #ifndef __HAVE_TIMECOUNTER
309 1.15 gavan
310 1.1 thorpej /*
311 1.1 thorpej * microtime:
312 1.1 thorpej *
313 1.1 thorpej * Fill in the specified timeval struct with the current time
314 1.1 thorpej * accurate to the microsecond.
315 1.1 thorpej */
316 1.1 thorpej void
317 1.1 thorpej microtime(struct timeval *tvp)
318 1.1 thorpej {
319 1.1 thorpej static struct timeval lasttv;
320 1.1 thorpej u_int oldirqstate;
321 1.1 thorpej uint32_t counts;
322 1.1 thorpej
323 1.1 thorpej oldirqstate = disable_interrupts(I32_bit);
324 1.1 thorpej
325 1.1 thorpej counts = counts_per_hz - tcr0_read();
326 1.1 thorpej
327 1.1 thorpej /* Fill in the timeval struct. */
328 1.1 thorpej *tvp = time;
329 1.1 thorpej tvp->tv_usec += (counts / COUNTS_PER_USEC);
330 1.1 thorpej
331 1.1 thorpej /* Make sure microseconds doesn't overflow. */
332 1.1 thorpej while (tvp->tv_usec >= 1000000) {
333 1.1 thorpej tvp->tv_usec -= 1000000;
334 1.1 thorpej tvp->tv_sec++;
335 1.1 thorpej }
336 1.1 thorpej
337 1.1 thorpej /* Make sure the time has advanced. */
338 1.1 thorpej if (tvp->tv_sec == lasttv.tv_sec &&
339 1.1 thorpej tvp->tv_usec <= lasttv.tv_usec) {
340 1.1 thorpej tvp->tv_usec = lasttv.tv_usec + 1;
341 1.1 thorpej if (tvp->tv_usec >= 1000000) {
342 1.1 thorpej tvp->tv_usec -= 1000000;
343 1.1 thorpej tvp->tv_sec++;
344 1.1 thorpej }
345 1.1 thorpej }
346 1.1 thorpej
347 1.1 thorpej lasttv = *tvp;
348 1.1 thorpej
349 1.1 thorpej restore_interrupts(oldirqstate);
350 1.1 thorpej }
351 1.1 thorpej
352 1.15 gavan
353 1.15 gavan #else
354 1.15 gavan
355 1.15 gavan static inline uint32_t
356 1.15 gavan tmr1_tc_get(struct timecounter *tch)
357 1.15 gavan {
358 1.15 gavan return (~tcr1_read());
359 1.15 gavan }
360 1.15 gavan
361 1.15 gavan void
362 1.15 gavan tmr1_tc_init(void)
363 1.15 gavan {
364 1.15 gavan static struct timecounter tmr1_tc = {
365 1.15 gavan .tc_get_timecount = tmr1_tc_get,
366 1.15 gavan .tc_frequency = COUNTS_PER_SEC,
367 1.15 gavan .tc_counter_mask = ~0,
368 1.15 gavan .tc_name = "tmr1_count",
369 1.15 gavan .tc_quality = 100,
370 1.15 gavan };
371 1.15 gavan
372 1.15 gavan /* program the tc */
373 1.15 gavan trr1_write(~0); /* reload value */
374 1.15 gavan tcr1_write(~0); /* current value */
375 1.15 gavan
376 1.15 gavan tmr1_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
377 1.15 gavan
378 1.15 gavan
379 1.15 gavan trr1_write(~0);
380 1.15 gavan tc_init(&tmr1_tc);
381 1.15 gavan }
382 1.15 gavan #endif
383 1.15 gavan
384 1.1 thorpej /*
385 1.1 thorpej * delay:
386 1.1 thorpej *
387 1.1 thorpej * Delay for at least N microseconds.
388 1.1 thorpej */
389 1.1 thorpej void
390 1.1 thorpej delay(u_int n)
391 1.1 thorpej {
392 1.1 thorpej uint32_t cur, last, delta, usecs;
393 1.1 thorpej
394 1.1 thorpej /*
395 1.1 thorpej * This works by polling the timer and counting the
396 1.1 thorpej * number of microseconds that go by.
397 1.1 thorpej */
398 1.1 thorpej last = tcr0_read();
399 1.1 thorpej delta = usecs = 0;
400 1.1 thorpej
401 1.1 thorpej while (n > usecs) {
402 1.1 thorpej cur = tcr0_read();
403 1.1 thorpej
404 1.1 thorpej /* Check to see if the timer has wrapped around. */
405 1.1 thorpej if (last < cur)
406 1.1 thorpej delta += (last + (counts_per_hz - cur));
407 1.1 thorpej else
408 1.1 thorpej delta += (last - cur);
409 1.1 thorpej
410 1.1 thorpej last = cur;
411 1.1 thorpej
412 1.1 thorpej if (delta >= COUNTS_PER_USEC) {
413 1.1 thorpej usecs += delta / COUNTS_PER_USEC;
414 1.1 thorpej delta %= COUNTS_PER_USEC;
415 1.1 thorpej }
416 1.1 thorpej }
417 1.1 thorpej }
418 1.1 thorpej
419 1.1 thorpej /*
420 1.1 thorpej * clockhandler:
421 1.1 thorpej *
422 1.1 thorpej * Handle the hardclock interrupt.
423 1.1 thorpej */
424 1.1 thorpej int
425 1.1 thorpej clockhandler(void *arg)
426 1.1 thorpej {
427 1.1 thorpej struct clockframe *frame = arg;
428 1.1 thorpej
429 1.1 thorpej tisr_write(TISR_TMR0);
430 1.1 thorpej
431 1.1 thorpej hardclock(frame);
432 1.1 thorpej
433 1.1 thorpej if (i80321_hardclock_hook != NULL)
434 1.1 thorpej (*i80321_hardclock_hook)();
435 1.1 thorpej
436 1.1 thorpej return (1);
437 1.1 thorpej }
438