Home | History | Annotate | Line # | Download | only in xscale
i80321_timer.c revision 1.20.2.1
      1  1.20.2.1      yamt /*	$NetBSD: i80321_timer.c,v 1.20.2.1 2014/05/22 11:39:34 yamt Exp $ */
      2       1.1   thorpej 
      3       1.1   thorpej /*
      4       1.1   thorpej  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
      5       1.1   thorpej  * All rights reserved.
      6       1.1   thorpej  *
      7       1.1   thorpej  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8       1.1   thorpej  *
      9       1.1   thorpej  * Redistribution and use in source and binary forms, with or without
     10       1.1   thorpej  * modification, are permitted provided that the following conditions
     11       1.1   thorpej  * are met:
     12       1.1   thorpej  * 1. Redistributions of source code must retain the above copyright
     13       1.1   thorpej  *    notice, this list of conditions and the following disclaimer.
     14       1.1   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     15       1.1   thorpej  *    notice, this list of conditions and the following disclaimer in the
     16       1.1   thorpej  *    documentation and/or other materials provided with the distribution.
     17       1.1   thorpej  * 3. All advertising materials mentioning features or use of this software
     18       1.1   thorpej  *    must display the following acknowledgement:
     19       1.1   thorpej  *	This product includes software developed for the NetBSD Project by
     20       1.1   thorpej  *	Wasabi Systems, Inc.
     21       1.1   thorpej  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22       1.1   thorpej  *    or promote products derived from this software without specific prior
     23       1.1   thorpej  *    written permission.
     24       1.1   thorpej  *
     25       1.1   thorpej  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26       1.1   thorpej  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27       1.1   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28       1.1   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29       1.1   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30       1.1   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31       1.1   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32       1.1   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33       1.1   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34       1.1   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35       1.1   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     36       1.1   thorpej  */
     37       1.1   thorpej 
     38       1.1   thorpej /*
     39       1.1   thorpej  * Timer/clock support for the Intel i80321 I/O processor.
     40       1.1   thorpej  */
     41       1.5     lukem 
     42       1.5     lukem #include <sys/cdefs.h>
     43  1.20.2.1      yamt __KERNEL_RCSID(0, "$NetBSD: i80321_timer.c,v 1.20.2.1 2014/05/22 11:39:34 yamt Exp $");
     44       1.1   thorpej 
     45       1.2    briggs #include "opt_perfctrs.h"
     46       1.8  rearnsha #include "opt_i80321.h"
     47       1.2    briggs 
     48       1.1   thorpej #include <sys/param.h>
     49       1.1   thorpej #include <sys/systm.h>
     50       1.1   thorpej #include <sys/kernel.h>
     51       1.1   thorpej #include <sys/time.h>
     52      1.15     gavan #include <sys/timetc.h>
     53       1.1   thorpej 
     54       1.6   thorpej #include <dev/clock_subr.h>
     55       1.6   thorpej 
     56      1.20    dyoung #include <sys/bus.h>
     57       1.1   thorpej #include <arm/cpufunc.h>
     58       1.1   thorpej 
     59       1.1   thorpej #include <arm/xscale/i80321reg.h>
     60       1.1   thorpej #include <arm/xscale/i80321var.h>
     61       1.1   thorpej 
     62       1.3   thorpej #include <arm/xscale/xscalevar.h>
     63       1.3   thorpej 
     64       1.1   thorpej void	(*i80321_hardclock_hook)(void);
     65       1.1   thorpej 
     66       1.8  rearnsha #ifndef COUNTS_PER_SEC
     67       1.1   thorpej #define	COUNTS_PER_SEC		200000000	/* 200MHz */
     68       1.8  rearnsha #endif
     69       1.1   thorpej #define	COUNTS_PER_USEC		(COUNTS_PER_SEC / 1000000)
     70       1.1   thorpej 
     71      1.15     gavan static void tmr1_tc_init(void);
     72      1.15     gavan 
     73       1.1   thorpej static void *clock_ih;
     74       1.1   thorpej 
     75       1.1   thorpej static uint32_t counts_per_hz;
     76       1.1   thorpej 
     77       1.1   thorpej int	clockhandler(void *);
     78       1.1   thorpej 
     79  1.20.2.1      yamt __unused static inline uint32_t
     80       1.1   thorpej tmr0_read(void)
     81       1.1   thorpej {
     82       1.1   thorpej 	uint32_t rv;
     83       1.1   thorpej 
     84      1.13     perry 	__asm volatile("mrc p6, 0, %0, c0, c1, 0"
     85       1.1   thorpej 		: "=r" (rv));
     86       1.1   thorpej 	return (rv);
     87       1.1   thorpej }
     88       1.1   thorpej 
     89      1.13     perry static inline void
     90       1.1   thorpej tmr0_write(uint32_t val)
     91       1.1   thorpej {
     92       1.1   thorpej 
     93      1.13     perry 	__asm volatile("mcr p6, 0, %0, c0, c1, 0"
     94       1.1   thorpej 		:
     95       1.1   thorpej 		: "r" (val));
     96       1.1   thorpej }
     97       1.1   thorpej 
     98      1.13     perry static inline uint32_t
     99       1.1   thorpej tcr0_read(void)
    100       1.1   thorpej {
    101       1.1   thorpej 	uint32_t rv;
    102       1.1   thorpej 
    103      1.13     perry 	__asm volatile("mrc p6, 0, %0, c2, c1, 0"
    104       1.1   thorpej 		: "=r" (rv));
    105       1.1   thorpej 	return (rv);
    106       1.1   thorpej }
    107       1.1   thorpej 
    108      1.13     perry static inline void
    109       1.1   thorpej tcr0_write(uint32_t val)
    110       1.1   thorpej {
    111       1.1   thorpej 
    112      1.13     perry 	__asm volatile("mcr p6, 0, %0, c2, c1, 0"
    113       1.1   thorpej 		:
    114       1.1   thorpej 		: "r" (val));
    115       1.1   thorpej }
    116       1.1   thorpej 
    117      1.13     perry static inline void
    118       1.1   thorpej trr0_write(uint32_t val)
    119       1.1   thorpej {
    120       1.1   thorpej 
    121      1.13     perry 	__asm volatile("mcr p6, 0, %0, c4, c1, 0"
    122       1.1   thorpej 		:
    123       1.1   thorpej 		: "r" (val));
    124       1.1   thorpej }
    125       1.1   thorpej 
    126  1.20.2.1      yamt __unused static inline uint32_t
    127      1.15     gavan tmr1_read(void)
    128      1.15     gavan {
    129      1.15     gavan 	uint32_t rv;
    130      1.15     gavan 
    131      1.15     gavan 	__asm volatile("mrc p6, 0, %0, c1, c1, 0"
    132      1.15     gavan 		: "=r" (rv));
    133      1.15     gavan 	return (rv);
    134      1.15     gavan }
    135      1.15     gavan 
    136      1.15     gavan static inline void
    137      1.15     gavan tmr1_write(uint32_t val)
    138      1.15     gavan {
    139      1.15     gavan 
    140      1.15     gavan 	__asm volatile("mcr p6, 0, %0, c1, c1, 0"
    141      1.15     gavan 		:
    142      1.15     gavan 		: "r" (val));
    143      1.15     gavan }
    144      1.15     gavan 
    145      1.15     gavan static inline uint32_t
    146      1.15     gavan tcr1_read(void)
    147      1.15     gavan {
    148      1.15     gavan 	uint32_t rv;
    149      1.15     gavan 
    150      1.15     gavan 	__asm volatile("mrc p6, 0, %0, c3, c1, 0"
    151      1.15     gavan 		: "=r" (rv));
    152      1.15     gavan 	return (rv);
    153      1.15     gavan }
    154      1.15     gavan 
    155      1.15     gavan static inline void
    156      1.15     gavan tcr1_write(uint32_t val)
    157      1.15     gavan {
    158      1.15     gavan 
    159      1.15     gavan 	__asm volatile("mcr p6, 0, %0, c3, c1, 0"
    160      1.15     gavan 		:
    161      1.15     gavan 		: "r" (val));
    162      1.15     gavan }
    163      1.15     gavan 
    164      1.15     gavan static inline void
    165      1.15     gavan trr1_write(uint32_t val)
    166      1.15     gavan {
    167      1.15     gavan 
    168      1.15     gavan 	__asm volatile("mcr p6, 0, %0, c5, c1, 0"
    169      1.15     gavan 		:
    170      1.15     gavan 		: "r" (val));
    171      1.15     gavan }
    172      1.15     gavan 
    173      1.13     perry static inline void
    174       1.1   thorpej tisr_write(uint32_t val)
    175       1.1   thorpej {
    176       1.1   thorpej 
    177      1.13     perry 	__asm volatile("mcr p6, 0, %0, c6, c1, 0"
    178       1.1   thorpej 		:
    179       1.1   thorpej 		: "r" (val));
    180       1.1   thorpej }
    181       1.1   thorpej 
    182       1.1   thorpej /*
    183       1.1   thorpej  * i80321_calibrate_delay:
    184       1.1   thorpej  *
    185       1.1   thorpej  *	Calibrate the delay loop.
    186       1.1   thorpej  */
    187       1.1   thorpej void
    188       1.1   thorpej i80321_calibrate_delay(void)
    189       1.1   thorpej {
    190       1.1   thorpej 
    191       1.1   thorpej 	/*
    192       1.1   thorpej 	 * Just use hz=100 for now -- we'll adjust it, if necessary,
    193       1.1   thorpej 	 * in cpu_initclocks().
    194       1.1   thorpej 	 */
    195       1.1   thorpej 	counts_per_hz = COUNTS_PER_SEC / 100;
    196       1.1   thorpej 
    197       1.1   thorpej 	tmr0_write(0);			/* stop timer */
    198       1.1   thorpej 	tisr_write(TISR_TMR0);		/* clear interrupt */
    199       1.1   thorpej 	trr0_write(counts_per_hz);	/* reload value */
    200       1.1   thorpej 	tcr0_write(counts_per_hz);	/* current value */
    201       1.1   thorpej 
    202       1.1   thorpej 	tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
    203       1.1   thorpej }
    204       1.1   thorpej 
    205       1.1   thorpej /*
    206       1.1   thorpej  * cpu_initclocks:
    207       1.1   thorpej  *
    208       1.1   thorpej  *	Initialize the clock and get them going.
    209       1.1   thorpej  */
    210       1.1   thorpej void
    211       1.1   thorpej cpu_initclocks(void)
    212       1.1   thorpej {
    213       1.1   thorpej 	u_int oldirqstate;
    214       1.2    briggs #if defined(PERFCTRS)
    215       1.2    briggs 	void *pmu_ih;
    216       1.2    briggs #endif
    217       1.1   thorpej 
    218       1.1   thorpej 	if (hz < 50 || COUNTS_PER_SEC % hz) {
    219       1.4   thorpej 		aprint_error("Cannot get %d Hz clock; using 100 Hz\n", hz);
    220       1.1   thorpej 		hz = 100;
    221       1.1   thorpej 	}
    222       1.1   thorpej 
    223       1.1   thorpej 	/*
    224       1.1   thorpej 	 * We only have one timer available; stathz and profhz are
    225       1.1   thorpej 	 * always left as 0 (the upper-layer clock code deals with
    226       1.1   thorpej 	 * this situation).
    227       1.1   thorpej 	 */
    228       1.1   thorpej 	if (stathz != 0)
    229       1.4   thorpej 		aprint_error("Cannot get %d Hz statclock\n", stathz);
    230       1.1   thorpej 	stathz = 0;
    231       1.1   thorpej 
    232       1.1   thorpej 	if (profhz != 0)
    233       1.4   thorpej 		aprint_error("Cannot get %d Hz profclock\n", profhz);
    234       1.1   thorpej 	profhz = 0;
    235       1.1   thorpej 
    236       1.1   thorpej 	/* Report the clock frequency. */
    237       1.4   thorpej 	aprint_normal("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz);
    238       1.1   thorpej 
    239       1.1   thorpej 	oldirqstate = disable_interrupts(I32_bit);
    240       1.1   thorpej 
    241       1.1   thorpej 	/* Hook up the clock interrupt handler. */
    242       1.1   thorpej 	clock_ih = i80321_intr_establish(ICU_INT_TMR0, IPL_CLOCK,
    243       1.1   thorpej 	    clockhandler, NULL);
    244       1.1   thorpej 	if (clock_ih == NULL)
    245       1.1   thorpej 		panic("cpu_initclocks: unable to register timer interrupt");
    246       1.2    briggs 
    247       1.2    briggs #if defined(PERFCTRS)
    248      1.17        ad 	pmu_ih = i80321_intr_establish(ICU_INT_PMU, IPL_HIGH,
    249       1.2    briggs 	    xscale_pmc_dispatch, NULL);
    250       1.2    briggs 	if (pmu_ih == NULL)
    251       1.2    briggs 		panic("cpu_initclocks: unable to register timer interrupt");
    252       1.2    briggs #endif
    253       1.1   thorpej 
    254       1.1   thorpej 	/* Set up the new clock parameters. */
    255       1.1   thorpej 
    256       1.1   thorpej 	tmr0_write(0);			/* stop timer */
    257       1.1   thorpej 	tisr_write(TISR_TMR0);		/* clear interrupt */
    258       1.1   thorpej 
    259       1.1   thorpej 	counts_per_hz = COUNTS_PER_SEC / hz;
    260       1.1   thorpej 
    261       1.1   thorpej 	trr0_write(counts_per_hz);	/* reload value */
    262       1.1   thorpej 	tcr0_write(counts_per_hz);	/* current value */
    263       1.1   thorpej 
    264       1.1   thorpej 	tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
    265       1.1   thorpej 
    266       1.1   thorpej 	restore_interrupts(oldirqstate);
    267      1.15     gavan 
    268      1.15     gavan 	tmr1_tc_init();
    269       1.1   thorpej }
    270       1.1   thorpej 
    271       1.1   thorpej /*
    272       1.1   thorpej  * setstatclockrate:
    273       1.1   thorpej  *
    274       1.1   thorpej  *	Set the rate of the statistics clock.
    275       1.1   thorpej  *
    276       1.1   thorpej  *	We assume that hz is either stathz or profhz, and that neither
    277       1.1   thorpej  *	will change after being set by cpu_initclocks().  We could
    278       1.1   thorpej  *	recalculate the intervals here, but that would be a pain.
    279       1.1   thorpej  */
    280       1.1   thorpej void
    281      1.11        he setstatclockrate(int newhz)
    282       1.1   thorpej {
    283       1.1   thorpej 
    284       1.1   thorpej 	/*
    285       1.1   thorpej 	 * XXX Use TMR1?
    286       1.1   thorpej 	 */
    287       1.1   thorpej }
    288       1.1   thorpej 
    289      1.15     gavan static inline uint32_t
    290      1.15     gavan tmr1_tc_get(struct timecounter *tch)
    291      1.15     gavan {
    292      1.15     gavan 	return (~tcr1_read());
    293      1.15     gavan }
    294      1.15     gavan 
    295      1.15     gavan void
    296      1.15     gavan tmr1_tc_init(void)
    297      1.15     gavan {
    298      1.15     gavan 	static struct timecounter tmr1_tc = {
    299      1.15     gavan 		.tc_get_timecount = tmr1_tc_get,
    300      1.15     gavan 		.tc_frequency = COUNTS_PER_SEC,
    301      1.15     gavan 		.tc_counter_mask = ~0,
    302      1.15     gavan 		.tc_name = "tmr1_count",
    303      1.15     gavan 		.tc_quality = 100,
    304      1.15     gavan 	};
    305      1.15     gavan 
    306      1.15     gavan 	/* program the tc */
    307      1.15     gavan 	trr1_write(~0);	/* reload value */
    308      1.15     gavan 	tcr1_write(~0);	/* current value */
    309      1.15     gavan 
    310      1.15     gavan 	tmr1_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
    311      1.15     gavan 
    312      1.15     gavan 
    313      1.15     gavan 	trr1_write(~0);
    314      1.15     gavan 	tc_init(&tmr1_tc);
    315      1.15     gavan }
    316      1.15     gavan 
    317       1.1   thorpej /*
    318       1.1   thorpej  * delay:
    319       1.1   thorpej  *
    320       1.1   thorpej  *	Delay for at least N microseconds.
    321       1.1   thorpej  */
    322       1.1   thorpej void
    323       1.1   thorpej delay(u_int n)
    324       1.1   thorpej {
    325       1.1   thorpej 	uint32_t cur, last, delta, usecs;
    326       1.1   thorpej 
    327       1.1   thorpej 	/*
    328       1.1   thorpej 	 * This works by polling the timer and counting the
    329       1.1   thorpej 	 * number of microseconds that go by.
    330       1.1   thorpej 	 */
    331       1.1   thorpej 	last = tcr0_read();
    332       1.1   thorpej 	delta = usecs = 0;
    333       1.1   thorpej 
    334       1.1   thorpej 	while (n > usecs) {
    335       1.1   thorpej 		cur = tcr0_read();
    336       1.1   thorpej 
    337       1.1   thorpej 		/* Check to see if the timer has wrapped around. */
    338       1.1   thorpej 		if (last < cur)
    339       1.1   thorpej 			delta += (last + (counts_per_hz - cur));
    340       1.1   thorpej 		else
    341       1.1   thorpej 			delta += (last - cur);
    342       1.1   thorpej 
    343       1.1   thorpej 		last = cur;
    344       1.1   thorpej 
    345       1.1   thorpej 		if (delta >= COUNTS_PER_USEC) {
    346       1.1   thorpej 			usecs += delta / COUNTS_PER_USEC;
    347       1.1   thorpej 			delta %= COUNTS_PER_USEC;
    348       1.1   thorpej 		}
    349       1.1   thorpej 	}
    350       1.1   thorpej }
    351       1.1   thorpej 
    352       1.1   thorpej /*
    353       1.1   thorpej  * clockhandler:
    354       1.1   thorpej  *
    355       1.1   thorpej  *	Handle the hardclock interrupt.
    356       1.1   thorpej  */
    357       1.1   thorpej int
    358       1.1   thorpej clockhandler(void *arg)
    359       1.1   thorpej {
    360       1.1   thorpej 	struct clockframe *frame = arg;
    361       1.1   thorpej 
    362       1.1   thorpej 	tisr_write(TISR_TMR0);
    363       1.1   thorpej 
    364       1.1   thorpej 	hardclock(frame);
    365       1.1   thorpej 
    366       1.1   thorpej 	if (i80321_hardclock_hook != NULL)
    367       1.1   thorpej 		(*i80321_hardclock_hook)();
    368       1.1   thorpej 
    369       1.1   thorpej 	return (1);
    370       1.1   thorpej }
    371