Home | History | Annotate | Line # | Download | only in xscale
i80321_timer.c revision 1.21.28.1
      1  1.21.28.1  pgoyette /*	$NetBSD: i80321_timer.c,v 1.21.28.1 2018/07/28 04:37:29 pgoyette Exp $ */
      2        1.1   thorpej 
      3        1.1   thorpej /*
      4        1.1   thorpej  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
      5        1.1   thorpej  * All rights reserved.
      6        1.1   thorpej  *
      7        1.1   thorpej  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8        1.1   thorpej  *
      9        1.1   thorpej  * Redistribution and use in source and binary forms, with or without
     10        1.1   thorpej  * modification, are permitted provided that the following conditions
     11        1.1   thorpej  * are met:
     12        1.1   thorpej  * 1. Redistributions of source code must retain the above copyright
     13        1.1   thorpej  *    notice, this list of conditions and the following disclaimer.
     14        1.1   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     15        1.1   thorpej  *    notice, this list of conditions and the following disclaimer in the
     16        1.1   thorpej  *    documentation and/or other materials provided with the distribution.
     17        1.1   thorpej  * 3. All advertising materials mentioning features or use of this software
     18        1.1   thorpej  *    must display the following acknowledgement:
     19        1.1   thorpej  *	This product includes software developed for the NetBSD Project by
     20        1.1   thorpej  *	Wasabi Systems, Inc.
     21        1.1   thorpej  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22        1.1   thorpej  *    or promote products derived from this software without specific prior
     23        1.1   thorpej  *    written permission.
     24        1.1   thorpej  *
     25        1.1   thorpej  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26        1.1   thorpej  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27        1.1   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28        1.1   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29        1.1   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30        1.1   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31        1.1   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32        1.1   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33        1.1   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34        1.1   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35        1.1   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     36        1.1   thorpej  */
     37        1.1   thorpej 
     38        1.1   thorpej /*
     39        1.1   thorpej  * Timer/clock support for the Intel i80321 I/O processor.
     40        1.1   thorpej  */
     41        1.5     lukem 
     42        1.5     lukem #include <sys/cdefs.h>
     43  1.21.28.1  pgoyette __KERNEL_RCSID(0, "$NetBSD: i80321_timer.c,v 1.21.28.1 2018/07/28 04:37:29 pgoyette Exp $");
     44        1.1   thorpej 
     45        1.8  rearnsha #include "opt_i80321.h"
     46        1.2    briggs 
     47        1.1   thorpej #include <sys/param.h>
     48        1.1   thorpej #include <sys/systm.h>
     49        1.1   thorpej #include <sys/kernel.h>
     50        1.1   thorpej #include <sys/time.h>
     51       1.15     gavan #include <sys/timetc.h>
     52        1.1   thorpej 
     53        1.6   thorpej #include <dev/clock_subr.h>
     54        1.6   thorpej 
     55       1.20    dyoung #include <sys/bus.h>
     56        1.1   thorpej #include <arm/cpufunc.h>
     57        1.1   thorpej 
     58        1.1   thorpej #include <arm/xscale/i80321reg.h>
     59        1.1   thorpej #include <arm/xscale/i80321var.h>
     60        1.1   thorpej 
     61        1.1   thorpej void	(*i80321_hardclock_hook)(void);
     62        1.1   thorpej 
     63        1.8  rearnsha #ifndef COUNTS_PER_SEC
     64        1.1   thorpej #define	COUNTS_PER_SEC		200000000	/* 200MHz */
     65        1.8  rearnsha #endif
     66        1.1   thorpej #define	COUNTS_PER_USEC		(COUNTS_PER_SEC / 1000000)
     67        1.1   thorpej 
     68       1.15     gavan static void tmr1_tc_init(void);
     69       1.15     gavan 
     70        1.1   thorpej static void *clock_ih;
     71        1.1   thorpej 
     72        1.1   thorpej static uint32_t counts_per_hz;
     73        1.1   thorpej 
     74        1.1   thorpej int	clockhandler(void *);
     75        1.1   thorpej 
     76       1.21     joerg __unused static inline uint32_t
     77        1.1   thorpej tmr0_read(void)
     78        1.1   thorpej {
     79        1.1   thorpej 	uint32_t rv;
     80        1.1   thorpej 
     81       1.13     perry 	__asm volatile("mrc p6, 0, %0, c0, c1, 0"
     82        1.1   thorpej 		: "=r" (rv));
     83        1.1   thorpej 	return (rv);
     84        1.1   thorpej }
     85        1.1   thorpej 
     86       1.13     perry static inline void
     87        1.1   thorpej tmr0_write(uint32_t val)
     88        1.1   thorpej {
     89        1.1   thorpej 
     90       1.13     perry 	__asm volatile("mcr p6, 0, %0, c0, c1, 0"
     91        1.1   thorpej 		:
     92        1.1   thorpej 		: "r" (val));
     93        1.1   thorpej }
     94        1.1   thorpej 
     95       1.13     perry static inline uint32_t
     96        1.1   thorpej tcr0_read(void)
     97        1.1   thorpej {
     98        1.1   thorpej 	uint32_t rv;
     99        1.1   thorpej 
    100       1.13     perry 	__asm volatile("mrc p6, 0, %0, c2, c1, 0"
    101        1.1   thorpej 		: "=r" (rv));
    102        1.1   thorpej 	return (rv);
    103        1.1   thorpej }
    104        1.1   thorpej 
    105       1.13     perry static inline void
    106        1.1   thorpej tcr0_write(uint32_t val)
    107        1.1   thorpej {
    108        1.1   thorpej 
    109       1.13     perry 	__asm volatile("mcr p6, 0, %0, c2, c1, 0"
    110        1.1   thorpej 		:
    111        1.1   thorpej 		: "r" (val));
    112        1.1   thorpej }
    113        1.1   thorpej 
    114       1.13     perry static inline void
    115        1.1   thorpej trr0_write(uint32_t val)
    116        1.1   thorpej {
    117        1.1   thorpej 
    118       1.13     perry 	__asm volatile("mcr p6, 0, %0, c4, c1, 0"
    119        1.1   thorpej 		:
    120        1.1   thorpej 		: "r" (val));
    121        1.1   thorpej }
    122        1.1   thorpej 
    123       1.21     joerg __unused static inline uint32_t
    124       1.15     gavan tmr1_read(void)
    125       1.15     gavan {
    126       1.15     gavan 	uint32_t rv;
    127       1.15     gavan 
    128       1.15     gavan 	__asm volatile("mrc p6, 0, %0, c1, c1, 0"
    129       1.15     gavan 		: "=r" (rv));
    130       1.15     gavan 	return (rv);
    131       1.15     gavan }
    132       1.15     gavan 
    133       1.15     gavan static inline void
    134       1.15     gavan tmr1_write(uint32_t val)
    135       1.15     gavan {
    136       1.15     gavan 
    137       1.15     gavan 	__asm volatile("mcr p6, 0, %0, c1, c1, 0"
    138       1.15     gavan 		:
    139       1.15     gavan 		: "r" (val));
    140       1.15     gavan }
    141       1.15     gavan 
    142       1.15     gavan static inline uint32_t
    143       1.15     gavan tcr1_read(void)
    144       1.15     gavan {
    145       1.15     gavan 	uint32_t rv;
    146       1.15     gavan 
    147       1.15     gavan 	__asm volatile("mrc p6, 0, %0, c3, c1, 0"
    148       1.15     gavan 		: "=r" (rv));
    149       1.15     gavan 	return (rv);
    150       1.15     gavan }
    151       1.15     gavan 
    152       1.15     gavan static inline void
    153       1.15     gavan tcr1_write(uint32_t val)
    154       1.15     gavan {
    155       1.15     gavan 
    156       1.15     gavan 	__asm volatile("mcr p6, 0, %0, c3, c1, 0"
    157       1.15     gavan 		:
    158       1.15     gavan 		: "r" (val));
    159       1.15     gavan }
    160       1.15     gavan 
    161       1.15     gavan static inline void
    162       1.15     gavan trr1_write(uint32_t val)
    163       1.15     gavan {
    164       1.15     gavan 
    165       1.15     gavan 	__asm volatile("mcr p6, 0, %0, c5, c1, 0"
    166       1.15     gavan 		:
    167       1.15     gavan 		: "r" (val));
    168       1.15     gavan }
    169       1.15     gavan 
    170       1.13     perry static inline void
    171        1.1   thorpej tisr_write(uint32_t val)
    172        1.1   thorpej {
    173        1.1   thorpej 
    174       1.13     perry 	__asm volatile("mcr p6, 0, %0, c6, c1, 0"
    175        1.1   thorpej 		:
    176        1.1   thorpej 		: "r" (val));
    177        1.1   thorpej }
    178        1.1   thorpej 
    179        1.1   thorpej /*
    180        1.1   thorpej  * i80321_calibrate_delay:
    181        1.1   thorpej  *
    182        1.1   thorpej  *	Calibrate the delay loop.
    183        1.1   thorpej  */
    184        1.1   thorpej void
    185        1.1   thorpej i80321_calibrate_delay(void)
    186        1.1   thorpej {
    187        1.1   thorpej 
    188        1.1   thorpej 	/*
    189        1.1   thorpej 	 * Just use hz=100 for now -- we'll adjust it, if necessary,
    190        1.1   thorpej 	 * in cpu_initclocks().
    191        1.1   thorpej 	 */
    192        1.1   thorpej 	counts_per_hz = COUNTS_PER_SEC / 100;
    193        1.1   thorpej 
    194        1.1   thorpej 	tmr0_write(0);			/* stop timer */
    195        1.1   thorpej 	tisr_write(TISR_TMR0);		/* clear interrupt */
    196        1.1   thorpej 	trr0_write(counts_per_hz);	/* reload value */
    197        1.1   thorpej 	tcr0_write(counts_per_hz);	/* current value */
    198        1.1   thorpej 
    199        1.1   thorpej 	tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
    200        1.1   thorpej }
    201        1.1   thorpej 
    202        1.1   thorpej /*
    203        1.1   thorpej  * cpu_initclocks:
    204        1.1   thorpej  *
    205        1.1   thorpej  *	Initialize the clock and get them going.
    206        1.1   thorpej  */
    207        1.1   thorpej void
    208        1.1   thorpej cpu_initclocks(void)
    209        1.1   thorpej {
    210        1.1   thorpej 	u_int oldirqstate;
    211        1.1   thorpej 
    212        1.1   thorpej 	if (hz < 50 || COUNTS_PER_SEC % hz) {
    213        1.4   thorpej 		aprint_error("Cannot get %d Hz clock; using 100 Hz\n", hz);
    214        1.1   thorpej 		hz = 100;
    215        1.1   thorpej 	}
    216        1.1   thorpej 
    217        1.1   thorpej 	/*
    218        1.1   thorpej 	 * We only have one timer available; stathz and profhz are
    219        1.1   thorpej 	 * always left as 0 (the upper-layer clock code deals with
    220        1.1   thorpej 	 * this situation).
    221        1.1   thorpej 	 */
    222        1.1   thorpej 	if (stathz != 0)
    223        1.4   thorpej 		aprint_error("Cannot get %d Hz statclock\n", stathz);
    224        1.1   thorpej 	stathz = 0;
    225        1.1   thorpej 
    226        1.1   thorpej 	if (profhz != 0)
    227        1.4   thorpej 		aprint_error("Cannot get %d Hz profclock\n", profhz);
    228        1.1   thorpej 	profhz = 0;
    229        1.1   thorpej 
    230        1.1   thorpej 	/* Report the clock frequency. */
    231        1.4   thorpej 	aprint_normal("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz);
    232        1.1   thorpej 
    233        1.1   thorpej 	oldirqstate = disable_interrupts(I32_bit);
    234        1.1   thorpej 
    235        1.1   thorpej 	/* Hook up the clock interrupt handler. */
    236        1.1   thorpej 	clock_ih = i80321_intr_establish(ICU_INT_TMR0, IPL_CLOCK,
    237        1.1   thorpej 	    clockhandler, NULL);
    238        1.1   thorpej 	if (clock_ih == NULL)
    239        1.1   thorpej 		panic("cpu_initclocks: unable to register timer interrupt");
    240        1.2    briggs 
    241        1.1   thorpej 	/* Set up the new clock parameters. */
    242        1.1   thorpej 
    243        1.1   thorpej 	tmr0_write(0);			/* stop timer */
    244        1.1   thorpej 	tisr_write(TISR_TMR0);		/* clear interrupt */
    245        1.1   thorpej 
    246        1.1   thorpej 	counts_per_hz = COUNTS_PER_SEC / hz;
    247        1.1   thorpej 
    248        1.1   thorpej 	trr0_write(counts_per_hz);	/* reload value */
    249        1.1   thorpej 	tcr0_write(counts_per_hz);	/* current value */
    250        1.1   thorpej 
    251        1.1   thorpej 	tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
    252        1.1   thorpej 
    253        1.1   thorpej 	restore_interrupts(oldirqstate);
    254       1.15     gavan 
    255       1.15     gavan 	tmr1_tc_init();
    256        1.1   thorpej }
    257        1.1   thorpej 
    258        1.1   thorpej /*
    259        1.1   thorpej  * setstatclockrate:
    260        1.1   thorpej  *
    261        1.1   thorpej  *	Set the rate of the statistics clock.
    262        1.1   thorpej  *
    263        1.1   thorpej  *	We assume that hz is either stathz or profhz, and that neither
    264        1.1   thorpej  *	will change after being set by cpu_initclocks().  We could
    265        1.1   thorpej  *	recalculate the intervals here, but that would be a pain.
    266        1.1   thorpej  */
    267        1.1   thorpej void
    268       1.11        he setstatclockrate(int newhz)
    269        1.1   thorpej {
    270        1.1   thorpej 
    271        1.1   thorpej 	/*
    272        1.1   thorpej 	 * XXX Use TMR1?
    273        1.1   thorpej 	 */
    274        1.1   thorpej }
    275        1.1   thorpej 
    276       1.15     gavan static inline uint32_t
    277       1.15     gavan tmr1_tc_get(struct timecounter *tch)
    278       1.15     gavan {
    279       1.15     gavan 	return (~tcr1_read());
    280       1.15     gavan }
    281       1.15     gavan 
    282       1.15     gavan void
    283       1.15     gavan tmr1_tc_init(void)
    284       1.15     gavan {
    285       1.15     gavan 	static struct timecounter tmr1_tc = {
    286       1.15     gavan 		.tc_get_timecount = tmr1_tc_get,
    287       1.15     gavan 		.tc_frequency = COUNTS_PER_SEC,
    288       1.15     gavan 		.tc_counter_mask = ~0,
    289       1.15     gavan 		.tc_name = "tmr1_count",
    290       1.15     gavan 		.tc_quality = 100,
    291       1.15     gavan 	};
    292       1.15     gavan 
    293       1.15     gavan 	/* program the tc */
    294       1.15     gavan 	trr1_write(~0);	/* reload value */
    295       1.15     gavan 	tcr1_write(~0);	/* current value */
    296       1.15     gavan 
    297       1.15     gavan 	tmr1_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
    298       1.15     gavan 
    299       1.15     gavan 
    300       1.15     gavan 	trr1_write(~0);
    301       1.15     gavan 	tc_init(&tmr1_tc);
    302       1.15     gavan }
    303       1.15     gavan 
    304        1.1   thorpej /*
    305        1.1   thorpej  * delay:
    306        1.1   thorpej  *
    307        1.1   thorpej  *	Delay for at least N microseconds.
    308        1.1   thorpej  */
    309        1.1   thorpej void
    310        1.1   thorpej delay(u_int n)
    311        1.1   thorpej {
    312        1.1   thorpej 	uint32_t cur, last, delta, usecs;
    313        1.1   thorpej 
    314        1.1   thorpej 	/*
    315        1.1   thorpej 	 * This works by polling the timer and counting the
    316        1.1   thorpej 	 * number of microseconds that go by.
    317        1.1   thorpej 	 */
    318        1.1   thorpej 	last = tcr0_read();
    319        1.1   thorpej 	delta = usecs = 0;
    320        1.1   thorpej 
    321        1.1   thorpej 	while (n > usecs) {
    322        1.1   thorpej 		cur = tcr0_read();
    323        1.1   thorpej 
    324        1.1   thorpej 		/* Check to see if the timer has wrapped around. */
    325        1.1   thorpej 		if (last < cur)
    326        1.1   thorpej 			delta += (last + (counts_per_hz - cur));
    327        1.1   thorpej 		else
    328        1.1   thorpej 			delta += (last - cur);
    329        1.1   thorpej 
    330        1.1   thorpej 		last = cur;
    331        1.1   thorpej 
    332        1.1   thorpej 		if (delta >= COUNTS_PER_USEC) {
    333        1.1   thorpej 			usecs += delta / COUNTS_PER_USEC;
    334        1.1   thorpej 			delta %= COUNTS_PER_USEC;
    335        1.1   thorpej 		}
    336        1.1   thorpej 	}
    337        1.1   thorpej }
    338        1.1   thorpej 
    339        1.1   thorpej /*
    340        1.1   thorpej  * clockhandler:
    341        1.1   thorpej  *
    342        1.1   thorpej  *	Handle the hardclock interrupt.
    343        1.1   thorpej  */
    344        1.1   thorpej int
    345        1.1   thorpej clockhandler(void *arg)
    346        1.1   thorpej {
    347        1.1   thorpej 	struct clockframe *frame = arg;
    348        1.1   thorpej 
    349        1.1   thorpej 	tisr_write(TISR_TMR0);
    350        1.1   thorpej 
    351        1.1   thorpej 	hardclock(frame);
    352        1.1   thorpej 
    353        1.1   thorpej 	if (i80321_hardclock_hook != NULL)
    354        1.1   thorpej 		(*i80321_hardclock_hook)();
    355        1.1   thorpej 
    356        1.1   thorpej 	return (1);
    357        1.1   thorpej }
    358