i80321_timer.c revision 1.1 1 /* $NetBSD: i80321_timer.c,v 1.1 2002/03/27 21:45:48 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Timer/clock support for the Intel i80321 I/O processor.
40 */
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/time.h>
46
47 #include <machine/bus.h>
48 #include <arm/cpufunc.h>
49
50 #include <arm/xscale/i80321reg.h>
51 #include <arm/xscale/i80321var.h>
52
53 void (*i80321_hardclock_hook)(void);
54
55 #define COUNTS_PER_SEC 200000000 /* 200MHz */
56 #define COUNTS_PER_USEC (COUNTS_PER_SEC / 1000000)
57
58 static void *clock_ih;
59
60 static uint32_t counts_per_hz;
61
62 int clockhandler(void *);
63
64 static __inline uint32_t
65 tmr0_read(void)
66 {
67 uint32_t rv;
68
69 __asm __volatile("mrc p6, 0, %0, c0, c1, 0"
70 : "=r" (rv));
71 return (rv);
72 }
73
74 static __inline void
75 tmr0_write(uint32_t val)
76 {
77
78 __asm __volatile("mcr p6, 0, %0, c0, c1, 0"
79 :
80 : "r" (val));
81 }
82
83 static __inline uint32_t
84 tcr0_read(void)
85 {
86 uint32_t rv;
87
88 __asm __volatile("mrc p6, 0, %0, c2, c1, 0"
89 : "=r" (rv));
90 return (rv);
91 }
92
93 static __inline void
94 tcr0_write(uint32_t val)
95 {
96
97 __asm __volatile("mcr p6, 0, %0, c2, c1, 0"
98 :
99 : "r" (val));
100 }
101
102 static __inline void
103 trr0_write(uint32_t val)
104 {
105
106 __asm __volatile("mcr p6, 0, %0, c4, c1, 0"
107 :
108 : "r" (val));
109 }
110
111 static __inline void
112 tisr_write(uint32_t val)
113 {
114
115 __asm __volatile("mcr p6, 0, %0, c6, c1, 0"
116 :
117 : "r" (val));
118 }
119
120 /*
121 * i80321_calibrate_delay:
122 *
123 * Calibrate the delay loop.
124 */
125 void
126 i80321_calibrate_delay(void)
127 {
128
129 /*
130 * Just use hz=100 for now -- we'll adjust it, if necessary,
131 * in cpu_initclocks().
132 */
133 counts_per_hz = COUNTS_PER_SEC / 100;
134
135 tmr0_write(0); /* stop timer */
136 tisr_write(TISR_TMR0); /* clear interrupt */
137 trr0_write(counts_per_hz); /* reload value */
138 tcr0_write(counts_per_hz); /* current value */
139
140 tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
141 }
142
143 /*
144 * cpu_initclocks:
145 *
146 * Initialize the clock and get them going.
147 */
148 void
149 cpu_initclocks(void)
150 {
151 u_int oldirqstate;
152
153 if (hz < 50 || COUNTS_PER_SEC % hz) {
154 printf("Cannot get %d Hz clock; using 100 Hz\n", hz);
155 hz = 100;
156 }
157 tick = 1000000 / hz; /* number of microseconds between interrupts */
158 tickfix = 1000000 - (hz * tick);
159 if (tickfix) {
160 int ftp;
161
162 ftp = min(ffs(tickfix), ffs(hz));
163 tickfix >>= (ftp - 1);
164 tickfixinterval = hz >> (ftp - 1);
165 }
166
167 /*
168 * We only have one timer available; stathz and profhz are
169 * always left as 0 (the upper-layer clock code deals with
170 * this situation).
171 */
172 if (stathz != 0)
173 printf("Cannot get %d Hz statclock\n", stathz);
174 stathz = 0;
175
176 if (profhz != 0)
177 printf("Cannot get %d Hz profclock\n", profhz);
178 profhz = 0;
179
180 /* Report the clock frequency. */
181 printf("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz);
182
183 oldirqstate = disable_interrupts(I32_bit);
184
185 /* Hook up the clock interrupt handler. */
186 clock_ih = i80321_intr_establish(ICU_INT_TMR0, IPL_CLOCK,
187 clockhandler, NULL);
188 if (clock_ih == NULL)
189 panic("cpu_initclocks: unable to register timer interrupt");
190
191 /* Set up the new clock parameters. */
192
193 tmr0_write(0); /* stop timer */
194 tisr_write(TISR_TMR0); /* clear interrupt */
195
196 counts_per_hz = COUNTS_PER_SEC / hz;
197
198 trr0_write(counts_per_hz); /* reload value */
199 tcr0_write(counts_per_hz); /* current value */
200
201 tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
202
203 restore_interrupts(oldirqstate);
204 }
205
206 /*
207 * setstatclockrate:
208 *
209 * Set the rate of the statistics clock.
210 *
211 * We assume that hz is either stathz or profhz, and that neither
212 * will change after being set by cpu_initclocks(). We could
213 * recalculate the intervals here, but that would be a pain.
214 */
215 void
216 setstatclockrate(int hz)
217 {
218
219 /*
220 * XXX Use TMR1?
221 */
222 }
223
224 /*
225 * microtime:
226 *
227 * Fill in the specified timeval struct with the current time
228 * accurate to the microsecond.
229 */
230 void
231 microtime(struct timeval *tvp)
232 {
233 static struct timeval lasttv;
234 u_int oldirqstate;
235 uint32_t counts;
236
237 oldirqstate = disable_interrupts(I32_bit);
238
239 counts = counts_per_hz - tcr0_read();
240
241 /* Fill in the timeval struct. */
242 *tvp = time;
243 tvp->tv_usec += (counts / COUNTS_PER_USEC);
244
245 /* Make sure microseconds doesn't overflow. */
246 while (tvp->tv_usec >= 1000000) {
247 tvp->tv_usec -= 1000000;
248 tvp->tv_sec++;
249 }
250
251 /* Make sure the time has advanced. */
252 if (tvp->tv_sec == lasttv.tv_sec &&
253 tvp->tv_usec <= lasttv.tv_usec) {
254 tvp->tv_usec = lasttv.tv_usec + 1;
255 if (tvp->tv_usec >= 1000000) {
256 tvp->tv_usec -= 1000000;
257 tvp->tv_sec++;
258 }
259 }
260
261 lasttv = *tvp;
262
263 restore_interrupts(oldirqstate);
264 }
265
266 /*
267 * delay:
268 *
269 * Delay for at least N microseconds.
270 */
271 void
272 delay(u_int n)
273 {
274 uint32_t cur, last, delta, usecs;
275
276 /*
277 * This works by polling the timer and counting the
278 * number of microseconds that go by.
279 */
280 last = tcr0_read();
281 delta = usecs = 0;
282
283 while (n > usecs) {
284 cur = tcr0_read();
285
286 /* Check to see if the timer has wrapped around. */
287 if (last < cur)
288 delta += (last + (counts_per_hz - cur));
289 else
290 delta += (last - cur);
291
292 last = cur;
293
294 if (delta >= COUNTS_PER_USEC) {
295 usecs += delta / COUNTS_PER_USEC;
296 delta %= COUNTS_PER_USEC;
297 }
298 }
299 }
300
301 /*
302 * inittodr:
303 *
304 * Initialize time from the time-of-day register.
305 */
306 void
307 inittodr(time_t base)
308 {
309
310 time.tv_sec = base;
311 time.tv_usec = 0;
312 }
313
314 /*
315 * resettodr:
316 *
317 * Reset the time-of-day register with the current time.
318 */
319 void
320 resettodr(void)
321 {
322 }
323
324 /*
325 * clockhandler:
326 *
327 * Handle the hardclock interrupt.
328 */
329 int
330 clockhandler(void *arg)
331 {
332 struct clockframe *frame = arg;
333
334 tisr_write(TISR_TMR0);
335
336 hardclock(frame);
337
338 if (i80321_hardclock_hook != NULL)
339 (*i80321_hardclock_hook)();
340
341 return (1);
342 }
343