Home | History | Annotate | Line # | Download | only in xscale
i80321_timer.c revision 1.1
      1 /*	$NetBSD: i80321_timer.c,v 1.1 2002/03/27 21:45:48 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Timer/clock support for the Intel i80321 I/O processor.
     40  */
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/time.h>
     46 
     47 #include <machine/bus.h>
     48 #include <arm/cpufunc.h>
     49 
     50 #include <arm/xscale/i80321reg.h>
     51 #include <arm/xscale/i80321var.h>
     52 
     53 void	(*i80321_hardclock_hook)(void);
     54 
     55 #define	COUNTS_PER_SEC		200000000	/* 200MHz */
     56 #define	COUNTS_PER_USEC		(COUNTS_PER_SEC / 1000000)
     57 
     58 static void *clock_ih;
     59 
     60 static uint32_t counts_per_hz;
     61 
     62 int	clockhandler(void *);
     63 
     64 static __inline uint32_t
     65 tmr0_read(void)
     66 {
     67 	uint32_t rv;
     68 
     69 	__asm __volatile("mrc p6, 0, %0, c0, c1, 0"
     70 		: "=r" (rv));
     71 	return (rv);
     72 }
     73 
     74 static __inline void
     75 tmr0_write(uint32_t val)
     76 {
     77 
     78 	__asm __volatile("mcr p6, 0, %0, c0, c1, 0"
     79 		:
     80 		: "r" (val));
     81 }
     82 
     83 static __inline uint32_t
     84 tcr0_read(void)
     85 {
     86 	uint32_t rv;
     87 
     88 	__asm __volatile("mrc p6, 0, %0, c2, c1, 0"
     89 		: "=r" (rv));
     90 	return (rv);
     91 }
     92 
     93 static __inline void
     94 tcr0_write(uint32_t val)
     95 {
     96 
     97 	__asm __volatile("mcr p6, 0, %0, c2, c1, 0"
     98 		:
     99 		: "r" (val));
    100 }
    101 
    102 static __inline void
    103 trr0_write(uint32_t val)
    104 {
    105 
    106 	__asm __volatile("mcr p6, 0, %0, c4, c1, 0"
    107 		:
    108 		: "r" (val));
    109 }
    110 
    111 static __inline void
    112 tisr_write(uint32_t val)
    113 {
    114 
    115 	__asm __volatile("mcr p6, 0, %0, c6, c1, 0"
    116 		:
    117 		: "r" (val));
    118 }
    119 
    120 /*
    121  * i80321_calibrate_delay:
    122  *
    123  *	Calibrate the delay loop.
    124  */
    125 void
    126 i80321_calibrate_delay(void)
    127 {
    128 
    129 	/*
    130 	 * Just use hz=100 for now -- we'll adjust it, if necessary,
    131 	 * in cpu_initclocks().
    132 	 */
    133 	counts_per_hz = COUNTS_PER_SEC / 100;
    134 
    135 	tmr0_write(0);			/* stop timer */
    136 	tisr_write(TISR_TMR0);		/* clear interrupt */
    137 	trr0_write(counts_per_hz);	/* reload value */
    138 	tcr0_write(counts_per_hz);	/* current value */
    139 
    140 	tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
    141 }
    142 
    143 /*
    144  * cpu_initclocks:
    145  *
    146  *	Initialize the clock and get them going.
    147  */
    148 void
    149 cpu_initclocks(void)
    150 {
    151 	u_int oldirqstate;
    152 
    153 	if (hz < 50 || COUNTS_PER_SEC % hz) {
    154 		printf("Cannot get %d Hz clock; using 100 Hz\n", hz);
    155 		hz = 100;
    156 	}
    157 	tick = 1000000 / hz;	/* number of microseconds between interrupts */
    158 	tickfix = 1000000 - (hz * tick);
    159 	if (tickfix) {
    160 		int ftp;
    161 
    162 		ftp = min(ffs(tickfix), ffs(hz));
    163 		tickfix >>= (ftp - 1);
    164 		tickfixinterval = hz >> (ftp - 1);
    165 	}
    166 
    167 	/*
    168 	 * We only have one timer available; stathz and profhz are
    169 	 * always left as 0 (the upper-layer clock code deals with
    170 	 * this situation).
    171 	 */
    172 	if (stathz != 0)
    173 		printf("Cannot get %d Hz statclock\n", stathz);
    174 	stathz = 0;
    175 
    176 	if (profhz != 0)
    177 		printf("Cannot get %d Hz profclock\n", profhz);
    178 	profhz = 0;
    179 
    180 	/* Report the clock frequency. */
    181 	printf("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz);
    182 
    183 	oldirqstate = disable_interrupts(I32_bit);
    184 
    185 	/* Hook up the clock interrupt handler. */
    186 	clock_ih = i80321_intr_establish(ICU_INT_TMR0, IPL_CLOCK,
    187 	    clockhandler, NULL);
    188 	if (clock_ih == NULL)
    189 		panic("cpu_initclocks: unable to register timer interrupt");
    190 
    191 	/* Set up the new clock parameters. */
    192 
    193 	tmr0_write(0);			/* stop timer */
    194 	tisr_write(TISR_TMR0);		/* clear interrupt */
    195 
    196 	counts_per_hz = COUNTS_PER_SEC / hz;
    197 
    198 	trr0_write(counts_per_hz);	/* reload value */
    199 	tcr0_write(counts_per_hz);	/* current value */
    200 
    201 	tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
    202 
    203 	restore_interrupts(oldirqstate);
    204 }
    205 
    206 /*
    207  * setstatclockrate:
    208  *
    209  *	Set the rate of the statistics clock.
    210  *
    211  *	We assume that hz is either stathz or profhz, and that neither
    212  *	will change after being set by cpu_initclocks().  We could
    213  *	recalculate the intervals here, but that would be a pain.
    214  */
    215 void
    216 setstatclockrate(int hz)
    217 {
    218 
    219 	/*
    220 	 * XXX Use TMR1?
    221 	 */
    222 }
    223 
    224 /*
    225  * microtime:
    226  *
    227  *	Fill in the specified timeval struct with the current time
    228  *	accurate to the microsecond.
    229  */
    230 void
    231 microtime(struct timeval *tvp)
    232 {
    233 	static struct timeval lasttv;
    234 	u_int oldirqstate;
    235 	uint32_t counts;
    236 
    237 	oldirqstate = disable_interrupts(I32_bit);
    238 
    239 	counts = counts_per_hz - tcr0_read();
    240 
    241 	/* Fill in the timeval struct. */
    242 	*tvp = time;
    243 	tvp->tv_usec += (counts / COUNTS_PER_USEC);
    244 
    245 	/* Make sure microseconds doesn't overflow. */
    246 	while (tvp->tv_usec >= 1000000) {
    247 		tvp->tv_usec -= 1000000;
    248 		tvp->tv_sec++;
    249 	}
    250 
    251 	/* Make sure the time has advanced. */
    252 	if (tvp->tv_sec == lasttv.tv_sec &&
    253 	    tvp->tv_usec <= lasttv.tv_usec) {
    254 		tvp->tv_usec = lasttv.tv_usec + 1;
    255 		if (tvp->tv_usec >= 1000000) {
    256 			tvp->tv_usec -= 1000000;
    257 			tvp->tv_sec++;
    258 		}
    259 	}
    260 
    261 	lasttv = *tvp;
    262 
    263 	restore_interrupts(oldirqstate);
    264 }
    265 
    266 /*
    267  * delay:
    268  *
    269  *	Delay for at least N microseconds.
    270  */
    271 void
    272 delay(u_int n)
    273 {
    274 	uint32_t cur, last, delta, usecs;
    275 
    276 	/*
    277 	 * This works by polling the timer and counting the
    278 	 * number of microseconds that go by.
    279 	 */
    280 	last = tcr0_read();
    281 	delta = usecs = 0;
    282 
    283 	while (n > usecs) {
    284 		cur = tcr0_read();
    285 
    286 		/* Check to see if the timer has wrapped around. */
    287 		if (last < cur)
    288 			delta += (last + (counts_per_hz - cur));
    289 		else
    290 			delta += (last - cur);
    291 
    292 		last = cur;
    293 
    294 		if (delta >= COUNTS_PER_USEC) {
    295 			usecs += delta / COUNTS_PER_USEC;
    296 			delta %= COUNTS_PER_USEC;
    297 		}
    298 	}
    299 }
    300 
    301 /*
    302  * inittodr:
    303  *
    304  *	Initialize time from the time-of-day register.
    305  */
    306 void
    307 inittodr(time_t base)
    308 {
    309 
    310 	time.tv_sec = base;
    311 	time.tv_usec = 0;
    312 }
    313 
    314 /*
    315  * resettodr:
    316  *
    317  *	Reset the time-of-day register with the current time.
    318  */
    319 void
    320 resettodr(void)
    321 {
    322 }
    323 
    324 /*
    325  * clockhandler:
    326  *
    327  *	Handle the hardclock interrupt.
    328  */
    329 int
    330 clockhandler(void *arg)
    331 {
    332 	struct clockframe *frame = arg;
    333 
    334 	tisr_write(TISR_TMR0);
    335 
    336 	hardclock(frame);
    337 
    338 	if (i80321_hardclock_hook != NULL)
    339 		(*i80321_hardclock_hook)();
    340 
    341 	return (1);
    342 }
    343