Home | History | Annotate | Line # | Download | only in xscale
i80321_timer.c revision 1.17
      1 /*	$NetBSD: i80321_timer.c,v 1.17 2007/12/03 15:33:20 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Timer/clock support for the Intel i80321 I/O processor.
     40  */
     41 
     42 #include <sys/cdefs.h>
     43 __KERNEL_RCSID(0, "$NetBSD: i80321_timer.c,v 1.17 2007/12/03 15:33:20 ad Exp $");
     44 
     45 #include "opt_perfctrs.h"
     46 #include "opt_i80321.h"
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/kernel.h>
     51 #include <sys/time.h>
     52 #include <sys/timetc.h>
     53 
     54 #include <dev/clock_subr.h>
     55 
     56 #include <machine/bus.h>
     57 #include <arm/cpufunc.h>
     58 
     59 #include <arm/xscale/i80321reg.h>
     60 #include <arm/xscale/i80321var.h>
     61 
     62 #include <arm/xscale/xscalevar.h>
     63 
     64 void	(*i80321_hardclock_hook)(void);
     65 
     66 #ifndef COUNTS_PER_SEC
     67 #define	COUNTS_PER_SEC		200000000	/* 200MHz */
     68 #endif
     69 #define	COUNTS_PER_USEC		(COUNTS_PER_SEC / 1000000)
     70 
     71 #ifdef __HAVE_TIMECOUNTER
     72 static void tmr1_tc_init(void);
     73 #endif
     74 
     75 static void *clock_ih;
     76 
     77 static uint32_t counts_per_hz;
     78 
     79 int	clockhandler(void *);
     80 
     81 static inline uint32_t
     82 tmr0_read(void)
     83 {
     84 	uint32_t rv;
     85 
     86 	__asm volatile("mrc p6, 0, %0, c0, c1, 0"
     87 		: "=r" (rv));
     88 	return (rv);
     89 }
     90 
     91 static inline void
     92 tmr0_write(uint32_t val)
     93 {
     94 
     95 	__asm volatile("mcr p6, 0, %0, c0, c1, 0"
     96 		:
     97 		: "r" (val));
     98 }
     99 
    100 static inline uint32_t
    101 tcr0_read(void)
    102 {
    103 	uint32_t rv;
    104 
    105 	__asm volatile("mrc p6, 0, %0, c2, c1, 0"
    106 		: "=r" (rv));
    107 	return (rv);
    108 }
    109 
    110 static inline void
    111 tcr0_write(uint32_t val)
    112 {
    113 
    114 	__asm volatile("mcr p6, 0, %0, c2, c1, 0"
    115 		:
    116 		: "r" (val));
    117 }
    118 
    119 static inline void
    120 trr0_write(uint32_t val)
    121 {
    122 
    123 	__asm volatile("mcr p6, 0, %0, c4, c1, 0"
    124 		:
    125 		: "r" (val));
    126 }
    127 
    128 #ifdef __HAVE_TIMECOUNTER
    129 
    130 static inline uint32_t
    131 tmr1_read(void)
    132 {
    133 	uint32_t rv;
    134 
    135 	__asm volatile("mrc p6, 0, %0, c1, c1, 0"
    136 		: "=r" (rv));
    137 	return (rv);
    138 }
    139 
    140 static inline void
    141 tmr1_write(uint32_t val)
    142 {
    143 
    144 	__asm volatile("mcr p6, 0, %0, c1, c1, 0"
    145 		:
    146 		: "r" (val));
    147 }
    148 
    149 static inline uint32_t
    150 tcr1_read(void)
    151 {
    152 	uint32_t rv;
    153 
    154 	__asm volatile("mrc p6, 0, %0, c3, c1, 0"
    155 		: "=r" (rv));
    156 	return (rv);
    157 }
    158 
    159 static inline void
    160 tcr1_write(uint32_t val)
    161 {
    162 
    163 	__asm volatile("mcr p6, 0, %0, c3, c1, 0"
    164 		:
    165 		: "r" (val));
    166 }
    167 
    168 static inline void
    169 trr1_write(uint32_t val)
    170 {
    171 
    172 	__asm volatile("mcr p6, 0, %0, c5, c1, 0"
    173 		:
    174 		: "r" (val));
    175 }
    176 
    177 #endif /* __HAVE_TIMECOUNTER */
    178 
    179 static inline void
    180 tisr_write(uint32_t val)
    181 {
    182 
    183 	__asm volatile("mcr p6, 0, %0, c6, c1, 0"
    184 		:
    185 		: "r" (val));
    186 }
    187 
    188 /*
    189  * i80321_calibrate_delay:
    190  *
    191  *	Calibrate the delay loop.
    192  */
    193 void
    194 i80321_calibrate_delay(void)
    195 {
    196 
    197 	/*
    198 	 * Just use hz=100 for now -- we'll adjust it, if necessary,
    199 	 * in cpu_initclocks().
    200 	 */
    201 	counts_per_hz = COUNTS_PER_SEC / 100;
    202 
    203 	tmr0_write(0);			/* stop timer */
    204 	tisr_write(TISR_TMR0);		/* clear interrupt */
    205 	trr0_write(counts_per_hz);	/* reload value */
    206 	tcr0_write(counts_per_hz);	/* current value */
    207 
    208 	tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
    209 }
    210 
    211 /*
    212  * cpu_initclocks:
    213  *
    214  *	Initialize the clock and get them going.
    215  */
    216 void
    217 cpu_initclocks(void)
    218 {
    219 	u_int oldirqstate;
    220 #if defined(PERFCTRS)
    221 	void *pmu_ih;
    222 #endif
    223 
    224 	if (hz < 50 || COUNTS_PER_SEC % hz) {
    225 		aprint_error("Cannot get %d Hz clock; using 100 Hz\n", hz);
    226 		hz = 100;
    227 	}
    228 #ifndef __HAVE_TIMECOUNTER
    229 	tick = 1000000 / hz;	/* number of microseconds between interrupts */
    230 	tickfix = 1000000 - (hz * tick);
    231 	if (tickfix) {
    232 		int ftp;
    233 
    234 		ftp = min(ffs(tickfix), ffs(hz));
    235 		tickfix >>= (ftp - 1);
    236 		tickfixinterval = hz >> (ftp - 1);
    237 	}
    238 #endif
    239 
    240 	/*
    241 	 * We only have one timer available; stathz and profhz are
    242 	 * always left as 0 (the upper-layer clock code deals with
    243 	 * this situation).
    244 	 */
    245 	if (stathz != 0)
    246 		aprint_error("Cannot get %d Hz statclock\n", stathz);
    247 	stathz = 0;
    248 
    249 	if (profhz != 0)
    250 		aprint_error("Cannot get %d Hz profclock\n", profhz);
    251 	profhz = 0;
    252 
    253 	/* Report the clock frequency. */
    254 	aprint_normal("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz);
    255 
    256 	oldirqstate = disable_interrupts(I32_bit);
    257 
    258 	/* Hook up the clock interrupt handler. */
    259 	clock_ih = i80321_intr_establish(ICU_INT_TMR0, IPL_CLOCK,
    260 	    clockhandler, NULL);
    261 	if (clock_ih == NULL)
    262 		panic("cpu_initclocks: unable to register timer interrupt");
    263 
    264 #if defined(PERFCTRS)
    265 	pmu_ih = i80321_intr_establish(ICU_INT_PMU, IPL_HIGH,
    266 	    xscale_pmc_dispatch, NULL);
    267 	if (pmu_ih == NULL)
    268 		panic("cpu_initclocks: unable to register timer interrupt");
    269 #endif
    270 
    271 	/* Set up the new clock parameters. */
    272 
    273 	tmr0_write(0);			/* stop timer */
    274 	tisr_write(TISR_TMR0);		/* clear interrupt */
    275 
    276 	counts_per_hz = COUNTS_PER_SEC / hz;
    277 
    278 	trr0_write(counts_per_hz);	/* reload value */
    279 	tcr0_write(counts_per_hz);	/* current value */
    280 
    281 	tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
    282 
    283 	restore_interrupts(oldirqstate);
    284 
    285 #ifdef	__HAVE_TIMECOUNTER
    286 	tmr1_tc_init();
    287 #endif
    288 }
    289 
    290 /*
    291  * setstatclockrate:
    292  *
    293  *	Set the rate of the statistics clock.
    294  *
    295  *	We assume that hz is either stathz or profhz, and that neither
    296  *	will change after being set by cpu_initclocks().  We could
    297  *	recalculate the intervals here, but that would be a pain.
    298  */
    299 void
    300 setstatclockrate(int newhz)
    301 {
    302 
    303 	/*
    304 	 * XXX Use TMR1?
    305 	 */
    306 }
    307 
    308 #ifndef __HAVE_TIMECOUNTER
    309 
    310 /*
    311  * microtime:
    312  *
    313  *	Fill in the specified timeval struct with the current time
    314  *	accurate to the microsecond.
    315  */
    316 void
    317 microtime(struct timeval *tvp)
    318 {
    319 	static struct timeval lasttv;
    320 	u_int oldirqstate;
    321 	uint32_t counts;
    322 
    323 	oldirqstate = disable_interrupts(I32_bit);
    324 
    325 	counts = counts_per_hz - tcr0_read();
    326 
    327 	/* Fill in the timeval struct. */
    328 	*tvp = time;
    329 	tvp->tv_usec += (counts / COUNTS_PER_USEC);
    330 
    331 	/* Make sure microseconds doesn't overflow. */
    332 	while (tvp->tv_usec >= 1000000) {
    333 		tvp->tv_usec -= 1000000;
    334 		tvp->tv_sec++;
    335 	}
    336 
    337 	/* Make sure the time has advanced. */
    338 	if (tvp->tv_sec == lasttv.tv_sec &&
    339 	    tvp->tv_usec <= lasttv.tv_usec) {
    340 		tvp->tv_usec = lasttv.tv_usec + 1;
    341 		if (tvp->tv_usec >= 1000000) {
    342 			tvp->tv_usec -= 1000000;
    343 			tvp->tv_sec++;
    344 		}
    345 	}
    346 
    347 	lasttv = *tvp;
    348 
    349 	restore_interrupts(oldirqstate);
    350 }
    351 
    352 
    353 #else
    354 
    355 static inline uint32_t
    356 tmr1_tc_get(struct timecounter *tch)
    357 {
    358 	return (~tcr1_read());
    359 }
    360 
    361 void
    362 tmr1_tc_init(void)
    363 {
    364 	static struct timecounter tmr1_tc = {
    365 		.tc_get_timecount = tmr1_tc_get,
    366 		.tc_frequency = COUNTS_PER_SEC,
    367 		.tc_counter_mask = ~0,
    368 		.tc_name = "tmr1_count",
    369 		.tc_quality = 100,
    370 	};
    371 
    372 	/* program the tc */
    373 	trr1_write(~0);	/* reload value */
    374 	tcr1_write(~0);	/* current value */
    375 
    376 	tmr1_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
    377 
    378 
    379 	trr1_write(~0);
    380 	tc_init(&tmr1_tc);
    381 }
    382 #endif
    383 
    384 /*
    385  * delay:
    386  *
    387  *	Delay for at least N microseconds.
    388  */
    389 void
    390 delay(u_int n)
    391 {
    392 	uint32_t cur, last, delta, usecs;
    393 
    394 	/*
    395 	 * This works by polling the timer and counting the
    396 	 * number of microseconds that go by.
    397 	 */
    398 	last = tcr0_read();
    399 	delta = usecs = 0;
    400 
    401 	while (n > usecs) {
    402 		cur = tcr0_read();
    403 
    404 		/* Check to see if the timer has wrapped around. */
    405 		if (last < cur)
    406 			delta += (last + (counts_per_hz - cur));
    407 		else
    408 			delta += (last - cur);
    409 
    410 		last = cur;
    411 
    412 		if (delta >= COUNTS_PER_USEC) {
    413 			usecs += delta / COUNTS_PER_USEC;
    414 			delta %= COUNTS_PER_USEC;
    415 		}
    416 	}
    417 }
    418 
    419 /*
    420  * clockhandler:
    421  *
    422  *	Handle the hardclock interrupt.
    423  */
    424 int
    425 clockhandler(void *arg)
    426 {
    427 	struct clockframe *frame = arg;
    428 
    429 	tisr_write(TISR_TMR0);
    430 
    431 	hardclock(frame);
    432 
    433 	if (i80321_hardclock_hook != NULL)
    434 		(*i80321_hardclock_hook)();
    435 
    436 	return (1);
    437 }
    438