Home | History | Annotate | Line # | Download | only in xscale
i80321_timer.c revision 1.18.6.1
      1 /*	$NetBSD: i80321_timer.c,v 1.18.6.1 2008/06/02 13:21:56 mjf Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Timer/clock support for the Intel i80321 I/O processor.
     40  */
     41 
     42 #include <sys/cdefs.h>
     43 __KERNEL_RCSID(0, "$NetBSD: i80321_timer.c,v 1.18.6.1 2008/06/02 13:21:56 mjf Exp $");
     44 
     45 #include "opt_perfctrs.h"
     46 #include "opt_i80321.h"
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/kernel.h>
     51 #include <sys/time.h>
     52 #include <sys/timetc.h>
     53 
     54 #include <dev/clock_subr.h>
     55 
     56 #include <machine/bus.h>
     57 #include <arm/cpufunc.h>
     58 
     59 #include <arm/xscale/i80321reg.h>
     60 #include <arm/xscale/i80321var.h>
     61 
     62 #include <arm/xscale/xscalevar.h>
     63 
     64 void	(*i80321_hardclock_hook)(void);
     65 
     66 #ifndef COUNTS_PER_SEC
     67 #define	COUNTS_PER_SEC		200000000	/* 200MHz */
     68 #endif
     69 #define	COUNTS_PER_USEC		(COUNTS_PER_SEC / 1000000)
     70 
     71 static void tmr1_tc_init(void);
     72 
     73 static void *clock_ih;
     74 
     75 static uint32_t counts_per_hz;
     76 
     77 int	clockhandler(void *);
     78 
     79 static inline uint32_t
     80 tmr0_read(void)
     81 {
     82 	uint32_t rv;
     83 
     84 	__asm volatile("mrc p6, 0, %0, c0, c1, 0"
     85 		: "=r" (rv));
     86 	return (rv);
     87 }
     88 
     89 static inline void
     90 tmr0_write(uint32_t val)
     91 {
     92 
     93 	__asm volatile("mcr p6, 0, %0, c0, c1, 0"
     94 		:
     95 		: "r" (val));
     96 }
     97 
     98 static inline uint32_t
     99 tcr0_read(void)
    100 {
    101 	uint32_t rv;
    102 
    103 	__asm volatile("mrc p6, 0, %0, c2, c1, 0"
    104 		: "=r" (rv));
    105 	return (rv);
    106 }
    107 
    108 static inline void
    109 tcr0_write(uint32_t val)
    110 {
    111 
    112 	__asm volatile("mcr p6, 0, %0, c2, c1, 0"
    113 		:
    114 		: "r" (val));
    115 }
    116 
    117 static inline void
    118 trr0_write(uint32_t val)
    119 {
    120 
    121 	__asm volatile("mcr p6, 0, %0, c4, c1, 0"
    122 		:
    123 		: "r" (val));
    124 }
    125 
    126 static inline uint32_t
    127 tmr1_read(void)
    128 {
    129 	uint32_t rv;
    130 
    131 	__asm volatile("mrc p6, 0, %0, c1, c1, 0"
    132 		: "=r" (rv));
    133 	return (rv);
    134 }
    135 
    136 static inline void
    137 tmr1_write(uint32_t val)
    138 {
    139 
    140 	__asm volatile("mcr p6, 0, %0, c1, c1, 0"
    141 		:
    142 		: "r" (val));
    143 }
    144 
    145 static inline uint32_t
    146 tcr1_read(void)
    147 {
    148 	uint32_t rv;
    149 
    150 	__asm volatile("mrc p6, 0, %0, c3, c1, 0"
    151 		: "=r" (rv));
    152 	return (rv);
    153 }
    154 
    155 static inline void
    156 tcr1_write(uint32_t val)
    157 {
    158 
    159 	__asm volatile("mcr p6, 0, %0, c3, c1, 0"
    160 		:
    161 		: "r" (val));
    162 }
    163 
    164 static inline void
    165 trr1_write(uint32_t val)
    166 {
    167 
    168 	__asm volatile("mcr p6, 0, %0, c5, c1, 0"
    169 		:
    170 		: "r" (val));
    171 }
    172 
    173 static inline void
    174 tisr_write(uint32_t val)
    175 {
    176 
    177 	__asm volatile("mcr p6, 0, %0, c6, c1, 0"
    178 		:
    179 		: "r" (val));
    180 }
    181 
    182 /*
    183  * i80321_calibrate_delay:
    184  *
    185  *	Calibrate the delay loop.
    186  */
    187 void
    188 i80321_calibrate_delay(void)
    189 {
    190 
    191 	/*
    192 	 * Just use hz=100 for now -- we'll adjust it, if necessary,
    193 	 * in cpu_initclocks().
    194 	 */
    195 	counts_per_hz = COUNTS_PER_SEC / 100;
    196 
    197 	tmr0_write(0);			/* stop timer */
    198 	tisr_write(TISR_TMR0);		/* clear interrupt */
    199 	trr0_write(counts_per_hz);	/* reload value */
    200 	tcr0_write(counts_per_hz);	/* current value */
    201 
    202 	tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
    203 }
    204 
    205 /*
    206  * cpu_initclocks:
    207  *
    208  *	Initialize the clock and get them going.
    209  */
    210 void
    211 cpu_initclocks(void)
    212 {
    213 	u_int oldirqstate;
    214 #if defined(PERFCTRS)
    215 	void *pmu_ih;
    216 #endif
    217 
    218 	if (hz < 50 || COUNTS_PER_SEC % hz) {
    219 		aprint_error("Cannot get %d Hz clock; using 100 Hz\n", hz);
    220 		hz = 100;
    221 	}
    222 
    223 	/*
    224 	 * We only have one timer available; stathz and profhz are
    225 	 * always left as 0 (the upper-layer clock code deals with
    226 	 * this situation).
    227 	 */
    228 	if (stathz != 0)
    229 		aprint_error("Cannot get %d Hz statclock\n", stathz);
    230 	stathz = 0;
    231 
    232 	if (profhz != 0)
    233 		aprint_error("Cannot get %d Hz profclock\n", profhz);
    234 	profhz = 0;
    235 
    236 	/* Report the clock frequency. */
    237 	aprint_normal("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz);
    238 
    239 	oldirqstate = disable_interrupts(I32_bit);
    240 
    241 	/* Hook up the clock interrupt handler. */
    242 	clock_ih = i80321_intr_establish(ICU_INT_TMR0, IPL_CLOCK,
    243 	    clockhandler, NULL);
    244 	if (clock_ih == NULL)
    245 		panic("cpu_initclocks: unable to register timer interrupt");
    246 
    247 #if defined(PERFCTRS)
    248 	pmu_ih = i80321_intr_establish(ICU_INT_PMU, IPL_HIGH,
    249 	    xscale_pmc_dispatch, NULL);
    250 	if (pmu_ih == NULL)
    251 		panic("cpu_initclocks: unable to register timer interrupt");
    252 #endif
    253 
    254 	/* Set up the new clock parameters. */
    255 
    256 	tmr0_write(0);			/* stop timer */
    257 	tisr_write(TISR_TMR0);		/* clear interrupt */
    258 
    259 	counts_per_hz = COUNTS_PER_SEC / hz;
    260 
    261 	trr0_write(counts_per_hz);	/* reload value */
    262 	tcr0_write(counts_per_hz);	/* current value */
    263 
    264 	tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
    265 
    266 	restore_interrupts(oldirqstate);
    267 
    268 	tmr1_tc_init();
    269 }
    270 
    271 /*
    272  * setstatclockrate:
    273  *
    274  *	Set the rate of the statistics clock.
    275  *
    276  *	We assume that hz is either stathz or profhz, and that neither
    277  *	will change after being set by cpu_initclocks().  We could
    278  *	recalculate the intervals here, but that would be a pain.
    279  */
    280 void
    281 setstatclockrate(int newhz)
    282 {
    283 
    284 	/*
    285 	 * XXX Use TMR1?
    286 	 */
    287 }
    288 
    289 static inline uint32_t
    290 tmr1_tc_get(struct timecounter *tch)
    291 {
    292 	return (~tcr1_read());
    293 }
    294 
    295 void
    296 tmr1_tc_init(void)
    297 {
    298 	static struct timecounter tmr1_tc = {
    299 		.tc_get_timecount = tmr1_tc_get,
    300 		.tc_frequency = COUNTS_PER_SEC,
    301 		.tc_counter_mask = ~0,
    302 		.tc_name = "tmr1_count",
    303 		.tc_quality = 100,
    304 	};
    305 
    306 	/* program the tc */
    307 	trr1_write(~0);	/* reload value */
    308 	tcr1_write(~0);	/* current value */
    309 
    310 	tmr1_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
    311 
    312 
    313 	trr1_write(~0);
    314 	tc_init(&tmr1_tc);
    315 }
    316 
    317 /*
    318  * delay:
    319  *
    320  *	Delay for at least N microseconds.
    321  */
    322 void
    323 delay(u_int n)
    324 {
    325 	uint32_t cur, last, delta, usecs;
    326 
    327 	/*
    328 	 * This works by polling the timer and counting the
    329 	 * number of microseconds that go by.
    330 	 */
    331 	last = tcr0_read();
    332 	delta = usecs = 0;
    333 
    334 	while (n > usecs) {
    335 		cur = tcr0_read();
    336 
    337 		/* Check to see if the timer has wrapped around. */
    338 		if (last < cur)
    339 			delta += (last + (counts_per_hz - cur));
    340 		else
    341 			delta += (last - cur);
    342 
    343 		last = cur;
    344 
    345 		if (delta >= COUNTS_PER_USEC) {
    346 			usecs += delta / COUNTS_PER_USEC;
    347 			delta %= COUNTS_PER_USEC;
    348 		}
    349 	}
    350 }
    351 
    352 /*
    353  * clockhandler:
    354  *
    355  *	Handle the hardclock interrupt.
    356  */
    357 int
    358 clockhandler(void *arg)
    359 {
    360 	struct clockframe *frame = arg;
    361 
    362 	tisr_write(TISR_TMR0);
    363 
    364 	hardclock(frame);
    365 
    366 	if (i80321_hardclock_hook != NULL)
    367 		(*i80321_hardclock_hook)();
    368 
    369 	return (1);
    370 }
    371