i80321_timer.c revision 1.20.2.1 1 /* $NetBSD: i80321_timer.c,v 1.20.2.1 2014/05/22 11:39:34 yamt Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Timer/clock support for the Intel i80321 I/O processor.
40 */
41
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: i80321_timer.c,v 1.20.2.1 2014/05/22 11:39:34 yamt Exp $");
44
45 #include "opt_perfctrs.h"
46 #include "opt_i80321.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/time.h>
52 #include <sys/timetc.h>
53
54 #include <dev/clock_subr.h>
55
56 #include <sys/bus.h>
57 #include <arm/cpufunc.h>
58
59 #include <arm/xscale/i80321reg.h>
60 #include <arm/xscale/i80321var.h>
61
62 #include <arm/xscale/xscalevar.h>
63
64 void (*i80321_hardclock_hook)(void);
65
66 #ifndef COUNTS_PER_SEC
67 #define COUNTS_PER_SEC 200000000 /* 200MHz */
68 #endif
69 #define COUNTS_PER_USEC (COUNTS_PER_SEC / 1000000)
70
71 static void tmr1_tc_init(void);
72
73 static void *clock_ih;
74
75 static uint32_t counts_per_hz;
76
77 int clockhandler(void *);
78
79 __unused static inline uint32_t
80 tmr0_read(void)
81 {
82 uint32_t rv;
83
84 __asm volatile("mrc p6, 0, %0, c0, c1, 0"
85 : "=r" (rv));
86 return (rv);
87 }
88
89 static inline void
90 tmr0_write(uint32_t val)
91 {
92
93 __asm volatile("mcr p6, 0, %0, c0, c1, 0"
94 :
95 : "r" (val));
96 }
97
98 static inline uint32_t
99 tcr0_read(void)
100 {
101 uint32_t rv;
102
103 __asm volatile("mrc p6, 0, %0, c2, c1, 0"
104 : "=r" (rv));
105 return (rv);
106 }
107
108 static inline void
109 tcr0_write(uint32_t val)
110 {
111
112 __asm volatile("mcr p6, 0, %0, c2, c1, 0"
113 :
114 : "r" (val));
115 }
116
117 static inline void
118 trr0_write(uint32_t val)
119 {
120
121 __asm volatile("mcr p6, 0, %0, c4, c1, 0"
122 :
123 : "r" (val));
124 }
125
126 __unused static inline uint32_t
127 tmr1_read(void)
128 {
129 uint32_t rv;
130
131 __asm volatile("mrc p6, 0, %0, c1, c1, 0"
132 : "=r" (rv));
133 return (rv);
134 }
135
136 static inline void
137 tmr1_write(uint32_t val)
138 {
139
140 __asm volatile("mcr p6, 0, %0, c1, c1, 0"
141 :
142 : "r" (val));
143 }
144
145 static inline uint32_t
146 tcr1_read(void)
147 {
148 uint32_t rv;
149
150 __asm volatile("mrc p6, 0, %0, c3, c1, 0"
151 : "=r" (rv));
152 return (rv);
153 }
154
155 static inline void
156 tcr1_write(uint32_t val)
157 {
158
159 __asm volatile("mcr p6, 0, %0, c3, c1, 0"
160 :
161 : "r" (val));
162 }
163
164 static inline void
165 trr1_write(uint32_t val)
166 {
167
168 __asm volatile("mcr p6, 0, %0, c5, c1, 0"
169 :
170 : "r" (val));
171 }
172
173 static inline void
174 tisr_write(uint32_t val)
175 {
176
177 __asm volatile("mcr p6, 0, %0, c6, c1, 0"
178 :
179 : "r" (val));
180 }
181
182 /*
183 * i80321_calibrate_delay:
184 *
185 * Calibrate the delay loop.
186 */
187 void
188 i80321_calibrate_delay(void)
189 {
190
191 /*
192 * Just use hz=100 for now -- we'll adjust it, if necessary,
193 * in cpu_initclocks().
194 */
195 counts_per_hz = COUNTS_PER_SEC / 100;
196
197 tmr0_write(0); /* stop timer */
198 tisr_write(TISR_TMR0); /* clear interrupt */
199 trr0_write(counts_per_hz); /* reload value */
200 tcr0_write(counts_per_hz); /* current value */
201
202 tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
203 }
204
205 /*
206 * cpu_initclocks:
207 *
208 * Initialize the clock and get them going.
209 */
210 void
211 cpu_initclocks(void)
212 {
213 u_int oldirqstate;
214 #if defined(PERFCTRS)
215 void *pmu_ih;
216 #endif
217
218 if (hz < 50 || COUNTS_PER_SEC % hz) {
219 aprint_error("Cannot get %d Hz clock; using 100 Hz\n", hz);
220 hz = 100;
221 }
222
223 /*
224 * We only have one timer available; stathz and profhz are
225 * always left as 0 (the upper-layer clock code deals with
226 * this situation).
227 */
228 if (stathz != 0)
229 aprint_error("Cannot get %d Hz statclock\n", stathz);
230 stathz = 0;
231
232 if (profhz != 0)
233 aprint_error("Cannot get %d Hz profclock\n", profhz);
234 profhz = 0;
235
236 /* Report the clock frequency. */
237 aprint_normal("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz);
238
239 oldirqstate = disable_interrupts(I32_bit);
240
241 /* Hook up the clock interrupt handler. */
242 clock_ih = i80321_intr_establish(ICU_INT_TMR0, IPL_CLOCK,
243 clockhandler, NULL);
244 if (clock_ih == NULL)
245 panic("cpu_initclocks: unable to register timer interrupt");
246
247 #if defined(PERFCTRS)
248 pmu_ih = i80321_intr_establish(ICU_INT_PMU, IPL_HIGH,
249 xscale_pmc_dispatch, NULL);
250 if (pmu_ih == NULL)
251 panic("cpu_initclocks: unable to register timer interrupt");
252 #endif
253
254 /* Set up the new clock parameters. */
255
256 tmr0_write(0); /* stop timer */
257 tisr_write(TISR_TMR0); /* clear interrupt */
258
259 counts_per_hz = COUNTS_PER_SEC / hz;
260
261 trr0_write(counts_per_hz); /* reload value */
262 tcr0_write(counts_per_hz); /* current value */
263
264 tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
265
266 restore_interrupts(oldirqstate);
267
268 tmr1_tc_init();
269 }
270
271 /*
272 * setstatclockrate:
273 *
274 * Set the rate of the statistics clock.
275 *
276 * We assume that hz is either stathz or profhz, and that neither
277 * will change after being set by cpu_initclocks(). We could
278 * recalculate the intervals here, but that would be a pain.
279 */
280 void
281 setstatclockrate(int newhz)
282 {
283
284 /*
285 * XXX Use TMR1?
286 */
287 }
288
289 static inline uint32_t
290 tmr1_tc_get(struct timecounter *tch)
291 {
292 return (~tcr1_read());
293 }
294
295 void
296 tmr1_tc_init(void)
297 {
298 static struct timecounter tmr1_tc = {
299 .tc_get_timecount = tmr1_tc_get,
300 .tc_frequency = COUNTS_PER_SEC,
301 .tc_counter_mask = ~0,
302 .tc_name = "tmr1_count",
303 .tc_quality = 100,
304 };
305
306 /* program the tc */
307 trr1_write(~0); /* reload value */
308 tcr1_write(~0); /* current value */
309
310 tmr1_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
311
312
313 trr1_write(~0);
314 tc_init(&tmr1_tc);
315 }
316
317 /*
318 * delay:
319 *
320 * Delay for at least N microseconds.
321 */
322 void
323 delay(u_int n)
324 {
325 uint32_t cur, last, delta, usecs;
326
327 /*
328 * This works by polling the timer and counting the
329 * number of microseconds that go by.
330 */
331 last = tcr0_read();
332 delta = usecs = 0;
333
334 while (n > usecs) {
335 cur = tcr0_read();
336
337 /* Check to see if the timer has wrapped around. */
338 if (last < cur)
339 delta += (last + (counts_per_hz - cur));
340 else
341 delta += (last - cur);
342
343 last = cur;
344
345 if (delta >= COUNTS_PER_USEC) {
346 usecs += delta / COUNTS_PER_USEC;
347 delta %= COUNTS_PER_USEC;
348 }
349 }
350 }
351
352 /*
353 * clockhandler:
354 *
355 * Handle the hardclock interrupt.
356 */
357 int
358 clockhandler(void *arg)
359 {
360 struct clockframe *frame = arg;
361
362 tisr_write(TISR_TMR0);
363
364 hardclock(frame);
365
366 if (i80321_hardclock_hook != NULL)
367 (*i80321_hardclock_hook)();
368
369 return (1);
370 }
371