1 1.54 riastrad /* $NetBSD: ixp425_if_npe.c,v 1.54 2024/06/29 12:11:10 riastradh Exp $ */ 2 1.1 scw 3 1.1 scw /*- 4 1.1 scw * Copyright (c) 2006 Sam Leffler. All rights reserved. 5 1.1 scw * 6 1.1 scw * Redistribution and use in source and binary forms, with or without 7 1.1 scw * modification, are permitted provided that the following conditions 8 1.1 scw * are met: 9 1.1 scw * 1. Redistributions of source code must retain the above copyright 10 1.1 scw * notice, this list of conditions and the following disclaimer. 11 1.1 scw * 2. Redistributions in binary form must reproduce the above copyright 12 1.1 scw * notice, this list of conditions and the following disclaimer in the 13 1.1 scw * documentation and/or other materials provided with the distribution. 14 1.1 scw * 15 1.1 scw * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 1.1 scw * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 1.1 scw * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 1.1 scw * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 1.1 scw * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 1.1 scw * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 1.1 scw * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 1.1 scw * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 1.1 scw * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 1.1 scw * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 1.1 scw */ 26 1.1 scw 27 1.1 scw #include <sys/cdefs.h> 28 1.1 scw #if 0 29 1.1 scw __FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/if_npe.c,v 1.1 2006/11/19 23:55:23 sam Exp $"); 30 1.1 scw #endif 31 1.54 riastrad __KERNEL_RCSID(0, "$NetBSD: ixp425_if_npe.c,v 1.54 2024/06/29 12:11:10 riastradh Exp $"); 32 1.1 scw 33 1.1 scw /* 34 1.1 scw * Intel XScale NPE Ethernet driver. 35 1.1 scw * 36 1.1 scw * This driver handles the two ports present on the IXP425. 37 1.1 scw * Packet processing is done by the Network Processing Engines 38 1.1 scw * (NPE's) that work together with a MAC and PHY. The MAC 39 1.1 scw * is also mapped to the XScale cpu; the PHY is accessed via 40 1.1 scw * the MAC. NPE-XScale communication happens through h/w 41 1.1 scw * queues managed by the Q Manager block. 42 1.1 scw * 43 1.1 scw * The code here replaces the ethAcc, ethMii, and ethDB classes 44 1.1 scw * in the Intel Access Library (IAL) and the OS-specific driver. 45 1.1 scw * 46 1.1 scw * XXX add vlan support 47 1.1 scw * XXX NPE-C port doesn't work yet 48 1.1 scw */ 49 1.1 scw 50 1.1 scw #include <sys/param.h> 51 1.1 scw #include <sys/systm.h> 52 1.1 scw #include <sys/kernel.h> 53 1.1 scw #include <sys/device.h> 54 1.1 scw #include <sys/callout.h> 55 1.53 skrll #include <sys/kmem.h> 56 1.1 scw #include <sys/mbuf.h> 57 1.1 scw #include <sys/socket.h> 58 1.1 scw #include <sys/endian.h> 59 1.1 scw #include <sys/ioctl.h> 60 1.11 msaitoh #include <sys/syslog.h> 61 1.20 dyoung #include <sys/bus.h> 62 1.39 msaitoh #include <sys/rndsource.h> 63 1.1 scw 64 1.1 scw #include <net/if.h> 65 1.1 scw #include <net/if_dl.h> 66 1.1 scw #include <net/if_media.h> 67 1.1 scw #include <net/if_ether.h> 68 1.1 scw #include <net/bpf.h> 69 1.1 scw 70 1.1 scw #include <arm/xscale/ixp425reg.h> 71 1.1 scw #include <arm/xscale/ixp425var.h> 72 1.1 scw #include <arm/xscale/ixp425_qmgr.h> 73 1.1 scw #include <arm/xscale/ixp425_npevar.h> 74 1.1 scw #include <arm/xscale/ixp425_if_npereg.h> 75 1.1 scw 76 1.1 scw #include <dev/mii/miivar.h> 77 1.1 scw 78 1.1 scw #include "locators.h" 79 1.1 scw 80 1.1 scw struct npebuf { 81 1.1 scw struct npebuf *ix_next; /* chain to next buffer */ 82 1.1 scw void *ix_m; /* backpointer to mbuf */ 83 1.1 scw bus_dmamap_t ix_map; /* bus dma map for associated data */ 84 1.1 scw struct npehwbuf *ix_hw; /* associated h/w block */ 85 1.1 scw uint32_t ix_neaddr; /* phys address of ix_hw */ 86 1.1 scw }; 87 1.1 scw 88 1.1 scw struct npedma { 89 1.1 scw const char* name; 90 1.1 scw int nbuf; /* # npebuf's allocated */ 91 1.1 scw bus_dmamap_t m_map; 92 1.1 scw struct npehwbuf *hwbuf; /* NPE h/w buffers */ 93 1.1 scw bus_dmamap_t buf_map; 94 1.1 scw bus_addr_t buf_phys; /* phys addr of buffers */ 95 1.1 scw struct npebuf *buf; /* s/w buffers (1-1 w/ h/w) */ 96 1.1 scw }; 97 1.1 scw 98 1.1 scw struct npe_softc { 99 1.23 matt device_t sc_dev; 100 1.1 scw struct ethercom sc_ethercom; 101 1.11 msaitoh uint8_t sc_enaddr[ETHER_ADDR_LEN]; 102 1.1 scw struct mii_data sc_mii; 103 1.39 msaitoh bus_space_tag_t sc_iot; 104 1.1 scw bus_dma_tag_t sc_dt; 105 1.1 scw bus_space_handle_t sc_ioh; /* MAC register window */ 106 1.1 scw bus_space_handle_t sc_miih; /* MII register window */ 107 1.1 scw struct ixpnpe_softc *sc_npe; /* NPE support */ 108 1.1 scw int sc_unit; 109 1.1 scw int sc_phy; 110 1.1 scw struct callout sc_tick_ch; /* Tick callout */ 111 1.1 scw struct npedma txdma; 112 1.1 scw struct npebuf *tx_free; /* list of free tx buffers */ 113 1.1 scw struct npedma rxdma; 114 1.1 scw int rx_qid; /* rx qid */ 115 1.1 scw int rx_freeqid; /* rx free buffers qid */ 116 1.1 scw int tx_qid; /* tx qid */ 117 1.1 scw int tx_doneqid; /* tx completed qid */ 118 1.1 scw struct npestats *sc_stats; 119 1.1 scw bus_dmamap_t sc_stats_map; 120 1.1 scw bus_addr_t sc_stats_phys; /* phys addr of sc_stats */ 121 1.42 msaitoh u_short sc_if_flags; /* keep last if_flags */ 122 1.21 tls krndsource_t rnd_source; /* random source */ 123 1.1 scw }; 124 1.1 scw 125 1.1 scw /* 126 1.1 scw * Per-unit static configuration for IXP425. The tx and 127 1.1 scw * rx free Q id's are fixed by the NPE microcode. The 128 1.1 scw * rx Q id's are programmed to be separate to simplify 129 1.1 scw * multi-port processing. It may be better to handle 130 1.1 scw * all traffic through one Q (as done by the Intel drivers). 131 1.1 scw * 132 1.1 scw * Note that the PHY's are accessible only from MAC A 133 1.1 scw * on the IXP425. This and other platform-specific 134 1.1 scw * assumptions probably need to be handled through hints. 135 1.1 scw */ 136 1.1 scw static const struct { 137 1.1 scw const char *desc; /* device description */ 138 1.1 scw int npeid; /* NPE assignment */ 139 1.16 msaitoh int macport; /* Port number of the MAC */ 140 1.1 scw uint32_t imageid; /* NPE firmware image id */ 141 1.1 scw uint32_t regbase; 142 1.1 scw int regsize; 143 1.1 scw uint32_t miibase; 144 1.1 scw int miisize; 145 1.1 scw uint8_t rx_qid; 146 1.1 scw uint8_t rx_freeqid; 147 1.1 scw uint8_t tx_qid; 148 1.1 scw uint8_t tx_doneqid; 149 1.1 scw } npeconfig[NPE_PORTS_MAX] = { 150 1.1 scw { .desc = "IXP NPE-B", 151 1.1 scw .npeid = NPE_B, 152 1.16 msaitoh .macport = 0x10, 153 1.1 scw .imageid = IXP425_NPE_B_IMAGEID, 154 1.1 scw .regbase = IXP425_MAC_A_HWBASE, 155 1.1 scw .regsize = IXP425_MAC_A_SIZE, 156 1.1 scw .miibase = IXP425_MAC_A_HWBASE, 157 1.1 scw .miisize = IXP425_MAC_A_SIZE, 158 1.1 scw .rx_qid = 4, 159 1.1 scw .rx_freeqid = 27, 160 1.1 scw .tx_qid = 24, 161 1.1 scw .tx_doneqid = 31 162 1.1 scw }, 163 1.1 scw { .desc = "IXP NPE-C", 164 1.1 scw .npeid = NPE_C, 165 1.16 msaitoh .macport = 0x20, 166 1.1 scw .imageid = IXP425_NPE_C_IMAGEID, 167 1.1 scw .regbase = IXP425_MAC_B_HWBASE, 168 1.1 scw .regsize = IXP425_MAC_B_SIZE, 169 1.1 scw .miibase = IXP425_MAC_A_HWBASE, 170 1.1 scw .miisize = IXP425_MAC_A_SIZE, 171 1.1 scw .rx_qid = 12, 172 1.1 scw .rx_freeqid = 28, 173 1.1 scw .tx_qid = 25, 174 1.1 scw .tx_doneqid = 31 175 1.1 scw }, 176 1.1 scw }; 177 1.1 scw static struct npe_softc *npes[NPE_MAX]; /* NB: indexed by npeid */ 178 1.1 scw 179 1.1 scw static __inline uint32_t 180 1.1 scw RD4(struct npe_softc *sc, bus_size_t off) 181 1.1 scw { 182 1.1 scw return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off); 183 1.1 scw } 184 1.1 scw 185 1.1 scw static __inline void 186 1.1 scw WR4(struct npe_softc *sc, bus_size_t off, uint32_t val) 187 1.1 scw { 188 1.1 scw bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val); 189 1.1 scw } 190 1.1 scw 191 1.1 scw static int npe_activate(struct npe_softc *); 192 1.1 scw #if 0 193 1.1 scw static void npe_deactivate(struct npe_softc *); 194 1.1 scw #endif 195 1.40 msaitoh static void npe_setmac(struct npe_softc *, const u_char *); 196 1.40 msaitoh static void npe_getmac(struct npe_softc *); 197 1.40 msaitoh static void npe_txdone(int, void *); 198 1.1 scw static int npe_rxbuf_init(struct npe_softc *, struct npebuf *, 199 1.1 scw struct mbuf *); 200 1.40 msaitoh static void npe_rxdone(int, void *); 201 1.13 msaitoh static void npeinit_macreg(struct npe_softc *); 202 1.1 scw static int npeinit(struct ifnet *); 203 1.16 msaitoh static void npeinit_resetcb(void *); 204 1.13 msaitoh static void npeinit_locked(void *); 205 1.1 scw static void npestart(struct ifnet *); 206 1.1 scw static void npestop(struct ifnet *, int); 207 1.1 scw static void npewatchdog(struct ifnet *); 208 1.40 msaitoh static int npeioctl(struct ifnet *, u_long, void *); 209 1.1 scw 210 1.40 msaitoh static int npe_setrxqosentry(struct npe_softc *, int, int, int); 211 1.1 scw static int npe_updatestats(struct npe_softc *); 212 1.1 scw #if 0 213 1.1 scw static int npe_getstats(struct npe_softc *); 214 1.1 scw static uint32_t npe_getimageid(struct npe_softc *); 215 1.40 msaitoh static int npe_setloopback(struct npe_softc *, int); 216 1.1 scw #endif 217 1.1 scw 218 1.36 msaitoh static int npe_miibus_readreg(device_t, int, int, uint16_t *); 219 1.36 msaitoh static int npe_miibus_writereg(device_t, int, int, uint16_t); 220 1.23 matt static void npe_miibus_statchg(struct ifnet *); 221 1.1 scw 222 1.1 scw static int npe_debug; 223 1.1 scw #define DPRINTF(sc, fmt, ...) do { \ 224 1.1 scw if (npe_debug) printf(fmt, __VA_ARGS__); \ 225 1.1 scw } while (0) 226 1.1 scw #define DPRINTFn(n, sc, fmt, ...) do { \ 227 1.1 scw if (npe_debug >= n) printf(fmt, __VA_ARGS__); \ 228 1.1 scw } while (0) 229 1.1 scw 230 1.1 scw #define NPE_TXBUF 128 231 1.1 scw #define NPE_RXBUF 64 232 1.1 scw 233 1.11 msaitoh #define MAC2UINT64(addr) (((uint64_t)addr[0] << 40) \ 234 1.11 msaitoh + ((uint64_t)addr[1] << 32) \ 235 1.11 msaitoh + ((uint64_t)addr[2] << 24) \ 236 1.11 msaitoh + ((uint64_t)addr[3] << 16) \ 237 1.11 msaitoh + ((uint64_t)addr[4] << 8) \ 238 1.11 msaitoh + (uint64_t)addr[5]) 239 1.11 msaitoh 240 1.1 scw /* NB: all tx done processing goes through one queue */ 241 1.1 scw static int tx_doneqid = -1; 242 1.1 scw 243 1.11 msaitoh void (*npe_getmac_md)(int, uint8_t *); 244 1.11 msaitoh 245 1.23 matt static int npe_match(device_t, cfdata_t, void *); 246 1.23 matt static void npe_attach(device_t, device_t, void *); 247 1.1 scw 248 1.23 matt CFATTACH_DECL_NEW(npe, sizeof(struct npe_softc), 249 1.1 scw npe_match, npe_attach, NULL, NULL); 250 1.1 scw 251 1.1 scw static int 252 1.23 matt npe_match(device_t parent, cfdata_t cf, void *arg) 253 1.1 scw { 254 1.1 scw struct ixpnpe_attach_args *na = arg; 255 1.1 scw 256 1.1 scw return (na->na_unit == NPE_B || na->na_unit == NPE_C); 257 1.1 scw } 258 1.1 scw 259 1.1 scw static void 260 1.23 matt npe_attach(device_t parent, device_t self, void *arg) 261 1.1 scw { 262 1.23 matt struct npe_softc *sc = device_private(self); 263 1.23 matt struct ixpnpe_softc *isc = device_private(parent); 264 1.1 scw struct ixpnpe_attach_args *na = arg; 265 1.1 scw struct ifnet *ifp; 266 1.40 msaitoh struct mii_data * const mii = &sc->sc_mii; 267 1.1 scw 268 1.1 scw aprint_naive("\n"); 269 1.1 scw aprint_normal(": Ethernet co-processor\n"); 270 1.1 scw 271 1.23 matt sc->sc_dev = self; 272 1.1 scw sc->sc_iot = na->na_iot; 273 1.1 scw sc->sc_dt = na->na_dt; 274 1.1 scw sc->sc_npe = na->na_npe; 275 1.1 scw sc->sc_unit = (na->na_unit == NPE_B) ? 0 : 1; 276 1.1 scw sc->sc_phy = na->na_phy; 277 1.1 scw 278 1.1 scw memset(&sc->sc_ethercom, 0, sizeof(sc->sc_ethercom)); 279 1.40 msaitoh memset(mii, 0, sizeof(*mii)); 280 1.1 scw 281 1.4 ad callout_init(&sc->sc_tick_ch, 0); 282 1.1 scw 283 1.1 scw if (npe_activate(sc)) { 284 1.23 matt aprint_error_dev(sc->sc_dev, 285 1.23 matt "Failed to activate NPE (missing microcode?)\n"); 286 1.1 scw return; 287 1.1 scw } 288 1.1 scw 289 1.14 msaitoh npe_getmac(sc); 290 1.13 msaitoh npeinit_macreg(sc); 291 1.1 scw 292 1.23 matt aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n", 293 1.11 msaitoh ether_sprintf(sc->sc_enaddr)); 294 1.1 scw 295 1.1 scw ifp = &sc->sc_ethercom.ec_if; 296 1.40 msaitoh mii->mii_ifp = ifp; 297 1.40 msaitoh mii->mii_readreg = npe_miibus_readreg; 298 1.40 msaitoh mii->mii_writereg = npe_miibus_writereg; 299 1.40 msaitoh mii->mii_statchg = npe_miibus_statchg; 300 1.40 msaitoh sc->sc_ethercom.ec_mii = mii; 301 1.15 msaitoh 302 1.40 msaitoh ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange, 303 1.47 thorpej ether_mediastatus); 304 1.1 scw 305 1.40 msaitoh mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 306 1.15 msaitoh MII_OFFSET_ANY, MIIF_DOPAUSE); 307 1.40 msaitoh if (LIST_FIRST(&mii->mii_phys) == NULL) { 308 1.40 msaitoh ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); 309 1.40 msaitoh ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); 310 1.15 msaitoh } else 311 1.40 msaitoh ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 312 1.1 scw 313 1.1 scw ifp->if_softc = sc; 314 1.23 matt strcpy(ifp->if_xname, device_xname(sc->sc_dev)); 315 1.1 scw ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 316 1.1 scw ifp->if_start = npestart; 317 1.1 scw ifp->if_ioctl = npeioctl; 318 1.1 scw ifp->if_watchdog = npewatchdog; 319 1.1 scw ifp->if_init = npeinit; 320 1.1 scw ifp->if_stop = npestop; 321 1.1 scw IFQ_SET_READY(&ifp->if_snd); 322 1.1 scw 323 1.10 msaitoh /* VLAN capable */ 324 1.10 msaitoh sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 325 1.10 msaitoh 326 1.1 scw if_attach(ifp); 327 1.33 nonaka if_deferred_start_init(ifp, NULL); 328 1.11 msaitoh ether_ifattach(ifp, sc->sc_enaddr); 329 1.23 matt rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev), 330 1.26 tls RND_TYPE_NET, RND_FLAG_DEFAULT); 331 1.16 msaitoh 332 1.16 msaitoh /* callback function to reset MAC */ 333 1.16 msaitoh isc->macresetcbfunc = npeinit_resetcb; 334 1.16 msaitoh isc->macresetcbarg = sc; 335 1.1 scw } 336 1.1 scw 337 1.1 scw /* 338 1.1 scw * Compute and install the multicast filter. 339 1.1 scw */ 340 1.1 scw static void 341 1.1 scw npe_setmcast(struct npe_softc *sc) 342 1.1 scw { 343 1.40 msaitoh struct ethercom *ec = &sc->sc_ethercom; 344 1.40 msaitoh struct ifnet *ifp = &ec->ec_if; 345 1.1 scw uint8_t mask[ETHER_ADDR_LEN], addr[ETHER_ADDR_LEN]; 346 1.11 msaitoh uint32_t reg; 347 1.16 msaitoh uint32_t msg[2]; 348 1.1 scw int i; 349 1.1 scw 350 1.11 msaitoh /* Always use filter. Is here a correct position? */ 351 1.11 msaitoh reg = RD4(sc, NPE_MAC_RX_CNTRL1); 352 1.11 msaitoh WR4(sc, NPE_MAC_RX_CNTRL1, reg | NPE_RX_CNTRL1_ADDR_FLTR_EN); 353 1.11 msaitoh 354 1.1 scw if (ifp->if_flags & IFF_PROMISC) { 355 1.1 scw memset(mask, 0, ETHER_ADDR_LEN); 356 1.1 scw memset(addr, 0, ETHER_ADDR_LEN); 357 1.1 scw } else if (ifp->if_flags & IFF_ALLMULTI) { 358 1.1 scw static const uint8_t allmulti[ETHER_ADDR_LEN] = 359 1.1 scw { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 }; 360 1.1 scw all_multi: 361 1.1 scw memcpy(mask, allmulti, ETHER_ADDR_LEN); 362 1.1 scw memcpy(addr, allmulti, ETHER_ADDR_LEN); 363 1.1 scw } else { 364 1.1 scw uint8_t clr[ETHER_ADDR_LEN], set[ETHER_ADDR_LEN]; 365 1.1 scw struct ether_multistep step; 366 1.1 scw struct ether_multi *enm; 367 1.1 scw 368 1.1 scw memset(clr, 0, ETHER_ADDR_LEN); 369 1.1 scw memset(set, 0xff, ETHER_ADDR_LEN); 370 1.1 scw 371 1.41 msaitoh ETHER_LOCK(ec); 372 1.40 msaitoh ETHER_FIRST_MULTI(step, ec, enm); 373 1.1 scw while (enm != NULL) { 374 1.39 msaitoh if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 375 1.39 msaitoh ETHER_ADDR_LEN)) { 376 1.1 scw ifp->if_flags |= IFF_ALLMULTI; 377 1.41 msaitoh ETHER_UNLOCK(ec); 378 1.1 scw goto all_multi; 379 1.1 scw } 380 1.1 scw 381 1.1 scw for (i = 0; i < ETHER_ADDR_LEN; i++) { 382 1.1 scw clr[i] |= enm->enm_addrlo[i]; 383 1.1 scw set[i] &= enm->enm_addrlo[i]; 384 1.1 scw } 385 1.1 scw 386 1.1 scw ETHER_NEXT_MULTI(step, enm); 387 1.1 scw } 388 1.41 msaitoh ETHER_UNLOCK(ec); 389 1.1 scw 390 1.1 scw for (i = 0; i < ETHER_ADDR_LEN; i++) { 391 1.1 scw mask[i] = set[i] | ~clr[i]; 392 1.1 scw addr[i] = set[i]; 393 1.1 scw } 394 1.1 scw } 395 1.1 scw 396 1.1 scw /* 397 1.1 scw * Write the mask and address registers. 398 1.1 scw */ 399 1.1 scw for (i = 0; i < ETHER_ADDR_LEN; i++) { 400 1.1 scw WR4(sc, NPE_MAC_ADDR_MASK(i), mask[i]); 401 1.1 scw WR4(sc, NPE_MAC_ADDR(i), addr[i]); 402 1.1 scw } 403 1.16 msaitoh 404 1.16 msaitoh msg[0] = NPE_ADDRESSFILTERCONFIG << NPE_MAC_MSGID_SHL 405 1.16 msaitoh | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL); 406 1.16 msaitoh msg[1] = ((ifp->if_flags & IFF_PROMISC) ? 1 : 0) << 24 407 1.16 msaitoh | ((RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff) << 16) 408 1.16 msaitoh | (addr[5] << 8) | mask[5]; 409 1.16 msaitoh ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg); 410 1.1 scw } 411 1.1 scw 412 1.1 scw static int 413 1.1 scw npe_dma_setup(struct npe_softc *sc, struct npedma *dma, 414 1.1 scw const char *name, int nbuf, int maxseg) 415 1.1 scw { 416 1.1 scw bus_dma_segment_t seg; 417 1.1 scw int rseg, error, i; 418 1.3 christos void *hwbuf; 419 1.1 scw size_t size; 420 1.1 scw 421 1.10 msaitoh memset(dma, 0, sizeof(*dma)); 422 1.1 scw 423 1.1 scw dma->name = name; 424 1.1 scw dma->nbuf = nbuf; 425 1.1 scw 426 1.1 scw size = nbuf * sizeof(struct npehwbuf); 427 1.1 scw 428 1.1 scw /* XXX COHERENT for now */ 429 1.1 scw error = bus_dmamem_alloc(sc->sc_dt, size, sizeof(uint32_t), 0, &seg, 430 1.1 scw 1, &rseg, BUS_DMA_NOWAIT); 431 1.1 scw if (error) { 432 1.23 matt aprint_error_dev(sc->sc_dev, 433 1.23 matt "unable to %s for %s %s buffers, error %u\n", 434 1.23 matt "allocate memory", dma->name, "h/w", error); 435 1.1 scw } 436 1.1 scw 437 1.1 scw error = bus_dmamem_map(sc->sc_dt, &seg, 1, size, &hwbuf, 438 1.1 scw BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_NOCACHE); 439 1.1 scw if (error) { 440 1.23 matt aprint_error_dev(sc->sc_dev, 441 1.23 matt "unable to %s for %s %s buffers, error %u\n", 442 1.23 matt "map memory", dma->name, "h/w", error); 443 1.1 scw free_dmamem: 444 1.1 scw bus_dmamem_free(sc->sc_dt, &seg, rseg); 445 1.1 scw return error; 446 1.1 scw } 447 1.1 scw dma->hwbuf = (void *)hwbuf; 448 1.1 scw 449 1.1 scw error = bus_dmamap_create(sc->sc_dt, size, 1, size, 0, 450 1.1 scw BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &dma->buf_map); 451 1.1 scw if (error) { 452 1.23 matt aprint_error_dev(sc->sc_dev, 453 1.23 matt "unable to %s for %s %s buffers, error %u\n", 454 1.23 matt "create map", dma->name, "h/w", error); 455 1.1 scw unmap_dmamem: 456 1.1 scw dma->hwbuf = NULL; 457 1.1 scw bus_dmamem_unmap(sc->sc_dt, hwbuf, size); 458 1.1 scw goto free_dmamem; 459 1.1 scw } 460 1.1 scw 461 1.1 scw error = bus_dmamap_load(sc->sc_dt, dma->buf_map, hwbuf, size, NULL, 462 1.1 scw BUS_DMA_NOWAIT); 463 1.1 scw if (error) { 464 1.23 matt aprint_error_dev(sc->sc_dev, 465 1.23 matt "unable to %s for %s %s buffers, error %u\n", 466 1.23 matt "load map", dma->name, "h/w", error); 467 1.1 scw bus_dmamap_destroy(sc->sc_dt, dma->buf_map); 468 1.1 scw goto unmap_dmamem; 469 1.1 scw } 470 1.1 scw 471 1.53 skrll dma->buf = kmem_zalloc(nbuf * sizeof(struct npebuf), KM_SLEEP); 472 1.1 scw dma->buf_phys = dma->buf_map->dm_segs[0].ds_addr; 473 1.1 scw for (i = 0; i < dma->nbuf; i++) { 474 1.1 scw struct npebuf *npe = &dma->buf[i]; 475 1.1 scw struct npehwbuf *hw = &dma->hwbuf[i]; 476 1.1 scw 477 1.39 msaitoh /* Calculate offset to shared area */ 478 1.1 scw npe->ix_neaddr = dma->buf_phys + 479 1.1 scw ((uintptr_t)hw - (uintptr_t)dma->hwbuf); 480 1.1 scw KASSERT((npe->ix_neaddr & 0x1f) == 0); 481 1.10 msaitoh error = bus_dmamap_create(sc->sc_dt, MCLBYTES, maxseg, 482 1.1 scw MCLBYTES, 0, 0, &npe->ix_map); 483 1.1 scw if (error != 0) { 484 1.23 matt aprint_error_dev(sc->sc_dev, 485 1.23 matt "unable to %s for %s buffer %u, error %u\n", 486 1.23 matt "create dmamap", dma->name, i, error); 487 1.1 scw /* XXXSCW: Free up maps... */ 488 1.1 scw return error; 489 1.1 scw } 490 1.1 scw npe->ix_hw = hw; 491 1.1 scw } 492 1.1 scw bus_dmamap_sync(sc->sc_dt, dma->buf_map, 0, dma->buf_map->dm_mapsize, 493 1.1 scw BUS_DMASYNC_PREWRITE); 494 1.1 scw return 0; 495 1.1 scw } 496 1.1 scw 497 1.1 scw #if 0 498 1.1 scw static void 499 1.1 scw npe_dma_destroy(struct npe_softc *sc, struct npedma *dma) 500 1.1 scw { 501 1.1 scw int i; 502 1.1 scw 503 1.1 scw /* XXXSCW: Clean this up */ 504 1.1 scw 505 1.1 scw if (dma->hwbuf != NULL) { 506 1.1 scw for (i = 0; i < dma->nbuf; i++) { 507 1.1 scw struct npebuf *npe = &dma->buf[i]; 508 1.1 scw bus_dmamap_destroy(sc->sc_dt, npe->ix_map); 509 1.1 scw } 510 1.1 scw bus_dmamap_unload(sc->sc_dt, dma->buf_map); 511 1.3 christos bus_dmamem_free(sc->sc_dt, (void *)dma->hwbuf, dma->buf_map); 512 1.1 scw bus_dmamap_destroy(sc->sc_dt, dma->buf_map); 513 1.1 scw } 514 1.1 scw if (dma->buf != NULL) 515 1.53 skrll kmem_free(dma->buf, dma->nbuf * sizeof(struct npebuf)); 516 1.1 scw memset(dma, 0, sizeof(*dma)); 517 1.1 scw } 518 1.1 scw #endif 519 1.1 scw 520 1.1 scw static int 521 1.1 scw npe_activate(struct npe_softc *sc) 522 1.1 scw { 523 1.1 scw bus_dma_segment_t seg; 524 1.1 scw int unit = sc->sc_unit; 525 1.1 scw int error, i, rseg; 526 1.3 christos void *statbuf; 527 1.1 scw 528 1.1 scw /* load NPE firmware and start it running */ 529 1.1 scw error = ixpnpe_init(sc->sc_npe, "npe_fw", npeconfig[unit].imageid); 530 1.1 scw if (error != 0) 531 1.1 scw return error; 532 1.1 scw 533 1.1 scw if (bus_space_map(sc->sc_iot, npeconfig[unit].regbase, 534 1.1 scw npeconfig[unit].regsize, 0, &sc->sc_ioh)) { 535 1.23 matt aprint_error_dev(sc->sc_dev, "Cannot map registers 0x%x:0x%x\n", 536 1.23 matt npeconfig[unit].regbase, npeconfig[unit].regsize); 537 1.1 scw return ENOMEM; 538 1.1 scw } 539 1.1 scw 540 1.1 scw if (npeconfig[unit].miibase != npeconfig[unit].regbase) { 541 1.1 scw /* 542 1.1 scw * The PHY's are only accessible from one MAC (it appears) 543 1.1 scw * so for other MAC's setup an additional mapping for 544 1.1 scw * frobbing the PHY registers. 545 1.1 scw */ 546 1.1 scw if (bus_space_map(sc->sc_iot, npeconfig[unit].miibase, 547 1.1 scw npeconfig[unit].miisize, 0, &sc->sc_miih)) { 548 1.23 matt aprint_error_dev(sc->sc_dev, 549 1.23 matt "Cannot map MII registers 0x%x:0x%x\n", 550 1.23 matt npeconfig[unit].miibase, npeconfig[unit].miisize); 551 1.1 scw return ENOMEM; 552 1.1 scw } 553 1.1 scw } else 554 1.1 scw sc->sc_miih = sc->sc_ioh; 555 1.1 scw error = npe_dma_setup(sc, &sc->txdma, "tx", NPE_TXBUF, NPE_MAXSEG); 556 1.1 scw if (error != 0) 557 1.1 scw return error; 558 1.1 scw error = npe_dma_setup(sc, &sc->rxdma, "rx", NPE_RXBUF, 1); 559 1.1 scw if (error != 0) 560 1.1 scw return error; 561 1.1 scw 562 1.1 scw /* setup statistics block */ 563 1.1 scw error = bus_dmamem_alloc(sc->sc_dt, sizeof(struct npestats), 564 1.1 scw sizeof(uint32_t), 0, &seg, 1, &rseg, BUS_DMA_NOWAIT); 565 1.1 scw if (error) { 566 1.23 matt aprint_error_dev(sc->sc_dev, 567 1.23 matt "unable to %s for %s, error %u\n", 568 1.23 matt "allocate memory", "stats block", error); 569 1.1 scw return error; 570 1.1 scw } 571 1.1 scw 572 1.1 scw error = bus_dmamem_map(sc->sc_dt, &seg, 1, sizeof(struct npestats), 573 1.1 scw &statbuf, BUS_DMA_NOWAIT); 574 1.1 scw if (error) { 575 1.23 matt aprint_error_dev(sc->sc_dev, 576 1.23 matt "unable to %s for %s, error %u\n", 577 1.23 matt "map memory", "stats block", error); 578 1.1 scw return error; 579 1.1 scw } 580 1.1 scw sc->sc_stats = (void *)statbuf; 581 1.1 scw 582 1.1 scw error = bus_dmamap_create(sc->sc_dt, sizeof(struct npestats), 1, 583 1.1 scw sizeof(struct npestats), 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 584 1.1 scw &sc->sc_stats_map); 585 1.1 scw if (error) { 586 1.23 matt aprint_error_dev(sc->sc_dev, 587 1.23 matt "unable to %s for %s, error %u\n", 588 1.23 matt "create map", "stats block", error); 589 1.1 scw return error; 590 1.1 scw } 591 1.1 scw 592 1.29 maxv error = bus_dmamap_load(sc->sc_dt, sc->sc_stats_map, sc->sc_stats, 593 1.29 maxv sizeof(struct npestats), NULL, BUS_DMA_NOWAIT); 594 1.29 maxv if (error) { 595 1.23 matt aprint_error_dev(sc->sc_dev, 596 1.23 matt "unable to %s for %s, error %u\n", 597 1.23 matt "load map", "stats block", error); 598 1.1 scw return error; 599 1.1 scw } 600 1.1 scw sc->sc_stats_phys = sc->sc_stats_map->dm_segs[0].ds_addr; 601 1.1 scw 602 1.1 scw /* XXX disable half-bridge LEARNING+FILTERING feature */ 603 1.1 scw 604 1.1 scw /* 605 1.1 scw * Setup h/w rx/tx queues. There are four q's: 606 1.1 scw * rx inbound q of rx'd frames 607 1.1 scw * rx_free pool of ixpbuf's for receiving frames 608 1.1 scw * tx outbound q of frames to send 609 1.1 scw * tx_done q of tx frames that have been processed 610 1.1 scw * 611 1.1 scw * The NPE handles the actual tx/rx process and the q manager 612 1.1 scw * handles the queues. The driver just writes entries to the 613 1.1 scw * q manager mailbox's and gets callbacks when there are rx'd 614 1.1 scw * frames to process or tx'd frames to reap. These callbacks 615 1.1 scw * are controlled by the q configurations; e.g. we get a 616 1.1 scw * callback when tx_done has 2 or more frames to process and 617 1.48 andvar * when the rx q has at least one frame. These settings can 618 1.1 scw * changed at the time the q is configured. 619 1.1 scw */ 620 1.1 scw sc->rx_qid = npeconfig[unit].rx_qid; 621 1.1 scw ixpqmgr_qconfig(sc->rx_qid, NPE_RXBUF, 0, 1, 622 1.1 scw IX_QMGR_Q_SOURCE_ID_NOT_E, npe_rxdone, sc); 623 1.1 scw sc->rx_freeqid = npeconfig[unit].rx_freeqid; 624 1.1 scw ixpqmgr_qconfig(sc->rx_freeqid, NPE_RXBUF, 0, NPE_RXBUF/2, 0, NULL, sc); 625 1.1 scw /* tell the NPE to direct all traffic to rx_qid */ 626 1.1 scw #if 0 627 1.1 scw for (i = 0; i < 8; i++) 628 1.1 scw #else 629 1.23 matt printf("%s: remember to fix rx q setup\n", device_xname(sc->sc_dev)); 630 1.1 scw for (i = 0; i < 4; i++) 631 1.1 scw #endif 632 1.1 scw npe_setrxqosentry(sc, i, 0, sc->rx_qid); 633 1.1 scw 634 1.1 scw sc->tx_qid = npeconfig[unit].tx_qid; 635 1.1 scw sc->tx_doneqid = npeconfig[unit].tx_doneqid; 636 1.1 scw ixpqmgr_qconfig(sc->tx_qid, NPE_TXBUF, 0, NPE_TXBUF, 0, NULL, sc); 637 1.1 scw if (tx_doneqid == -1) { 638 1.1 scw ixpqmgr_qconfig(sc->tx_doneqid, NPE_TXBUF, 0, 2, 639 1.1 scw IX_QMGR_Q_SOURCE_ID_NOT_E, npe_txdone, sc); 640 1.1 scw tx_doneqid = sc->tx_doneqid; 641 1.1 scw } 642 1.1 scw 643 1.1 scw KASSERT(npes[npeconfig[unit].npeid] == NULL); 644 1.1 scw npes[npeconfig[unit].npeid] = sc; 645 1.1 scw 646 1.1 scw return 0; 647 1.1 scw } 648 1.1 scw 649 1.1 scw #if 0 650 1.1 scw static void 651 1.1 scw npe_deactivate(struct npe_softc *sc); 652 1.1 scw { 653 1.1 scw int unit = sc->sc_unit; 654 1.1 scw 655 1.1 scw npes[npeconfig[unit].npeid] = NULL; 656 1.1 scw 657 1.1 scw /* XXX disable q's */ 658 1.1 scw if (sc->sc_npe != NULL) 659 1.1 scw ixpnpe_stop(sc->sc_npe); 660 1.1 scw if (sc->sc_stats != NULL) { 661 1.1 scw bus_dmamap_unload(sc->sc_stats_tag, sc->sc_stats_map); 662 1.1 scw bus_dmamem_free(sc->sc_stats_tag, sc->sc_stats, 663 1.1 scw sc->sc_stats_map); 664 1.1 scw bus_dmamap_destroy(sc->sc_stats_tag, sc->sc_stats_map); 665 1.1 scw } 666 1.1 scw if (sc->sc_stats_tag != NULL) 667 1.1 scw bus_dma_tag_destroy(sc->sc_stats_tag); 668 1.1 scw npe_dma_destroy(sc, &sc->txdma); 669 1.1 scw npe_dma_destroy(sc, &sc->rxdma); 670 1.1 scw bus_generic_detach(sc->sc_dev); 671 1.46 thorpej XXX ifmedia_fini somewhere 672 1.1 scw if (sc->sc_mii) 673 1.1 scw device_delete_child(sc->sc_dev, sc->sc_mii); 674 1.1 scw #if 0 675 1.1 scw /* XXX sc_ioh and sc_miih */ 676 1.1 scw if (sc->mem_res) 677 1.1 scw bus_release_resource(dev, SYS_RES_IOPORT, 678 1.1 scw rman_get_rid(sc->mem_res), sc->mem_res); 679 1.1 scw sc->mem_res = 0; 680 1.1 scw #endif 681 1.1 scw } 682 1.1 scw #endif 683 1.1 scw 684 1.1 scw static void 685 1.1 scw npe_addstats(struct npe_softc *sc) 686 1.1 scw { 687 1.1 scw struct ifnet *ifp = &sc->sc_ethercom.ec_if; 688 1.1 scw struct npestats *ns = sc->sc_stats; 689 1.1 scw 690 1.45 thorpej net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 691 1.54 riastrad if_statadd_ref(ifp, nsr, if_oerrors, 692 1.1 scw be32toh(ns->dot3StatsInternalMacTransmitErrors) 693 1.1 scw + be32toh(ns->dot3StatsCarrierSenseErrors) 694 1.1 scw + be32toh(ns->TxVLANIdFilterDiscards) 695 1.45 thorpej ); 696 1.54 riastrad if_statadd_ref(ifp, nsr, if_ierrors, 697 1.45 thorpej be32toh(ns->dot3StatsFCSErrors) 698 1.1 scw + be32toh(ns->dot3StatsInternalMacReceiveErrors) 699 1.1 scw + be32toh(ns->RxOverrunDiscards) 700 1.1 scw + be32toh(ns->RxUnderflowEntryDiscards) 701 1.45 thorpej ); 702 1.54 riastrad if_statadd_ref(ifp, nsr, if_collisions, 703 1.1 scw be32toh(ns->dot3StatsSingleCollisionFrames) 704 1.1 scw + be32toh(ns->dot3StatsMultipleCollisionFrames) 705 1.45 thorpej ); 706 1.45 thorpej IF_STAT_PUTREF(ifp); 707 1.1 scw } 708 1.1 scw 709 1.1 scw static void 710 1.1 scw npe_tick(void *xsc) 711 1.1 scw { 712 1.1 scw #define ACK (NPE_RESETSTATS << NPE_MAC_MSGID_SHL) 713 1.1 scw struct npe_softc *sc = xsc; 714 1.1 scw uint32_t msg[2]; 715 1.1 scw 716 1.1 scw /* 717 1.1 scw * NB: to avoid sleeping with the softc lock held we 718 1.1 scw * split the NPE msg processing into two parts. The 719 1.1 scw * request for statistics is sent w/o waiting for a 720 1.1 scw * reply and then on the next tick we retrieve the 721 1.1 scw * results. This works because npe_tick is the only 722 1.1 scw * code that talks via the mailbox's (except at setup). 723 1.1 scw * This likely can be handled better. 724 1.1 scw */ 725 1.1 scw if (ixpnpe_recvmsg(sc->sc_npe, msg) == 0 && msg[0] == ACK) { 726 1.1 scw bus_dmamap_sync(sc->sc_dt, sc->sc_stats_map, 0, 727 1.1 scw sizeof(struct npestats), BUS_DMASYNC_POSTREAD); 728 1.1 scw npe_addstats(sc); 729 1.1 scw } 730 1.1 scw npe_updatestats(sc); 731 1.1 scw mii_tick(&sc->sc_mii); 732 1.1 scw 733 1.39 msaitoh /* Schedule next poll */ 734 1.1 scw callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc); 735 1.1 scw #undef ACK 736 1.1 scw } 737 1.1 scw 738 1.1 scw static void 739 1.6 matt npe_setmac(struct npe_softc *sc, const u_char *eaddr) 740 1.1 scw { 741 1.11 msaitoh 742 1.1 scw WR4(sc, NPE_MAC_UNI_ADDR_1, eaddr[0]); 743 1.1 scw WR4(sc, NPE_MAC_UNI_ADDR_2, eaddr[1]); 744 1.1 scw WR4(sc, NPE_MAC_UNI_ADDR_3, eaddr[2]); 745 1.1 scw WR4(sc, NPE_MAC_UNI_ADDR_4, eaddr[3]); 746 1.1 scw WR4(sc, NPE_MAC_UNI_ADDR_5, eaddr[4]); 747 1.1 scw WR4(sc, NPE_MAC_UNI_ADDR_6, eaddr[5]); 748 1.1 scw } 749 1.1 scw 750 1.1 scw static void 751 1.11 msaitoh npe_getmac(struct npe_softc *sc) 752 1.1 scw { 753 1.11 msaitoh uint8_t *eaddr = sc->sc_enaddr; 754 1.11 msaitoh 755 1.11 msaitoh if (npe_getmac_md != NULL) { 756 1.23 matt (*npe_getmac_md)(device_unit(sc->sc_dev), eaddr); 757 1.11 msaitoh } else { 758 1.11 msaitoh /* 759 1.11 msaitoh * Some system's unicast address appears to be loaded from 760 1.11 msaitoh * EEPROM on reset 761 1.11 msaitoh */ 762 1.11 msaitoh eaddr[0] = RD4(sc, NPE_MAC_UNI_ADDR_1) & 0xff; 763 1.11 msaitoh eaddr[1] = RD4(sc, NPE_MAC_UNI_ADDR_2) & 0xff; 764 1.11 msaitoh eaddr[2] = RD4(sc, NPE_MAC_UNI_ADDR_3) & 0xff; 765 1.11 msaitoh eaddr[3] = RD4(sc, NPE_MAC_UNI_ADDR_4) & 0xff; 766 1.11 msaitoh eaddr[4] = RD4(sc, NPE_MAC_UNI_ADDR_5) & 0xff; 767 1.11 msaitoh eaddr[5] = RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff; 768 1.11 msaitoh } 769 1.1 scw } 770 1.1 scw 771 1.1 scw struct txdone { 772 1.1 scw struct npebuf *head; 773 1.1 scw struct npebuf **tail; 774 1.1 scw int count; 775 1.1 scw }; 776 1.1 scw 777 1.1 scw static __inline void 778 1.1 scw npe_txdone_finish(struct npe_softc *sc, const struct txdone *td) 779 1.1 scw { 780 1.1 scw struct ifnet *ifp = &sc->sc_ethercom.ec_if; 781 1.1 scw 782 1.1 scw *td->tail = sc->tx_free; 783 1.1 scw sc->tx_free = td->head; 784 1.1 scw /* 785 1.1 scw * We're no longer busy, so clear the busy flag and call the 786 1.1 scw * start routine to xmit more packets. 787 1.1 scw */ 788 1.45 thorpej if_statadd(ifp, if_opackets, td->count); 789 1.1 scw ifp->if_timer = 0; 790 1.33 nonaka if_schedule_deferred_start(ifp); 791 1.1 scw } 792 1.1 scw 793 1.1 scw /* 794 1.1 scw * Q manager callback on tx done queue. Reap mbufs 795 1.1 scw * and return tx buffers to the free list. Finally 796 1.1 scw * restart output. Note the microcode has only one 797 1.1 scw * txdone q wired into it so we must use the NPE ID 798 1.1 scw * returned with each npehwbuf to decide where to 799 1.1 scw * send buffers. 800 1.1 scw */ 801 1.1 scw static void 802 1.1 scw npe_txdone(int qid, void *arg) 803 1.1 scw { 804 1.1 scw #define P2V(a, dma) \ 805 1.1 scw &(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)] 806 1.1 scw struct npe_softc *sc; 807 1.1 scw struct npebuf *npe; 808 1.1 scw struct txdone *td, q[NPE_MAX]; 809 1.1 scw uint32_t entry; 810 1.1 scw 811 1.1 scw /* XXX no NPE-A support */ 812 1.1 scw q[NPE_B].tail = &q[NPE_B].head; q[NPE_B].count = 0; 813 1.1 scw q[NPE_C].tail = &q[NPE_C].head; q[NPE_C].count = 0; 814 1.1 scw /* XXX max # at a time? */ 815 1.1 scw while (ixpqmgr_qread(qid, &entry) == 0) { 816 1.1 scw sc = npes[NPE_QM_Q_NPE(entry)]; 817 1.1 scw DPRINTF(sc, "%s: entry 0x%x NPE %u port %u\n", 818 1.1 scw __func__, entry, NPE_QM_Q_NPE(entry), NPE_QM_Q_PORT(entry)); 819 1.22 tls rnd_add_uint32(&sc->rnd_source, entry); 820 1.1 scw 821 1.1 scw npe = P2V(NPE_QM_Q_ADDR(entry), &sc->txdma); 822 1.1 scw m_freem(npe->ix_m); 823 1.1 scw npe->ix_m = NULL; 824 1.1 scw 825 1.1 scw td = &q[NPE_QM_Q_NPE(entry)]; 826 1.1 scw *td->tail = npe; 827 1.1 scw td->tail = &npe->ix_next; 828 1.1 scw td->count++; 829 1.1 scw } 830 1.1 scw 831 1.1 scw if (q[NPE_B].count) 832 1.1 scw npe_txdone_finish(npes[NPE_B], &q[NPE_B]); 833 1.1 scw if (q[NPE_C].count) 834 1.1 scw npe_txdone_finish(npes[NPE_C], &q[NPE_C]); 835 1.1 scw #undef P2V 836 1.1 scw } 837 1.1 scw 838 1.1 scw static __inline struct mbuf * 839 1.1 scw npe_getcl(void) 840 1.1 scw { 841 1.1 scw struct mbuf *m; 842 1.1 scw 843 1.1 scw MGETHDR(m, M_DONTWAIT, MT_DATA); 844 1.1 scw if (m != NULL) { 845 1.1 scw MCLGET(m, M_DONTWAIT); 846 1.1 scw if ((m->m_flags & M_EXT) == 0) { 847 1.1 scw m_freem(m); 848 1.1 scw m = NULL; 849 1.1 scw } 850 1.1 scw } 851 1.39 msaitoh return m; 852 1.1 scw } 853 1.1 scw 854 1.1 scw static int 855 1.1 scw npe_rxbuf_init(struct npe_softc *sc, struct npebuf *npe, struct mbuf *m) 856 1.1 scw { 857 1.1 scw struct npehwbuf *hw; 858 1.1 scw int error; 859 1.1 scw 860 1.1 scw if (m == NULL) { 861 1.1 scw m = npe_getcl(); 862 1.1 scw if (m == NULL) 863 1.1 scw return ENOBUFS; 864 1.1 scw } 865 1.11 msaitoh KASSERT(m->m_ext.ext_size >= (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN)); 866 1.11 msaitoh m->m_pkthdr.len = m->m_len = NPE_FRAME_SIZE_DEFAULT; 867 1.1 scw /* backload payload and align ip hdr */ 868 1.11 msaitoh m->m_data = m->m_ext.ext_buf + (m->m_ext.ext_size 869 1.11 msaitoh - (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN)); 870 1.1 scw error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m, 871 1.40 msaitoh BUS_DMA_READ | BUS_DMA_NOWAIT); 872 1.1 scw if (error != 0) { 873 1.1 scw m_freem(m); 874 1.1 scw return error; 875 1.1 scw } 876 1.1 scw hw = npe->ix_hw; 877 1.1 scw hw->ix_ne[0].data = htobe32(npe->ix_map->dm_segs[0].ds_addr); 878 1.1 scw /* NB: NPE requires length be a multiple of 64 */ 879 1.1 scw /* NB: buffer length is shifted in word */ 880 1.1 scw hw->ix_ne[0].len = htobe32(npe->ix_map->dm_segs[0].ds_len << 16); 881 1.1 scw hw->ix_ne[0].next = 0; 882 1.1 scw npe->ix_m = m; 883 1.1 scw /* Flush the memory in the mbuf */ 884 1.1 scw bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0, npe->ix_map->dm_mapsize, 885 1.1 scw BUS_DMASYNC_PREREAD); 886 1.1 scw return 0; 887 1.1 scw } 888 1.1 scw 889 1.1 scw /* 890 1.1 scw * RX q processing for a specific NPE. Claim entries 891 1.1 scw * from the hardware queue and pass the frames up the 892 1.1 scw * stack. Pass the rx buffers to the free list. 893 1.1 scw */ 894 1.1 scw static void 895 1.1 scw npe_rxdone(int qid, void *arg) 896 1.1 scw { 897 1.1 scw #define P2V(a, dma) \ 898 1.1 scw &(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)] 899 1.1 scw struct npe_softc *sc = arg; 900 1.1 scw struct npedma *dma = &sc->rxdma; 901 1.1 scw uint32_t entry; 902 1.1 scw 903 1.1 scw while (ixpqmgr_qread(qid, &entry) == 0) { 904 1.1 scw struct npebuf *npe = P2V(NPE_QM_Q_ADDR(entry), dma); 905 1.1 scw struct mbuf *m; 906 1.1 scw 907 1.1 scw DPRINTF(sc, "%s: entry 0x%x neaddr 0x%x ne_len 0x%x\n", 908 1.1 scw __func__, entry, npe->ix_neaddr, npe->ix_hw->ix_ne[0].len); 909 1.22 tls rnd_add_uint32(&sc->rnd_source, entry); 910 1.1 scw /* 911 1.1 scw * Allocate a new mbuf to replenish the rx buffer. 912 1.1 scw * If doing so fails we drop the rx'd frame so we 913 1.1 scw * can reuse the previous mbuf. When we're able to 914 1.1 scw * allocate a new mbuf dispatch the mbuf w/ rx'd 915 1.1 scw * data up the stack and replace it with the newly 916 1.1 scw * allocated one. 917 1.1 scw */ 918 1.1 scw m = npe_getcl(); 919 1.1 scw if (m != NULL) { 920 1.1 scw struct mbuf *mrx = npe->ix_m; 921 1.1 scw struct npehwbuf *hw = npe->ix_hw; 922 1.1 scw struct ifnet *ifp = &sc->sc_ethercom.ec_if; 923 1.1 scw 924 1.1 scw /* Flush mbuf memory for rx'd data */ 925 1.1 scw bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0, 926 1.1 scw npe->ix_map->dm_mapsize, BUS_DMASYNC_POSTREAD); 927 1.1 scw 928 1.1 scw /* XXX flush hw buffer; works now 'cuz coherent */ 929 1.1 scw /* set m_len etc. per rx frame size */ 930 1.1 scw mrx->m_len = be32toh(hw->ix_ne[0].len) & 0xffff; 931 1.1 scw mrx->m_pkthdr.len = mrx->m_len; 932 1.31 ozaki m_set_rcvif(mrx, ifp); 933 1.11 msaitoh /* Don't add M_HASFCS. See below */ 934 1.11 msaitoh 935 1.11 msaitoh #if 1 936 1.11 msaitoh if (mrx->m_pkthdr.len < sizeof(struct ether_header)) { 937 1.11 msaitoh log(LOG_INFO, "%s: too short frame (len=%d)\n", 938 1.39 msaitoh device_xname(sc->sc_dev), 939 1.39 msaitoh mrx->m_pkthdr.len); 940 1.11 msaitoh /* Back out "newly allocated" mbuf. */ 941 1.11 msaitoh m_freem(m); 942 1.45 thorpej if_statinc(ifp, if_ierrors); 943 1.11 msaitoh goto fail; 944 1.11 msaitoh } 945 1.11 msaitoh if ((ifp->if_flags & IFF_PROMISC) == 0) { 946 1.11 msaitoh struct ether_header *eh; 947 1.11 msaitoh 948 1.11 msaitoh /* 949 1.11 msaitoh * Workaround for "Non-Intel XScale Technology 950 1.11 msaitoh * Eratta" No. 29. AA:BB:CC:DD:EE:xF's packet 951 1.11 msaitoh * matches the filter (both unicast and 952 1.11 msaitoh * multicast). 953 1.11 msaitoh */ 954 1.11 msaitoh eh = mtod(mrx, struct ether_header *); 955 1.11 msaitoh if (ETHER_IS_MULTICAST(eh->ether_dhost) == 0) { 956 1.39 msaitoh /* Unicast */ 957 1.11 msaitoh 958 1.11 msaitoh if (sc->sc_enaddr[5] != eh->ether_dhost[5]) { 959 1.39 msaitoh /* Discard it */ 960 1.11 msaitoh #if 0 961 1.11 msaitoh printf("discard it\n"); 962 1.11 msaitoh #endif 963 1.11 msaitoh /* 964 1.11 msaitoh * Back out "newly allocated" 965 1.11 msaitoh * mbuf. 966 1.11 msaitoh */ 967 1.11 msaitoh m_freem(m); 968 1.11 msaitoh goto fail; 969 1.11 msaitoh } 970 1.11 msaitoh } else if (memcmp(eh->ether_dhost, 971 1.11 msaitoh etherbroadcastaddr, 6) == 0) { 972 1.11 msaitoh /* Always accept broadcast packet*/ 973 1.11 msaitoh } else { 974 1.11 msaitoh struct ethercom *ec = &sc->sc_ethercom; 975 1.11 msaitoh struct ether_multi *enm; 976 1.11 msaitoh struct ether_multistep step; 977 1.11 msaitoh int match = 0; 978 1.11 msaitoh 979 1.39 msaitoh /* Multicast */ 980 1.11 msaitoh 981 1.41 msaitoh ETHER_LOCK(ec); 982 1.11 msaitoh ETHER_FIRST_MULTI(step, ec, enm); 983 1.11 msaitoh while (enm != NULL) { 984 1.11 msaitoh uint64_t lowint, highint, dest; 985 1.11 msaitoh 986 1.11 msaitoh lowint = MAC2UINT64(enm->enm_addrlo); 987 1.11 msaitoh highint = MAC2UINT64(enm->enm_addrhi); 988 1.11 msaitoh dest = MAC2UINT64(eh->ether_dhost); 989 1.11 msaitoh #if 0 990 1.11 msaitoh printf("%llx\n", lowint); 991 1.11 msaitoh printf("%llx\n", dest); 992 1.11 msaitoh printf("%llx\n", highint); 993 1.11 msaitoh #endif 994 1.11 msaitoh if ((lowint <= dest) && (dest <= highint)) { 995 1.11 msaitoh match = 1; 996 1.11 msaitoh break; 997 1.11 msaitoh } 998 1.11 msaitoh ETHER_NEXT_MULTI(step, enm); 999 1.11 msaitoh } 1000 1.41 msaitoh ETHER_UNLOCK(ec); 1001 1.41 msaitoh 1002 1.11 msaitoh if (match == 0) { 1003 1.39 msaitoh /* Discard it */ 1004 1.11 msaitoh #if 0 1005 1.11 msaitoh printf("discard it(M)\n"); 1006 1.11 msaitoh #endif 1007 1.11 msaitoh /* 1008 1.11 msaitoh * Back out "newly allocated" 1009 1.11 msaitoh * mbuf. 1010 1.11 msaitoh */ 1011 1.11 msaitoh m_freem(m); 1012 1.11 msaitoh goto fail; 1013 1.11 msaitoh } 1014 1.11 msaitoh } 1015 1.11 msaitoh } 1016 1.11 msaitoh if (mrx->m_pkthdr.len > NPE_FRAME_SIZE_DEFAULT) { 1017 1.11 msaitoh log(LOG_INFO, "%s: oversized frame (len=%d)\n", 1018 1.23 matt device_xname(sc->sc_dev), mrx->m_pkthdr.len); 1019 1.11 msaitoh /* Back out "newly allocated" mbuf. */ 1020 1.11 msaitoh m_freem(m); 1021 1.45 thorpej if_statinc(ifp, if_ierrors); 1022 1.11 msaitoh goto fail; 1023 1.11 msaitoh } 1024 1.11 msaitoh #endif 1025 1.11 msaitoh 1026 1.11 msaitoh /* 1027 1.11 msaitoh * Trim FCS! 1028 1.11 msaitoh * NPE always adds the FCS by this driver's setting, 1029 1.11 msaitoh * so we always trim it here and not add M_HASFCS. 1030 1.11 msaitoh */ 1031 1.11 msaitoh m_adj(mrx, -ETHER_CRC_LEN); 1032 1.1 scw 1033 1.10 msaitoh /* 1034 1.10 msaitoh * Tap off here if there is a bpf listener. 1035 1.10 msaitoh */ 1036 1.32 ozaki 1037 1.30 ozaki if_percpuq_enqueue(ifp->if_percpuq, mrx); 1038 1.1 scw } else { 1039 1.11 msaitoh fail: 1040 1.1 scw /* discard frame and re-use mbuf */ 1041 1.1 scw m = npe->ix_m; 1042 1.1 scw } 1043 1.1 scw if (npe_rxbuf_init(sc, npe, m) == 0) { 1044 1.1 scw /* return npe buf to rx free list */ 1045 1.1 scw ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr); 1046 1.1 scw } else { 1047 1.1 scw /* XXX should not happen */ 1048 1.1 scw } 1049 1.1 scw } 1050 1.1 scw #undef P2V 1051 1.1 scw } 1052 1.1 scw 1053 1.1 scw static void 1054 1.1 scw npe_startxmit(struct npe_softc *sc) 1055 1.1 scw { 1056 1.1 scw struct npedma *dma = &sc->txdma; 1057 1.1 scw int i; 1058 1.1 scw 1059 1.1 scw sc->tx_free = NULL; 1060 1.1 scw for (i = 0; i < dma->nbuf; i++) { 1061 1.1 scw struct npebuf *npe = &dma->buf[i]; 1062 1.1 scw if (npe->ix_m != NULL) { 1063 1.1 scw /* NB: should not happen */ 1064 1.1 scw printf("%s: %s: free mbuf at entry %u\n", 1065 1.23 matt device_xname(sc->sc_dev), __func__, i); 1066 1.1 scw m_freem(npe->ix_m); 1067 1.1 scw } 1068 1.1 scw npe->ix_m = NULL; 1069 1.1 scw npe->ix_next = sc->tx_free; 1070 1.1 scw sc->tx_free = npe; 1071 1.1 scw } 1072 1.1 scw } 1073 1.1 scw 1074 1.1 scw static void 1075 1.1 scw npe_startrecv(struct npe_softc *sc) 1076 1.1 scw { 1077 1.1 scw struct npedma *dma = &sc->rxdma; 1078 1.1 scw struct npebuf *npe; 1079 1.1 scw int i; 1080 1.1 scw 1081 1.1 scw for (i = 0; i < dma->nbuf; i++) { 1082 1.1 scw npe = &dma->buf[i]; 1083 1.1 scw npe_rxbuf_init(sc, npe, npe->ix_m); 1084 1.39 msaitoh /* Set npe buf on rx free list */ 1085 1.1 scw ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr); 1086 1.1 scw } 1087 1.1 scw } 1088 1.1 scw 1089 1.1 scw static void 1090 1.13 msaitoh npeinit_macreg(struct npe_softc *sc) 1091 1.1 scw { 1092 1.1 scw 1093 1.1 scw /* 1094 1.1 scw * Reset MAC core. 1095 1.1 scw */ 1096 1.1 scw WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET); 1097 1.1 scw DELAY(NPE_MAC_RESET_DELAY); 1098 1.39 msaitoh /* Configure MAC to generate MDC clock */ 1099 1.1 scw WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN); 1100 1.1 scw 1101 1.44 msaitoh /* Disable transmitter and receiver in the MAC */ 1102 1.39 msaitoh WR4(sc, NPE_MAC_RX_CNTRL1, 1103 1.1 scw RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN); 1104 1.39 msaitoh WR4(sc, NPE_MAC_TX_CNTRL1, 1105 1.1 scw RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN); 1106 1.1 scw 1107 1.1 scw /* 1108 1.1 scw * Set the MAC core registers. 1109 1.1 scw */ 1110 1.1 scw WR4(sc, NPE_MAC_INT_CLK_THRESH, 0x1); /* clock ratio: for ipx4xx */ 1111 1.1 scw WR4(sc, NPE_MAC_TX_CNTRL2, 0xf); /* max retries */ 1112 1.1 scw WR4(sc, NPE_MAC_RANDOM_SEED, 0x8); /* LFSR back-off seed */ 1113 1.39 msaitoh /* Thresholds determined by NPE firmware FS */ 1114 1.1 scw WR4(sc, NPE_MAC_THRESH_P_EMPTY, 0x12); 1115 1.1 scw WR4(sc, NPE_MAC_THRESH_P_FULL, 0x30); 1116 1.12 msaitoh WR4(sc, NPE_MAC_BUF_SIZE_TX, NPE_MAC_BUF_SIZE_TX_DEFAULT); 1117 1.12 msaitoh /* tx fifo threshold (bytes) */ 1118 1.1 scw WR4(sc, NPE_MAC_TX_DEFER, 0x15); /* for single deferral */ 1119 1.1 scw WR4(sc, NPE_MAC_RX_DEFER, 0x16); /* deferral on inter-frame gap*/ 1120 1.1 scw WR4(sc, NPE_MAC_TX_TWO_DEFER_1, 0x8); /* for 2-part deferral */ 1121 1.1 scw WR4(sc, NPE_MAC_TX_TWO_DEFER_2, 0x7); /* for 2-part deferral */ 1122 1.12 msaitoh WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT); 1123 1.12 msaitoh /* assumes MII mode */ 1124 1.1 scw WR4(sc, NPE_MAC_TX_CNTRL1, 1125 1.1 scw NPE_TX_CNTRL1_RETRY /* retry failed xmits */ 1126 1.1 scw | NPE_TX_CNTRL1_FCS_EN /* append FCS */ 1127 1.1 scw | NPE_TX_CNTRL1_2DEFER /* 2-part deferal */ 1128 1.1 scw | NPE_TX_CNTRL1_PAD_EN); /* pad runt frames */ 1129 1.1 scw /* XXX pad strip? */ 1130 1.1 scw WR4(sc, NPE_MAC_RX_CNTRL1, 1131 1.1 scw NPE_RX_CNTRL1_CRC_EN /* include CRC/FCS */ 1132 1.1 scw | NPE_RX_CNTRL1_PAUSE_EN); /* ena pause frame handling */ 1133 1.1 scw WR4(sc, NPE_MAC_RX_CNTRL2, 0); 1134 1.13 msaitoh } 1135 1.1 scw 1136 1.16 msaitoh static void 1137 1.16 msaitoh npeinit_resetcb(void *xsc) 1138 1.16 msaitoh { 1139 1.16 msaitoh struct npe_softc *sc = xsc; 1140 1.16 msaitoh struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1141 1.16 msaitoh uint32_t msg[2]; 1142 1.16 msaitoh 1143 1.45 thorpej if_statinc(ifp, if_oerrors); 1144 1.16 msaitoh npeinit_locked(sc); 1145 1.16 msaitoh 1146 1.16 msaitoh msg[0] = NPE_NOTIFYMACRECOVERYDONE << NPE_MAC_MSGID_SHL 1147 1.16 msaitoh | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL); 1148 1.16 msaitoh msg[1] = 0; 1149 1.16 msaitoh ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg); 1150 1.16 msaitoh } 1151 1.16 msaitoh 1152 1.13 msaitoh /* 1153 1.13 msaitoh * Reset and initialize the chip 1154 1.13 msaitoh */ 1155 1.13 msaitoh static void 1156 1.13 msaitoh npeinit_locked(void *xsc) 1157 1.13 msaitoh { 1158 1.13 msaitoh struct npe_softc *sc = xsc; 1159 1.13 msaitoh struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1160 1.13 msaitoh 1161 1.13 msaitoh /* Cancel any pending I/O. */ 1162 1.13 msaitoh npestop(ifp, 0); 1163 1.13 msaitoh 1164 1.13 msaitoh /* Reset the chip to a known state. */ 1165 1.13 msaitoh npeinit_macreg(sc); 1166 1.6 matt npe_setmac(sc, CLLADDR(ifp->if_sadl)); 1167 1.15 msaitoh ether_mediachange(ifp); 1168 1.1 scw npe_setmcast(sc); 1169 1.1 scw 1170 1.1 scw npe_startxmit(sc); 1171 1.1 scw npe_startrecv(sc); 1172 1.1 scw 1173 1.1 scw ifp->if_flags |= IFF_RUNNING; 1174 1.1 scw ifp->if_timer = 0; /* just in case */ 1175 1.1 scw 1176 1.44 msaitoh /* Enable transmitter and receiver in the MAC */ 1177 1.39 msaitoh WR4(sc, NPE_MAC_RX_CNTRL1, 1178 1.1 scw RD4(sc, NPE_MAC_RX_CNTRL1) | NPE_RX_CNTRL1_RX_EN); 1179 1.39 msaitoh WR4(sc, NPE_MAC_TX_CNTRL1, 1180 1.1 scw RD4(sc, NPE_MAC_TX_CNTRL1) | NPE_TX_CNTRL1_TX_EN); 1181 1.1 scw 1182 1.1 scw callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc); 1183 1.1 scw } 1184 1.1 scw 1185 1.1 scw static int 1186 1.1 scw npeinit(struct ifnet *ifp) 1187 1.1 scw { 1188 1.1 scw struct npe_softc *sc = ifp->if_softc; 1189 1.1 scw int s; 1190 1.1 scw 1191 1.1 scw s = splnet(); 1192 1.1 scw npeinit_locked(sc); 1193 1.1 scw splx(s); 1194 1.1 scw 1195 1.39 msaitoh return 0; 1196 1.1 scw } 1197 1.1 scw 1198 1.1 scw /* 1199 1.1 scw * Defragment an mbuf chain, returning at most maxfrags separate 1200 1.1 scw * mbufs+clusters. If this is not possible NULL is returned and 1201 1.27 snj * the original mbuf chain is left in its present (potentially 1202 1.1 scw * modified) state. We use two techniques: collapsing consecutive 1203 1.1 scw * mbufs and replacing consecutive mbufs by a cluster. 1204 1.1 scw */ 1205 1.1 scw static __inline struct mbuf * 1206 1.1 scw npe_defrag(struct mbuf *m0) 1207 1.1 scw { 1208 1.1 scw struct mbuf *m; 1209 1.1 scw 1210 1.1 scw MGETHDR(m, M_DONTWAIT, MT_DATA); 1211 1.1 scw if (m == NULL) 1212 1.39 msaitoh return NULL; 1213 1.35 maxv m_copy_pkthdr(m, m0); 1214 1.1 scw 1215 1.1 scw if ((m->m_len = m0->m_pkthdr.len) > MHLEN) { 1216 1.1 scw MCLGET(m, M_DONTWAIT); 1217 1.1 scw if ((m->m_flags & M_EXT) == 0) { 1218 1.1 scw m_freem(m); 1219 1.39 msaitoh return NULL; 1220 1.1 scw } 1221 1.1 scw } 1222 1.1 scw 1223 1.3 christos m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); 1224 1.1 scw m_freem(m0); 1225 1.1 scw 1226 1.39 msaitoh return m; 1227 1.1 scw } 1228 1.1 scw 1229 1.1 scw /* 1230 1.1 scw * Dequeue packets and place on the h/w transmit queue. 1231 1.1 scw */ 1232 1.1 scw static void 1233 1.1 scw npestart(struct ifnet *ifp) 1234 1.1 scw { 1235 1.1 scw struct npe_softc *sc = ifp->if_softc; 1236 1.1 scw struct npebuf *npe; 1237 1.1 scw struct npehwbuf *hw; 1238 1.1 scw struct mbuf *m, *n; 1239 1.1 scw bus_dma_segment_t *segs; 1240 1.1 scw int nseg, len, error, i; 1241 1.1 scw uint32_t next; 1242 1.1 scw 1243 1.52 thorpej if ((ifp->if_flags & IFF_RUNNING) == 0) 1244 1.1 scw return; 1245 1.1 scw 1246 1.1 scw while (sc->tx_free != NULL) { 1247 1.1 scw IFQ_DEQUEUE(&ifp->if_snd, m); 1248 1.13 msaitoh if (m == NULL) 1249 1.13 msaitoh break; 1250 1.1 scw npe = sc->tx_free; 1251 1.1 scw error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m, 1252 1.40 msaitoh BUS_DMA_WRITE | BUS_DMA_NOWAIT); 1253 1.1 scw if (error == EFBIG) { 1254 1.1 scw n = npe_defrag(m); 1255 1.1 scw if (n == NULL) { 1256 1.1 scw printf("%s: %s: too many fragments\n", 1257 1.23 matt device_xname(sc->sc_dev), __func__); 1258 1.1 scw m_freem(m); 1259 1.1 scw return; /* XXX? */ 1260 1.1 scw } 1261 1.1 scw m = n; 1262 1.1 scw error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, 1263 1.40 msaitoh m, BUS_DMA_WRITE | BUS_DMA_NOWAIT); 1264 1.1 scw } 1265 1.1 scw if (error != 0) { 1266 1.1 scw printf("%s: %s: error %u\n", 1267 1.23 matt device_xname(sc->sc_dev), __func__, error); 1268 1.1 scw m_freem(m); 1269 1.1 scw return; /* XXX? */ 1270 1.1 scw } 1271 1.1 scw sc->tx_free = npe->ix_next; 1272 1.1 scw 1273 1.1 scw /* 1274 1.1 scw * Tap off here if there is a bpf listener. 1275 1.1 scw */ 1276 1.34 msaitoh bpf_mtap(ifp, m, BPF_D_OUT); 1277 1.1 scw 1278 1.1 scw bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0, 1279 1.1 scw npe->ix_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 1280 1.1 scw 1281 1.1 scw npe->ix_m = m; 1282 1.1 scw hw = npe->ix_hw; 1283 1.1 scw len = m->m_pkthdr.len; 1284 1.1 scw nseg = npe->ix_map->dm_nsegs; 1285 1.1 scw segs = npe->ix_map->dm_segs; 1286 1.1 scw next = npe->ix_neaddr + sizeof(hw->ix_ne[0]); 1287 1.1 scw for (i = 0; i < nseg; i++) { 1288 1.1 scw hw->ix_ne[i].data = htobe32(segs[i].ds_addr); 1289 1.1 scw hw->ix_ne[i].len = htobe32((segs[i].ds_len<<16) | len); 1290 1.1 scw hw->ix_ne[i].next = htobe32(next); 1291 1.1 scw 1292 1.1 scw len = 0; /* zero for segments > 1 */ 1293 1.1 scw next += sizeof(hw->ix_ne[0]); 1294 1.1 scw } 1295 1.1 scw hw->ix_ne[i-1].next = 0; /* zero last in chain */ 1296 1.1 scw /* XXX flush descriptor instead of using uncached memory */ 1297 1.1 scw 1298 1.1 scw DPRINTF(sc, "%s: qwrite(%u, 0x%x) ne_data %x ne_len 0x%x\n", 1299 1.1 scw __func__, sc->tx_qid, npe->ix_neaddr, 1300 1.1 scw hw->ix_ne[0].data, hw->ix_ne[0].len); 1301 1.1 scw /* stick it on the tx q */ 1302 1.1 scw /* XXX add vlan priority */ 1303 1.1 scw ixpqmgr_qwrite(sc->tx_qid, npe->ix_neaddr); 1304 1.1 scw 1305 1.1 scw ifp->if_timer = 5; 1306 1.1 scw } 1307 1.1 scw } 1308 1.1 scw 1309 1.1 scw static void 1310 1.1 scw npe_stopxmit(struct npe_softc *sc) 1311 1.1 scw { 1312 1.1 scw struct npedma *dma = &sc->txdma; 1313 1.1 scw int i; 1314 1.1 scw 1315 1.1 scw /* XXX qmgr */ 1316 1.1 scw for (i = 0; i < dma->nbuf; i++) { 1317 1.1 scw struct npebuf *npe = &dma->buf[i]; 1318 1.1 scw 1319 1.1 scw if (npe->ix_m != NULL) { 1320 1.1 scw bus_dmamap_unload(sc->sc_dt, npe->ix_map); 1321 1.1 scw m_freem(npe->ix_m); 1322 1.1 scw npe->ix_m = NULL; 1323 1.1 scw } 1324 1.1 scw } 1325 1.1 scw } 1326 1.1 scw 1327 1.1 scw static void 1328 1.1 scw npe_stoprecv(struct npe_softc *sc) 1329 1.1 scw { 1330 1.1 scw struct npedma *dma = &sc->rxdma; 1331 1.1 scw int i; 1332 1.1 scw 1333 1.1 scw /* XXX qmgr */ 1334 1.1 scw for (i = 0; i < dma->nbuf; i++) { 1335 1.1 scw struct npebuf *npe = &dma->buf[i]; 1336 1.1 scw 1337 1.1 scw if (npe->ix_m != NULL) { 1338 1.1 scw bus_dmamap_unload(sc->sc_dt, npe->ix_map); 1339 1.1 scw m_freem(npe->ix_m); 1340 1.1 scw npe->ix_m = NULL; 1341 1.1 scw } 1342 1.1 scw } 1343 1.1 scw } 1344 1.1 scw 1345 1.1 scw /* 1346 1.1 scw * Turn off interrupts, and stop the nic. 1347 1.1 scw */ 1348 1.1 scw void 1349 1.1 scw npestop(struct ifnet *ifp, int disable) 1350 1.1 scw { 1351 1.1 scw struct npe_softc *sc = ifp->if_softc; 1352 1.1 scw 1353 1.44 msaitoh /* Disable transmitter and receiver in the MAC */ 1354 1.39 msaitoh WR4(sc, NPE_MAC_RX_CNTRL1, 1355 1.1 scw RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN); 1356 1.39 msaitoh WR4(sc, NPE_MAC_TX_CNTRL1, 1357 1.1 scw RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN); 1358 1.1 scw 1359 1.1 scw callout_stop(&sc->sc_tick_ch); 1360 1.1 scw 1361 1.1 scw npe_stopxmit(sc); 1362 1.1 scw npe_stoprecv(sc); 1363 1.1 scw /* XXX go into loopback & drain q's? */ 1364 1.1 scw /* XXX but beware of disabling tx above */ 1365 1.1 scw 1366 1.1 scw /* 1367 1.1 scw * The MAC core rx/tx disable may leave the MAC hardware in an 1368 1.39 msaitoh * unpredictable state. A hw reset is executed before resetting 1369 1.1 scw * all the MAC parameters to a known value. 1370 1.1 scw */ 1371 1.1 scw WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET); 1372 1.1 scw DELAY(NPE_MAC_RESET_DELAY); 1373 1.1 scw WR4(sc, NPE_MAC_INT_CLK_THRESH, NPE_MAC_INT_CLK_THRESH_DEFAULT); 1374 1.1 scw WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN); 1375 1.13 msaitoh 1376 1.13 msaitoh ifp->if_timer = 0; 1377 1.52 thorpej ifp->if_flags &= ~IFF_RUNNING; 1378 1.1 scw } 1379 1.1 scw 1380 1.1 scw void 1381 1.1 scw npewatchdog(struct ifnet *ifp) 1382 1.1 scw { 1383 1.1 scw struct npe_softc *sc = ifp->if_softc; 1384 1.1 scw int s; 1385 1.1 scw 1386 1.23 matt aprint_error_dev(sc->sc_dev, "device timeout\n"); 1387 1.1 scw s = splnet(); 1388 1.45 thorpej if_statinc(ifp, if_oerrors); 1389 1.1 scw npeinit_locked(sc); 1390 1.1 scw splx(s); 1391 1.1 scw } 1392 1.1 scw 1393 1.1 scw static int 1394 1.3 christos npeioctl(struct ifnet *ifp, u_long cmd, void *data) 1395 1.1 scw { 1396 1.1 scw struct npe_softc *sc = ifp->if_softc; 1397 1.13 msaitoh struct ifreq *ifr = (struct ifreq *) data; 1398 1.1 scw int s, error = 0; 1399 1.1 scw 1400 1.1 scw s = splnet(); 1401 1.1 scw 1402 1.13 msaitoh switch (cmd) { 1403 1.13 msaitoh case SIOCSIFMEDIA: 1404 1.13 msaitoh #if 0 /* not yet */ 1405 1.13 msaitoh /* Flow control requires full-duplex mode. */ 1406 1.13 msaitoh if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO || 1407 1.13 msaitoh (ifr->ifr_media & IFM_FDX) == 0) 1408 1.13 msaitoh ifr->ifr_media &= ~IFM_ETH_FMASK; 1409 1.13 msaitoh if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) { 1410 1.13 msaitoh if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) { 1411 1.13 msaitoh /* We can do both TXPAUSE and RXPAUSE. */ 1412 1.13 msaitoh ifr->ifr_media |= 1413 1.13 msaitoh IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 1414 1.13 msaitoh } 1415 1.13 msaitoh sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK; 1416 1.13 msaitoh } 1417 1.13 msaitoh #endif 1418 1.13 msaitoh error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); 1419 1.13 msaitoh break; 1420 1.13 msaitoh case SIOCSIFFLAGS: 1421 1.40 msaitoh if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_RUNNING) { 1422 1.13 msaitoh /* 1423 1.13 msaitoh * If interface is marked down and it is running, 1424 1.13 msaitoh * then stop and disable it. 1425 1.13 msaitoh */ 1426 1.49 riastrad if_stop(ifp, 1); 1427 1.40 msaitoh } else if ((ifp->if_flags & (IFF_UP |IFF_RUNNING)) == IFF_UP) { 1428 1.13 msaitoh /* 1429 1.13 msaitoh * If interface is marked up and it is stopped, then 1430 1.13 msaitoh * start it. 1431 1.13 msaitoh */ 1432 1.50 riastrad error = if_init(ifp); 1433 1.13 msaitoh } else if ((ifp->if_flags & IFF_UP) != 0) { 1434 1.42 msaitoh u_short diff; 1435 1.13 msaitoh 1436 1.13 msaitoh /* Up (AND RUNNING). */ 1437 1.13 msaitoh 1438 1.13 msaitoh diff = (ifp->if_flags ^ sc->sc_if_flags) 1439 1.40 msaitoh & (IFF_PROMISC | IFF_ALLMULTI); 1440 1.40 msaitoh if ((diff & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 1441 1.13 msaitoh /* 1442 1.51 andvar * If the difference between last flag and 1443 1.13 msaitoh * new flag only IFF_PROMISC or IFF_ALLMULTI, 1444 1.13 msaitoh * set multicast filter only (don't reset to 1445 1.13 msaitoh * prevent link down). 1446 1.13 msaitoh */ 1447 1.13 msaitoh npe_setmcast(sc); 1448 1.13 msaitoh } else { 1449 1.13 msaitoh /* 1450 1.13 msaitoh * Reset the interface to pick up changes in 1451 1.13 msaitoh * any other flags that affect the hardware 1452 1.13 msaitoh * state. 1453 1.13 msaitoh */ 1454 1.50 riastrad error = if_init(ifp); 1455 1.13 msaitoh } 1456 1.13 msaitoh } 1457 1.13 msaitoh sc->sc_if_flags = ifp->if_flags; 1458 1.13 msaitoh break; 1459 1.13 msaitoh default: 1460 1.13 msaitoh error = ether_ioctl(ifp, cmd, data); 1461 1.13 msaitoh if (error == ENETRESET) { 1462 1.13 msaitoh /* 1463 1.13 msaitoh * Multicast list has changed; set the hardware filter 1464 1.13 msaitoh * accordingly. 1465 1.13 msaitoh */ 1466 1.13 msaitoh npe_setmcast(sc); 1467 1.13 msaitoh error = 0; 1468 1.1 scw } 1469 1.1 scw } 1470 1.1 scw 1471 1.1 scw npestart(ifp); 1472 1.1 scw 1473 1.1 scw splx(s); 1474 1.1 scw return error; 1475 1.1 scw } 1476 1.1 scw 1477 1.1 scw /* 1478 1.1 scw * Setup a traffic class -> rx queue mapping. 1479 1.1 scw */ 1480 1.1 scw static int 1481 1.1 scw npe_setrxqosentry(struct npe_softc *sc, int classix, int trafclass, int qid) 1482 1.1 scw { 1483 1.1 scw int npeid = npeconfig[sc->sc_unit].npeid; 1484 1.1 scw uint32_t msg[2]; 1485 1.1 scw 1486 1.15 msaitoh msg[0] = (NPE_SETRXQOSENTRY << NPE_MAC_MSGID_SHL) | (npeid << 20) 1487 1.15 msaitoh | classix; 1488 1.1 scw msg[1] = (trafclass << 24) | (1 << 23) | (qid << 16) | (qid << 4); 1489 1.1 scw return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg); 1490 1.1 scw } 1491 1.1 scw 1492 1.1 scw /* 1493 1.1 scw * Update and reset the statistics in the NPE. 1494 1.1 scw */ 1495 1.1 scw static int 1496 1.1 scw npe_updatestats(struct npe_softc *sc) 1497 1.1 scw { 1498 1.1 scw uint32_t msg[2]; 1499 1.1 scw 1500 1.1 scw msg[0] = NPE_RESETSTATS << NPE_MAC_MSGID_SHL; 1501 1.1 scw msg[1] = sc->sc_stats_phys; /* physical address of stat block */ 1502 1.1 scw return ixpnpe_sendmsg(sc->sc_npe, msg); /* NB: no recv */ 1503 1.1 scw } 1504 1.1 scw 1505 1.1 scw #if 0 1506 1.1 scw /* 1507 1.1 scw * Get the current statistics block. 1508 1.1 scw */ 1509 1.1 scw static int 1510 1.1 scw npe_getstats(struct npe_softc *sc) 1511 1.1 scw { 1512 1.1 scw uint32_t msg[2]; 1513 1.1 scw 1514 1.1 scw msg[0] = NPE_GETSTATS << NPE_MAC_MSGID_SHL; 1515 1.1 scw msg[1] = sc->sc_stats_phys; /* physical address of stat block */ 1516 1.1 scw return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg); 1517 1.1 scw } 1518 1.1 scw 1519 1.1 scw /* 1520 1.1 scw * Query the image id of the loaded firmware. 1521 1.1 scw */ 1522 1.1 scw static uint32_t 1523 1.1 scw npe_getimageid(struct npe_softc *sc) 1524 1.1 scw { 1525 1.1 scw uint32_t msg[2]; 1526 1.1 scw 1527 1.1 scw msg[0] = NPE_GETSTATUS << NPE_MAC_MSGID_SHL; 1528 1.1 scw msg[1] = 0; 1529 1.1 scw return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg) == 0 ? msg[1] : 0; 1530 1.1 scw } 1531 1.1 scw 1532 1.1 scw /* 1533 1.1 scw * Enable/disable loopback. 1534 1.1 scw */ 1535 1.1 scw static int 1536 1.1 scw npe_setloopback(struct npe_softc *sc, int ena) 1537 1.1 scw { 1538 1.1 scw uint32_t msg[2]; 1539 1.1 scw 1540 1.1 scw msg[0] = (NPE_SETLOOPBACK << NPE_MAC_MSGID_SHL) | (ena != 0); 1541 1.1 scw msg[1] = 0; 1542 1.1 scw return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg); 1543 1.1 scw } 1544 1.1 scw #endif 1545 1.1 scw 1546 1.1 scw /* 1547 1.1 scw * MII bus support routines. 1548 1.1 scw * 1549 1.1 scw * NB: ixp425 has one PHY per NPE 1550 1.1 scw */ 1551 1.1 scw static uint32_t 1552 1.1 scw npe_mii_mdio_read(struct npe_softc *sc, int reg) 1553 1.1 scw { 1554 1.1 scw #define MII_RD4(sc, reg) bus_space_read_4(sc->sc_iot, sc->sc_miih, reg) 1555 1.1 scw uint32_t v; 1556 1.1 scw 1557 1.1 scw /* NB: registers are known to be sequential */ 1558 1.1 scw v = (MII_RD4(sc, reg+0) & 0xff) << 0; 1559 1.1 scw v |= (MII_RD4(sc, reg+4) & 0xff) << 8; 1560 1.1 scw v |= (MII_RD4(sc, reg+8) & 0xff) << 16; 1561 1.1 scw v |= (MII_RD4(sc, reg+12) & 0xff) << 24; 1562 1.1 scw return v; 1563 1.1 scw #undef MII_RD4 1564 1.1 scw } 1565 1.1 scw 1566 1.1 scw static void 1567 1.1 scw npe_mii_mdio_write(struct npe_softc *sc, int reg, uint32_t cmd) 1568 1.1 scw { 1569 1.1 scw #define MII_WR4(sc, reg, v) \ 1570 1.1 scw bus_space_write_4(sc->sc_iot, sc->sc_miih, reg, v) 1571 1.1 scw 1572 1.1 scw /* NB: registers are known to be sequential */ 1573 1.1 scw MII_WR4(sc, reg+0, cmd & 0xff); 1574 1.1 scw MII_WR4(sc, reg+4, (cmd >> 8) & 0xff); 1575 1.1 scw MII_WR4(sc, reg+8, (cmd >> 16) & 0xff); 1576 1.1 scw MII_WR4(sc, reg+12, (cmd >> 24) & 0xff); 1577 1.1 scw #undef MII_WR4 1578 1.1 scw } 1579 1.1 scw 1580 1.1 scw static int 1581 1.1 scw npe_mii_mdio_wait(struct npe_softc *sc) 1582 1.1 scw { 1583 1.1 scw #define MAXTRIES 100 /* XXX */ 1584 1.1 scw uint32_t v; 1585 1.1 scw int i; 1586 1.1 scw 1587 1.1 scw for (i = 0; i < MAXTRIES; i++) { 1588 1.1 scw v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_CMD); 1589 1.1 scw if ((v & NPE_MII_GO) == 0) 1590 1.36 msaitoh return 0; 1591 1.1 scw } 1592 1.36 msaitoh return ETIMEDOUT; 1593 1.1 scw #undef MAXTRIES 1594 1.1 scw } 1595 1.1 scw 1596 1.1 scw static int 1597 1.36 msaitoh npe_miibus_readreg(device_t self, int phy, int reg, uint16_t *val) 1598 1.1 scw { 1599 1.23 matt struct npe_softc *sc = device_private(self); 1600 1.1 scw uint32_t v; 1601 1.1 scw 1602 1.1 scw if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy) 1603 1.36 msaitoh return -1; 1604 1.1 scw v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL) 1605 1.1 scw | NPE_MII_GO; 1606 1.1 scw npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v); 1607 1.36 msaitoh if (npe_mii_mdio_wait(sc) == 0) 1608 1.1 scw v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_STS); 1609 1.1 scw else 1610 1.1 scw v = 0xffff | NPE_MII_READ_FAIL; 1611 1.36 msaitoh 1612 1.36 msaitoh if ((v & NPE_MII_READ_FAIL) != 0) 1613 1.36 msaitoh return -1; 1614 1.36 msaitoh 1615 1.36 msaitoh *val = v & 0xffff; 1616 1.36 msaitoh return 0; 1617 1.1 scw #undef MAXTRIES 1618 1.1 scw } 1619 1.1 scw 1620 1.36 msaitoh static int 1621 1.36 msaitoh npe_miibus_writereg(device_t self, int phy, int reg, uint16_t val) 1622 1.1 scw { 1623 1.23 matt struct npe_softc *sc = device_private(self); 1624 1.1 scw uint32_t v; 1625 1.1 scw 1626 1.1 scw if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy) 1627 1.36 msaitoh return -1; 1628 1.1 scw v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL) 1629 1.36 msaitoh | val | NPE_MII_WRITE 1630 1.1 scw | NPE_MII_GO; 1631 1.1 scw npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v); 1632 1.36 msaitoh 1633 1.36 msaitoh return npe_mii_mdio_wait(sc); 1634 1.1 scw } 1635 1.1 scw 1636 1.1 scw static void 1637 1.23 matt npe_miibus_statchg(struct ifnet *ifp) 1638 1.1 scw { 1639 1.23 matt struct npe_softc *sc = ifp->if_softc; 1640 1.1 scw uint32_t tx1, rx1; 1641 1.16 msaitoh uint32_t randoff; 1642 1.1 scw 1643 1.39 msaitoh /* Sync MAC duplex state */ 1644 1.1 scw tx1 = RD4(sc, NPE_MAC_TX_CNTRL1); 1645 1.1 scw rx1 = RD4(sc, NPE_MAC_RX_CNTRL1); 1646 1.1 scw if (sc->sc_mii.mii_media_active & IFM_FDX) { 1647 1.16 msaitoh WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT); 1648 1.1 scw tx1 &= ~NPE_TX_CNTRL1_DUPLEX; 1649 1.1 scw rx1 |= NPE_RX_CNTRL1_PAUSE_EN; 1650 1.1 scw } else { 1651 1.16 msaitoh struct timeval now; 1652 1.16 msaitoh getmicrotime(&now); 1653 1.16 msaitoh randoff = (RD4(sc, NPE_MAC_UNI_ADDR_6) ^ now.tv_usec) 1654 1.16 msaitoh & 0x7f; 1655 1.16 msaitoh WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT 1656 1.16 msaitoh + randoff); 1657 1.1 scw tx1 |= NPE_TX_CNTRL1_DUPLEX; 1658 1.1 scw rx1 &= ~NPE_RX_CNTRL1_PAUSE_EN; 1659 1.1 scw } 1660 1.1 scw WR4(sc, NPE_MAC_RX_CNTRL1, rx1); 1661 1.1 scw WR4(sc, NPE_MAC_TX_CNTRL1, tx1); 1662 1.1 scw } 1663