Home | History | Annotate | Line # | Download | only in xscale
ixp425_if_npe.c revision 1.1
      1  1.1  scw /*	$NetBSD: ixp425_if_npe.c,v 1.1 2006/12/10 10:01:49 scw Exp $	*/
      2  1.1  scw 
      3  1.1  scw /*-
      4  1.1  scw  * Copyright (c) 2006 Sam Leffler.  All rights reserved.
      5  1.1  scw  *
      6  1.1  scw  * Redistribution and use in source and binary forms, with or without
      7  1.1  scw  * modification, are permitted provided that the following conditions
      8  1.1  scw  * are met:
      9  1.1  scw  * 1. Redistributions of source code must retain the above copyright
     10  1.1  scw  *    notice, this list of conditions and the following disclaimer.
     11  1.1  scw  * 2. Redistributions in binary form must reproduce the above copyright
     12  1.1  scw  *    notice, this list of conditions and the following disclaimer in the
     13  1.1  scw  *    documentation and/or other materials provided with the distribution.
     14  1.1  scw  *
     15  1.1  scw  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     16  1.1  scw  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     17  1.1  scw  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     18  1.1  scw  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     19  1.1  scw  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     20  1.1  scw  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     21  1.1  scw  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     22  1.1  scw  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     23  1.1  scw  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     24  1.1  scw  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     25  1.1  scw  */
     26  1.1  scw 
     27  1.1  scw #include <sys/cdefs.h>
     28  1.1  scw #if 0
     29  1.1  scw __FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/if_npe.c,v 1.1 2006/11/19 23:55:23 sam Exp $");
     30  1.1  scw #endif
     31  1.1  scw __KERNEL_RCSID(0, "$NetBSD: ixp425_if_npe.c,v 1.1 2006/12/10 10:01:49 scw Exp $");
     32  1.1  scw 
     33  1.1  scw /*
     34  1.1  scw  * Intel XScale NPE Ethernet driver.
     35  1.1  scw  *
     36  1.1  scw  * This driver handles the two ports present on the IXP425.
     37  1.1  scw  * Packet processing is done by the Network Processing Engines
     38  1.1  scw  * (NPE's) that work together with a MAC and PHY. The MAC
     39  1.1  scw  * is also mapped to the XScale cpu; the PHY is accessed via
     40  1.1  scw  * the MAC. NPE-XScale communication happens through h/w
     41  1.1  scw  * queues managed by the Q Manager block.
     42  1.1  scw  *
     43  1.1  scw  * The code here replaces the ethAcc, ethMii, and ethDB classes
     44  1.1  scw  * in the Intel Access Library (IAL) and the OS-specific driver.
     45  1.1  scw  *
     46  1.1  scw  * XXX add vlan support
     47  1.1  scw  * XXX NPE-C port doesn't work yet
     48  1.1  scw  */
     49  1.1  scw 
     50  1.1  scw #include "bpfilter.h"
     51  1.1  scw 
     52  1.1  scw #include <sys/param.h>
     53  1.1  scw #include <sys/systm.h>
     54  1.1  scw #include <sys/kernel.h>
     55  1.1  scw #include <sys/device.h>
     56  1.1  scw #include <sys/callout.h>
     57  1.1  scw #include <sys/mbuf.h>
     58  1.1  scw #include <sys/malloc.h>
     59  1.1  scw #include <sys/socket.h>
     60  1.1  scw #include <sys/endian.h>
     61  1.1  scw #include <sys/ioctl.h>
     62  1.1  scw 
     63  1.1  scw #include <machine/bus.h>
     64  1.1  scw 
     65  1.1  scw #include <net/if.h>
     66  1.1  scw #include <net/if_dl.h>
     67  1.1  scw #include <net/if_media.h>
     68  1.1  scw #include <net/if_ether.h>
     69  1.1  scw 
     70  1.1  scw #if NBPFILTER > 0
     71  1.1  scw #include <net/bpf.h>
     72  1.1  scw #endif
     73  1.1  scw 
     74  1.1  scw #include <arm/xscale/ixp425reg.h>
     75  1.1  scw #include <arm/xscale/ixp425var.h>
     76  1.1  scw #include <arm/xscale/ixp425_qmgr.h>
     77  1.1  scw #include <arm/xscale/ixp425_npevar.h>
     78  1.1  scw #include <arm/xscale/ixp425_if_npereg.h>
     79  1.1  scw 
     80  1.1  scw #include <dev/mii/miivar.h>
     81  1.1  scw 
     82  1.1  scw #include "locators.h"
     83  1.1  scw 
     84  1.1  scw struct npebuf {
     85  1.1  scw 	struct npebuf	*ix_next;	/* chain to next buffer */
     86  1.1  scw 	void		*ix_m;		/* backpointer to mbuf */
     87  1.1  scw 	bus_dmamap_t	ix_map;		/* bus dma map for associated data */
     88  1.1  scw 	struct npehwbuf	*ix_hw;		/* associated h/w block */
     89  1.1  scw 	uint32_t	ix_neaddr;	/* phys address of ix_hw */
     90  1.1  scw };
     91  1.1  scw 
     92  1.1  scw struct npedma {
     93  1.1  scw 	const char*	name;
     94  1.1  scw 	int		nbuf;		/* # npebuf's allocated */
     95  1.1  scw 	bus_dmamap_t	m_map;
     96  1.1  scw 	struct npehwbuf	*hwbuf;		/* NPE h/w buffers */
     97  1.1  scw 	bus_dmamap_t	buf_map;
     98  1.1  scw 	bus_addr_t	buf_phys;	/* phys addr of buffers */
     99  1.1  scw 	struct npebuf	*buf;		/* s/w buffers (1-1 w/ h/w) */
    100  1.1  scw };
    101  1.1  scw 
    102  1.1  scw struct npe_softc {
    103  1.1  scw 	struct device	sc_dev;
    104  1.1  scw 	struct ethercom	sc_ethercom;
    105  1.1  scw 	struct mii_data	sc_mii;
    106  1.1  scw 	bus_space_tag_t	sc_iot;
    107  1.1  scw 	bus_dma_tag_t	sc_dt;
    108  1.1  scw 	bus_space_handle_t sc_ioh;	/* MAC register window */
    109  1.1  scw 	bus_space_handle_t sc_miih;	/* MII register window */
    110  1.1  scw 	struct ixpnpe_softc *sc_npe;	/* NPE support */
    111  1.1  scw 	int		sc_unit;
    112  1.1  scw 	int		sc_phy;
    113  1.1  scw 	struct callout	sc_tick_ch;	/* Tick callout */
    114  1.1  scw 	struct npedma	txdma;
    115  1.1  scw 	struct npebuf	*tx_free;	/* list of free tx buffers */
    116  1.1  scw 	struct npedma	rxdma;
    117  1.1  scw 	int		rx_qid;		/* rx qid */
    118  1.1  scw 	int		rx_freeqid;	/* rx free buffers qid */
    119  1.1  scw 	int		tx_qid;		/* tx qid */
    120  1.1  scw 	int		tx_doneqid;	/* tx completed qid */
    121  1.1  scw 	struct npestats	*sc_stats;
    122  1.1  scw 	bus_dmamap_t	sc_stats_map;
    123  1.1  scw 	bus_addr_t	sc_stats_phys;	/* phys addr of sc_stats */
    124  1.1  scw };
    125  1.1  scw 
    126  1.1  scw /*
    127  1.1  scw  * Per-unit static configuration for IXP425.  The tx and
    128  1.1  scw  * rx free Q id's are fixed by the NPE microcode.  The
    129  1.1  scw  * rx Q id's are programmed to be separate to simplify
    130  1.1  scw  * multi-port processing.  It may be better to handle
    131  1.1  scw  * all traffic through one Q (as done by the Intel drivers).
    132  1.1  scw  *
    133  1.1  scw  * Note that the PHY's are accessible only from MAC A
    134  1.1  scw  * on the IXP425.  This and other platform-specific
    135  1.1  scw  * assumptions probably need to be handled through hints.
    136  1.1  scw  */
    137  1.1  scw static const struct {
    138  1.1  scw 	const char	*desc;		/* device description */
    139  1.1  scw 	int		npeid;		/* NPE assignment */
    140  1.1  scw 	uint32_t	imageid;	/* NPE firmware image id */
    141  1.1  scw 	uint32_t	regbase;
    142  1.1  scw 	int		regsize;
    143  1.1  scw 	uint32_t	miibase;
    144  1.1  scw 	int		miisize;
    145  1.1  scw 	uint8_t		rx_qid;
    146  1.1  scw 	uint8_t		rx_freeqid;
    147  1.1  scw 	uint8_t		tx_qid;
    148  1.1  scw 	uint8_t		tx_doneqid;
    149  1.1  scw } npeconfig[NPE_PORTS_MAX] = {
    150  1.1  scw 	{ .desc		= "IXP NPE-B",
    151  1.1  scw 	  .npeid	= NPE_B,
    152  1.1  scw 	  .imageid	= IXP425_NPE_B_IMAGEID,
    153  1.1  scw 	  .regbase	= IXP425_MAC_A_HWBASE,
    154  1.1  scw 	  .regsize	= IXP425_MAC_A_SIZE,
    155  1.1  scw 	  .miibase	= IXP425_MAC_A_HWBASE,
    156  1.1  scw 	  .miisize	= IXP425_MAC_A_SIZE,
    157  1.1  scw 	  .rx_qid	= 4,
    158  1.1  scw 	  .rx_freeqid	= 27,
    159  1.1  scw 	  .tx_qid	= 24,
    160  1.1  scw 	  .tx_doneqid	= 31
    161  1.1  scw 	},
    162  1.1  scw 	{ .desc		= "IXP NPE-C",
    163  1.1  scw 	  .npeid	= NPE_C,
    164  1.1  scw 	  .imageid	= IXP425_NPE_C_IMAGEID,
    165  1.1  scw 	  .regbase	= IXP425_MAC_B_HWBASE,
    166  1.1  scw 	  .regsize	= IXP425_MAC_B_SIZE,
    167  1.1  scw 	  .miibase	= IXP425_MAC_A_HWBASE,
    168  1.1  scw 	  .miisize	= IXP425_MAC_A_SIZE,
    169  1.1  scw 	  .rx_qid	= 12,
    170  1.1  scw 	  .rx_freeqid	= 28,
    171  1.1  scw 	  .tx_qid	= 25,
    172  1.1  scw 	  .tx_doneqid	= 31
    173  1.1  scw 	},
    174  1.1  scw };
    175  1.1  scw static struct npe_softc *npes[NPE_MAX];	/* NB: indexed by npeid */
    176  1.1  scw 
    177  1.1  scw static __inline uint32_t
    178  1.1  scw RD4(struct npe_softc *sc, bus_size_t off)
    179  1.1  scw {
    180  1.1  scw 	return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
    181  1.1  scw }
    182  1.1  scw 
    183  1.1  scw static __inline void
    184  1.1  scw WR4(struct npe_softc *sc, bus_size_t off, uint32_t val)
    185  1.1  scw {
    186  1.1  scw 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
    187  1.1  scw }
    188  1.1  scw 
    189  1.1  scw static int	npe_activate(struct npe_softc *);
    190  1.1  scw #if 0
    191  1.1  scw static void	npe_deactivate(struct npe_softc *);
    192  1.1  scw #endif
    193  1.1  scw static int	npe_ifmedia_change(struct ifnet *ifp);
    194  1.1  scw static void	npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr);
    195  1.1  scw static void	npe_setmac(struct npe_softc *sc, u_char *eaddr);
    196  1.1  scw static void	npe_getmac(struct npe_softc *sc, u_char *eaddr);
    197  1.1  scw static void	npe_txdone(int qid, void *arg);
    198  1.1  scw static int	npe_rxbuf_init(struct npe_softc *, struct npebuf *,
    199  1.1  scw 			struct mbuf *);
    200  1.1  scw static void	npe_rxdone(int qid, void *arg);
    201  1.1  scw static int	npeinit(struct ifnet *);
    202  1.1  scw static void	npestart(struct ifnet *);
    203  1.1  scw static void	npestop(struct ifnet *, int);
    204  1.1  scw static void	npewatchdog(struct ifnet *);
    205  1.1  scw static int	npeioctl(struct ifnet * ifp, u_long, caddr_t);
    206  1.1  scw 
    207  1.1  scw static int	npe_setrxqosentry(struct npe_softc *, int classix,
    208  1.1  scw 			int trafclass, int qid);
    209  1.1  scw static int	npe_updatestats(struct npe_softc *);
    210  1.1  scw #if 0
    211  1.1  scw static int	npe_getstats(struct npe_softc *);
    212  1.1  scw static uint32_t	npe_getimageid(struct npe_softc *);
    213  1.1  scw static int	npe_setloopback(struct npe_softc *, int ena);
    214  1.1  scw #endif
    215  1.1  scw 
    216  1.1  scw static int	npe_miibus_readreg(struct device *, int, int);
    217  1.1  scw static void	npe_miibus_writereg(struct device *, int, int, int);
    218  1.1  scw static void	npe_miibus_statchg(struct device *);
    219  1.1  scw 
    220  1.1  scw static int	npe_debug;
    221  1.1  scw #define DPRINTF(sc, fmt, ...) do {			\
    222  1.1  scw 	if (npe_debug) printf(fmt, __VA_ARGS__);	\
    223  1.1  scw } while (0)
    224  1.1  scw #define DPRINTFn(n, sc, fmt, ...) do {			\
    225  1.1  scw 	if (npe_debug >= n) printf(fmt, __VA_ARGS__);	\
    226  1.1  scw } while (0)
    227  1.1  scw 
    228  1.1  scw #define	NPE_TXBUF	128
    229  1.1  scw #define	NPE_RXBUF	64
    230  1.1  scw 
    231  1.1  scw #ifndef ETHER_ALIGN
    232  1.1  scw #define	ETHER_ALIGN	2	/* XXX: Ditch this */
    233  1.1  scw #endif
    234  1.1  scw 
    235  1.1  scw /* NB: all tx done processing goes through one queue */
    236  1.1  scw static int tx_doneqid = -1;
    237  1.1  scw 
    238  1.1  scw static int npe_match(struct device *, struct cfdata *, void *);
    239  1.1  scw static void npe_attach(struct device *, struct device *, void *);
    240  1.1  scw 
    241  1.1  scw CFATTACH_DECL(npe, sizeof(struct npe_softc),
    242  1.1  scw     npe_match, npe_attach, NULL, NULL);
    243  1.1  scw 
    244  1.1  scw static int
    245  1.1  scw npe_match(struct device *parent, struct cfdata *cf, void *arg)
    246  1.1  scw {
    247  1.1  scw 	struct ixpnpe_attach_args *na = arg;
    248  1.1  scw 
    249  1.1  scw 	return (na->na_unit == NPE_B || na->na_unit == NPE_C);
    250  1.1  scw }
    251  1.1  scw 
    252  1.1  scw static void
    253  1.1  scw npe_attach(struct device *parent, struct device *self, void *arg)
    254  1.1  scw {
    255  1.1  scw 	struct npe_softc *sc = (void *)self;
    256  1.1  scw 	struct ixpnpe_attach_args *na = arg;
    257  1.1  scw 	struct ifnet *ifp;
    258  1.1  scw 	u_char eaddr[6];
    259  1.1  scw 
    260  1.1  scw 	aprint_naive("\n");
    261  1.1  scw 	aprint_normal(": Ethernet co-processor\n");
    262  1.1  scw 
    263  1.1  scw 	sc->sc_iot = na->na_iot;
    264  1.1  scw 	sc->sc_dt = na->na_dt;
    265  1.1  scw 	sc->sc_npe = na->na_npe;
    266  1.1  scw 	sc->sc_unit = (na->na_unit == NPE_B) ? 0 : 1;
    267  1.1  scw 	sc->sc_phy = na->na_phy;
    268  1.1  scw 
    269  1.1  scw 	memset(&sc->sc_ethercom, 0, sizeof(sc->sc_ethercom));
    270  1.1  scw 	memset(&sc->sc_mii, 0, sizeof(sc->sc_mii));
    271  1.1  scw 
    272  1.1  scw 	callout_init(&sc->sc_tick_ch);
    273  1.1  scw 
    274  1.1  scw 	if (npe_activate(sc)) {
    275  1.1  scw 		aprint_error("%s: Failed to activate NPE (missing "
    276  1.1  scw 		    "microcode?)\n", sc->sc_dev.dv_xname);
    277  1.1  scw 		return;
    278  1.1  scw 	}
    279  1.1  scw 
    280  1.1  scw 	/*
    281  1.1  scw 	 * XXXSCW: This is bogus - the NPE may not have been configured for
    282  1.1  scw 	 * XXXSCW: Ethernet yet. We must check for a property set by
    283  1.1  scw 	 * XXXSCW: board-specific code.
    284  1.1  scw 	 */
    285  1.1  scw 	npe_getmac(sc, eaddr);
    286  1.1  scw 
    287  1.1  scw 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    288  1.1  scw 	    ether_sprintf(eaddr));
    289  1.1  scw 
    290  1.1  scw 	ifp = &sc->sc_ethercom.ec_if;
    291  1.1  scw 	ifmedia_init(&sc->sc_mii.mii_media, 0, npe_ifmedia_change,
    292  1.1  scw 	    npe_ifmedia_status);
    293  1.1  scw 
    294  1.1  scw 	if (sc->sc_phy != IXPNPECF_PHY_DEFAULT) {
    295  1.1  scw 		sc->sc_mii.mii_ifp = ifp;
    296  1.1  scw 		sc->sc_mii.mii_readreg = npe_miibus_readreg;
    297  1.1  scw 		sc->sc_mii.mii_writereg = npe_miibus_writereg;
    298  1.1  scw 		sc->sc_mii.mii_statchg = npe_miibus_statchg;
    299  1.1  scw 
    300  1.1  scw 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
    301  1.1  scw 		    (sc->sc_phy > IXPNPECF_PHY_DEFAULT) ?
    302  1.1  scw 		      sc->sc_phy : MII_PHY_ANY,
    303  1.1  scw 		    MII_OFFSET_ANY, MIIF_NOISOLATE);
    304  1.1  scw 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
    305  1.1  scw 	} else {
    306  1.1  scw 		/* Assume direct connection to a 100mbit switch */
    307  1.1  scw 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_100_TX, 0,0);
    308  1.1  scw 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_100_TX);
    309  1.1  scw 	}
    310  1.1  scw 
    311  1.1  scw 	ifp->if_softc = sc;
    312  1.1  scw 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    313  1.1  scw 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    314  1.1  scw 	ifp->if_start = npestart;
    315  1.1  scw 	ifp->if_ioctl = npeioctl;
    316  1.1  scw 	ifp->if_watchdog = npewatchdog;
    317  1.1  scw 	ifp->if_init = npeinit;
    318  1.1  scw 	ifp->if_stop = npestop;
    319  1.1  scw 	IFQ_SET_READY(&ifp->if_snd);
    320  1.1  scw 
    321  1.1  scw 	if_attach(ifp);
    322  1.1  scw 	ether_ifattach(ifp, eaddr);
    323  1.1  scw }
    324  1.1  scw 
    325  1.1  scw /*
    326  1.1  scw  * Compute and install the multicast filter.
    327  1.1  scw  */
    328  1.1  scw static void
    329  1.1  scw npe_setmcast(struct npe_softc *sc)
    330  1.1  scw {
    331  1.1  scw 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    332  1.1  scw 	uint8_t mask[ETHER_ADDR_LEN], addr[ETHER_ADDR_LEN];
    333  1.1  scw 	int i;
    334  1.1  scw 
    335  1.1  scw 	if (ifp->if_flags & IFF_PROMISC) {
    336  1.1  scw 		memset(mask, 0, ETHER_ADDR_LEN);
    337  1.1  scw 		memset(addr, 0, ETHER_ADDR_LEN);
    338  1.1  scw 	} else if (ifp->if_flags & IFF_ALLMULTI) {
    339  1.1  scw 		static const uint8_t allmulti[ETHER_ADDR_LEN] =
    340  1.1  scw 		    { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
    341  1.1  scw  all_multi:
    342  1.1  scw 		memcpy(mask, allmulti, ETHER_ADDR_LEN);
    343  1.1  scw 		memcpy(addr, allmulti, ETHER_ADDR_LEN);
    344  1.1  scw 	} else {
    345  1.1  scw 		uint8_t clr[ETHER_ADDR_LEN], set[ETHER_ADDR_LEN];
    346  1.1  scw 		struct ether_multistep step;
    347  1.1  scw 		struct ether_multi *enm;
    348  1.1  scw 
    349  1.1  scw 		memset(clr, 0, ETHER_ADDR_LEN);
    350  1.1  scw 		memset(set, 0xff, ETHER_ADDR_LEN);
    351  1.1  scw 
    352  1.1  scw 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    353  1.1  scw 		while (enm != NULL) {
    354  1.1  scw 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
    355  1.1  scw 				ifp->if_flags |= IFF_ALLMULTI;
    356  1.1  scw 				goto all_multi;
    357  1.1  scw 			}
    358  1.1  scw 
    359  1.1  scw 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
    360  1.1  scw 				clr[i] |= enm->enm_addrlo[i];
    361  1.1  scw 				set[i] &= enm->enm_addrlo[i];
    362  1.1  scw 			}
    363  1.1  scw 
    364  1.1  scw 			ETHER_NEXT_MULTI(step, enm);
    365  1.1  scw 		}
    366  1.1  scw 
    367  1.1  scw 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
    368  1.1  scw 			mask[i] = set[i] | ~clr[i];
    369  1.1  scw 			addr[i] = set[i];
    370  1.1  scw 		}
    371  1.1  scw 	}
    372  1.1  scw 
    373  1.1  scw 	/*
    374  1.1  scw 	 * Write the mask and address registers.
    375  1.1  scw 	 */
    376  1.1  scw 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
    377  1.1  scw 		WR4(sc, NPE_MAC_ADDR_MASK(i), mask[i]);
    378  1.1  scw 		WR4(sc, NPE_MAC_ADDR(i), addr[i]);
    379  1.1  scw 	}
    380  1.1  scw }
    381  1.1  scw 
    382  1.1  scw static int
    383  1.1  scw npe_dma_setup(struct npe_softc *sc, struct npedma *dma,
    384  1.1  scw 	const char *name, int nbuf, int maxseg)
    385  1.1  scw {
    386  1.1  scw 	bus_dma_segment_t seg;
    387  1.1  scw 	int rseg, error, i;
    388  1.1  scw 	caddr_t hwbuf;
    389  1.1  scw 	size_t size;
    390  1.1  scw 
    391  1.1  scw 	memset(dma, 0, sizeof(dma));
    392  1.1  scw 
    393  1.1  scw 	dma->name = name;
    394  1.1  scw 	dma->nbuf = nbuf;
    395  1.1  scw 
    396  1.1  scw 	size = nbuf * sizeof(struct npehwbuf);
    397  1.1  scw 
    398  1.1  scw 	/* XXX COHERENT for now */
    399  1.1  scw 	error = bus_dmamem_alloc(sc->sc_dt, size, sizeof(uint32_t), 0, &seg,
    400  1.1  scw 	    1, &rseg, BUS_DMA_NOWAIT);
    401  1.1  scw 	if (error) {
    402  1.1  scw 		printf("%s: unable to allocate memory for %s h/w buffers, "
    403  1.1  scw 		    "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
    404  1.1  scw 	}
    405  1.1  scw 
    406  1.1  scw 	error = bus_dmamem_map(sc->sc_dt, &seg, 1, size, &hwbuf,
    407  1.1  scw 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_NOCACHE);
    408  1.1  scw 	if (error) {
    409  1.1  scw 		printf("%s: unable to map memory for %s h/w buffers, "
    410  1.1  scw 		    "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
    411  1.1  scw  free_dmamem:
    412  1.1  scw 		bus_dmamem_free(sc->sc_dt, &seg, rseg);
    413  1.1  scw 		return error;
    414  1.1  scw 	}
    415  1.1  scw 	dma->hwbuf = (void *)hwbuf;
    416  1.1  scw 
    417  1.1  scw 	error = bus_dmamap_create(sc->sc_dt, size, 1, size, 0,
    418  1.1  scw 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &dma->buf_map);
    419  1.1  scw 	if (error) {
    420  1.1  scw 		printf("%s: unable to create map for %s h/w buffers, "
    421  1.1  scw 		    "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
    422  1.1  scw  unmap_dmamem:
    423  1.1  scw 		dma->hwbuf = NULL;
    424  1.1  scw 		bus_dmamem_unmap(sc->sc_dt, hwbuf, size);
    425  1.1  scw 		goto free_dmamem;
    426  1.1  scw 	}
    427  1.1  scw 
    428  1.1  scw 	error = bus_dmamap_load(sc->sc_dt, dma->buf_map, hwbuf, size, NULL,
    429  1.1  scw 	    BUS_DMA_NOWAIT);
    430  1.1  scw 	if (error) {
    431  1.1  scw 		printf("%s: unable to load map for %s h/w buffers, "
    432  1.1  scw 		    "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
    433  1.1  scw  destroy_dmamap:
    434  1.1  scw 		bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
    435  1.1  scw 		goto unmap_dmamem;
    436  1.1  scw 	}
    437  1.1  scw 
    438  1.1  scw 	/* XXX M_TEMP */
    439  1.1  scw 	dma->buf = malloc(nbuf * sizeof(struct npebuf), M_TEMP, M_NOWAIT | M_ZERO);
    440  1.1  scw 	if (dma->buf == NULL) {
    441  1.1  scw 		printf("%s: unable to allocate memory for %s s/w buffers\n",
    442  1.1  scw 		    sc->sc_dev.dv_xname, dma->name);
    443  1.1  scw 		bus_dmamap_unload(sc->sc_dt, dma->buf_map);
    444  1.1  scw 		error = ENOMEM;
    445  1.1  scw 		goto destroy_dmamap;
    446  1.1  scw 	}
    447  1.1  scw 
    448  1.1  scw 	dma->buf_phys = dma->buf_map->dm_segs[0].ds_addr;
    449  1.1  scw 	for (i = 0; i < dma->nbuf; i++) {
    450  1.1  scw 		struct npebuf *npe = &dma->buf[i];
    451  1.1  scw 		struct npehwbuf *hw = &dma->hwbuf[i];
    452  1.1  scw 
    453  1.1  scw 		/* calculate offset to shared area */
    454  1.1  scw 		npe->ix_neaddr = dma->buf_phys +
    455  1.1  scw 			((uintptr_t)hw - (uintptr_t)dma->hwbuf);
    456  1.1  scw 		KASSERT((npe->ix_neaddr & 0x1f) == 0);
    457  1.1  scw 		error = bus_dmamap_create(sc->sc_dt, MCLBYTES, 1,
    458  1.1  scw 		    MCLBYTES, 0, 0, &npe->ix_map);
    459  1.1  scw 		if (error != 0) {
    460  1.1  scw 			printf("%s: unable to create dmamap for %s buffer %u, "
    461  1.1  scw 			    "error %u\n", sc->sc_dev.dv_xname, dma->name, i,
    462  1.1  scw 			    error);
    463  1.1  scw 			/* XXXSCW: Free up maps... */
    464  1.1  scw 			return error;
    465  1.1  scw 		}
    466  1.1  scw 		npe->ix_hw = hw;
    467  1.1  scw 	}
    468  1.1  scw 	bus_dmamap_sync(sc->sc_dt, dma->buf_map, 0, dma->buf_map->dm_mapsize,
    469  1.1  scw 	    BUS_DMASYNC_PREWRITE);
    470  1.1  scw 	return 0;
    471  1.1  scw }
    472  1.1  scw 
    473  1.1  scw #if 0
    474  1.1  scw static void
    475  1.1  scw npe_dma_destroy(struct npe_softc *sc, struct npedma *dma)
    476  1.1  scw {
    477  1.1  scw 	int i;
    478  1.1  scw 
    479  1.1  scw /* XXXSCW: Clean this up */
    480  1.1  scw 
    481  1.1  scw 	if (dma->hwbuf != NULL) {
    482  1.1  scw 		for (i = 0; i < dma->nbuf; i++) {
    483  1.1  scw 			struct npebuf *npe = &dma->buf[i];
    484  1.1  scw 			bus_dmamap_destroy(sc->sc_dt, npe->ix_map);
    485  1.1  scw 		}
    486  1.1  scw 		bus_dmamap_unload(sc->sc_dt, dma->buf_map);
    487  1.1  scw 		bus_dmamem_free(sc->sc_dt, (caddr_t)dma->hwbuf, dma->buf_map);
    488  1.1  scw 		bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
    489  1.1  scw 	}
    490  1.1  scw 	if (dma->buf != NULL)
    491  1.1  scw 		free(dma->buf, M_TEMP);
    492  1.1  scw 	memset(dma, 0, sizeof(*dma));
    493  1.1  scw }
    494  1.1  scw #endif
    495  1.1  scw 
    496  1.1  scw static int
    497  1.1  scw npe_activate(struct npe_softc *sc)
    498  1.1  scw {
    499  1.1  scw 	bus_dma_segment_t seg;
    500  1.1  scw 	int unit = sc->sc_unit;
    501  1.1  scw 	int error, i, rseg;
    502  1.1  scw 	caddr_t statbuf;
    503  1.1  scw 
    504  1.1  scw 	/* load NPE firmware and start it running */
    505  1.1  scw 	error = ixpnpe_init(sc->sc_npe, "npe_fw", npeconfig[unit].imageid);
    506  1.1  scw 	if (error != 0)
    507  1.1  scw 		return error;
    508  1.1  scw 
    509  1.1  scw 	if (bus_space_map(sc->sc_iot, npeconfig[unit].regbase,
    510  1.1  scw 	    npeconfig[unit].regsize, 0, &sc->sc_ioh)) {
    511  1.1  scw 		printf("%s: Cannot map registers 0x%x:0x%x\n",
    512  1.1  scw 		    sc->sc_dev.dv_xname, npeconfig[unit].regbase,
    513  1.1  scw 		    npeconfig[unit].regsize);
    514  1.1  scw 		return ENOMEM;
    515  1.1  scw 	}
    516  1.1  scw 
    517  1.1  scw 	if (npeconfig[unit].miibase != npeconfig[unit].regbase) {
    518  1.1  scw 		/*
    519  1.1  scw 		 * The PHY's are only accessible from one MAC (it appears)
    520  1.1  scw 		 * so for other MAC's setup an additional mapping for
    521  1.1  scw 		 * frobbing the PHY registers.
    522  1.1  scw 		 */
    523  1.1  scw 		if (bus_space_map(sc->sc_iot, npeconfig[unit].miibase,
    524  1.1  scw 		    npeconfig[unit].miisize, 0, &sc->sc_miih)) {
    525  1.1  scw 			printf("%s: Cannot map MII registers 0x%x:0x%x\n",
    526  1.1  scw 			    sc->sc_dev.dv_xname, npeconfig[unit].miibase,
    527  1.1  scw 			    npeconfig[unit].miisize);
    528  1.1  scw 			return ENOMEM;
    529  1.1  scw 		}
    530  1.1  scw 	} else
    531  1.1  scw 		sc->sc_miih = sc->sc_ioh;
    532  1.1  scw 	error = npe_dma_setup(sc, &sc->txdma, "tx", NPE_TXBUF, NPE_MAXSEG);
    533  1.1  scw 	if (error != 0)
    534  1.1  scw 		return error;
    535  1.1  scw 	error = npe_dma_setup(sc, &sc->rxdma, "rx", NPE_RXBUF, 1);
    536  1.1  scw 	if (error != 0)
    537  1.1  scw 		return error;
    538  1.1  scw 
    539  1.1  scw 	/* setup statistics block */
    540  1.1  scw 	error = bus_dmamem_alloc(sc->sc_dt, sizeof(struct npestats),
    541  1.1  scw 	    sizeof(uint32_t), 0, &seg, 1, &rseg, BUS_DMA_NOWAIT);
    542  1.1  scw 	if (error) {
    543  1.1  scw 		printf("%s: unable to allocate memory for stats block, "
    544  1.1  scw 		    "error %u\n", sc->sc_dev.dv_xname, error);
    545  1.1  scw 		return error;
    546  1.1  scw 	}
    547  1.1  scw 
    548  1.1  scw 	error = bus_dmamem_map(sc->sc_dt, &seg, 1, sizeof(struct npestats),
    549  1.1  scw 	    &statbuf, BUS_DMA_NOWAIT);
    550  1.1  scw 	if (error) {
    551  1.1  scw 		printf("%s: unable to map memory for stats block, "
    552  1.1  scw 		    "error %u\n", sc->sc_dev.dv_xname, error);
    553  1.1  scw 		return error;
    554  1.1  scw 	}
    555  1.1  scw 	sc->sc_stats = (void *)statbuf;
    556  1.1  scw 
    557  1.1  scw 	error = bus_dmamap_create(sc->sc_dt, sizeof(struct npestats), 1,
    558  1.1  scw 	    sizeof(struct npestats), 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    559  1.1  scw 	    &sc->sc_stats_map);
    560  1.1  scw 	if (error) {
    561  1.1  scw 		printf("%s: unable to create map for stats block, "
    562  1.1  scw 		    "error %u\n", sc->sc_dev.dv_xname, error);
    563  1.1  scw 		return error;
    564  1.1  scw 	}
    565  1.1  scw 
    566  1.1  scw 	if (bus_dmamap_load(sc->sc_dt, sc->sc_stats_map, sc->sc_stats,
    567  1.1  scw 	    sizeof(struct npestats), NULL, BUS_DMA_NOWAIT) != 0) {
    568  1.1  scw 		printf("%s: unable to load memory for stats block, error %u\n",
    569  1.1  scw 		    sc->sc_dev.dv_xname, error);
    570  1.1  scw 		return error;
    571  1.1  scw 	}
    572  1.1  scw 	sc->sc_stats_phys = sc->sc_stats_map->dm_segs[0].ds_addr;
    573  1.1  scw 
    574  1.1  scw 	/* XXX disable half-bridge LEARNING+FILTERING feature */
    575  1.1  scw 
    576  1.1  scw 	/*
    577  1.1  scw 	 * Setup h/w rx/tx queues.  There are four q's:
    578  1.1  scw 	 *   rx		inbound q of rx'd frames
    579  1.1  scw 	 *   rx_free	pool of ixpbuf's for receiving frames
    580  1.1  scw 	 *   tx		outbound q of frames to send
    581  1.1  scw 	 *   tx_done	q of tx frames that have been processed
    582  1.1  scw 	 *
    583  1.1  scw 	 * The NPE handles the actual tx/rx process and the q manager
    584  1.1  scw 	 * handles the queues.  The driver just writes entries to the
    585  1.1  scw 	 * q manager mailbox's and gets callbacks when there are rx'd
    586  1.1  scw 	 * frames to process or tx'd frames to reap.  These callbacks
    587  1.1  scw 	 * are controlled by the q configurations; e.g. we get a
    588  1.1  scw 	 * callback when tx_done has 2 or more frames to process and
    589  1.1  scw 	 * when the rx q has at least one frame.  These setings can
    590  1.1  scw 	 * changed at the time the q is configured.
    591  1.1  scw 	 */
    592  1.1  scw 	sc->rx_qid = npeconfig[unit].rx_qid;
    593  1.1  scw 	ixpqmgr_qconfig(sc->rx_qid, NPE_RXBUF, 0,  1,
    594  1.1  scw 		IX_QMGR_Q_SOURCE_ID_NOT_E, npe_rxdone, sc);
    595  1.1  scw 	sc->rx_freeqid = npeconfig[unit].rx_freeqid;
    596  1.1  scw 	ixpqmgr_qconfig(sc->rx_freeqid,	NPE_RXBUF, 0, NPE_RXBUF/2, 0, NULL, sc);
    597  1.1  scw 	/* tell the NPE to direct all traffic to rx_qid */
    598  1.1  scw #if 0
    599  1.1  scw 	for (i = 0; i < 8; i++)
    600  1.1  scw #else
    601  1.1  scw printf("%s: remember to fix rx q setup\n", sc->sc_dev.dv_xname);
    602  1.1  scw 	for (i = 0; i < 4; i++)
    603  1.1  scw #endif
    604  1.1  scw 		npe_setrxqosentry(sc, i, 0, sc->rx_qid);
    605  1.1  scw 
    606  1.1  scw 	sc->tx_qid = npeconfig[unit].tx_qid;
    607  1.1  scw 	sc->tx_doneqid = npeconfig[unit].tx_doneqid;
    608  1.1  scw 	ixpqmgr_qconfig(sc->tx_qid, NPE_TXBUF, 0, NPE_TXBUF, 0, NULL, sc);
    609  1.1  scw 	if (tx_doneqid == -1) {
    610  1.1  scw 		ixpqmgr_qconfig(sc->tx_doneqid,	NPE_TXBUF, 0,  2,
    611  1.1  scw 			IX_QMGR_Q_SOURCE_ID_NOT_E, npe_txdone, sc);
    612  1.1  scw 		tx_doneqid = sc->tx_doneqid;
    613  1.1  scw 	}
    614  1.1  scw 
    615  1.1  scw 	KASSERT(npes[npeconfig[unit].npeid] == NULL);
    616  1.1  scw 	npes[npeconfig[unit].npeid] = sc;
    617  1.1  scw 
    618  1.1  scw 	return 0;
    619  1.1  scw }
    620  1.1  scw 
    621  1.1  scw #if 0
    622  1.1  scw static void
    623  1.1  scw npe_deactivate(struct npe_softc *sc);
    624  1.1  scw {
    625  1.1  scw 	int unit = sc->sc_unit;
    626  1.1  scw 
    627  1.1  scw 	npes[npeconfig[unit].npeid] = NULL;
    628  1.1  scw 
    629  1.1  scw 	/* XXX disable q's */
    630  1.1  scw 	if (sc->sc_npe != NULL)
    631  1.1  scw 		ixpnpe_stop(sc->sc_npe);
    632  1.1  scw 	if (sc->sc_stats != NULL) {
    633  1.1  scw 		bus_dmamap_unload(sc->sc_stats_tag, sc->sc_stats_map);
    634  1.1  scw 		bus_dmamem_free(sc->sc_stats_tag, sc->sc_stats,
    635  1.1  scw 			sc->sc_stats_map);
    636  1.1  scw 		bus_dmamap_destroy(sc->sc_stats_tag, sc->sc_stats_map);
    637  1.1  scw 	}
    638  1.1  scw 	if (sc->sc_stats_tag != NULL)
    639  1.1  scw 		bus_dma_tag_destroy(sc->sc_stats_tag);
    640  1.1  scw 	npe_dma_destroy(sc, &sc->txdma);
    641  1.1  scw 	npe_dma_destroy(sc, &sc->rxdma);
    642  1.1  scw 	bus_generic_detach(sc->sc_dev);
    643  1.1  scw 	if (sc->sc_mii)
    644  1.1  scw 		device_delete_child(sc->sc_dev, sc->sc_mii);
    645  1.1  scw #if 0
    646  1.1  scw 	/* XXX sc_ioh and sc_miih */
    647  1.1  scw 	if (sc->mem_res)
    648  1.1  scw 		bus_release_resource(dev, SYS_RES_IOPORT,
    649  1.1  scw 		    rman_get_rid(sc->mem_res), sc->mem_res);
    650  1.1  scw 	sc->mem_res = 0;
    651  1.1  scw #endif
    652  1.1  scw }
    653  1.1  scw #endif
    654  1.1  scw 
    655  1.1  scw /*
    656  1.1  scw  * Change media according to request.
    657  1.1  scw  */
    658  1.1  scw static int
    659  1.1  scw npe_ifmedia_change(struct ifnet *ifp)
    660  1.1  scw {
    661  1.1  scw 	struct npe_softc *sc = ifp->if_softc;
    662  1.1  scw 
    663  1.1  scw 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && ifp->if_flags & IFF_UP)
    664  1.1  scw 		mii_mediachg(&sc->sc_mii);
    665  1.1  scw 	return (0);
    666  1.1  scw }
    667  1.1  scw 
    668  1.1  scw /*
    669  1.1  scw  * Notify the world which media we're using.
    670  1.1  scw  */
    671  1.1  scw static void
    672  1.1  scw npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
    673  1.1  scw {
    674  1.1  scw 	struct npe_softc *sc = ifp->if_softc;
    675  1.1  scw 
    676  1.1  scw 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT)
    677  1.1  scw 		mii_pollstat(&sc->sc_mii);
    678  1.1  scw 
    679  1.1  scw 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
    680  1.1  scw 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
    681  1.1  scw }
    682  1.1  scw 
    683  1.1  scw static void
    684  1.1  scw npe_addstats(struct npe_softc *sc)
    685  1.1  scw {
    686  1.1  scw 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    687  1.1  scw 	struct npestats *ns = sc->sc_stats;
    688  1.1  scw 
    689  1.1  scw 	ifp->if_oerrors +=
    690  1.1  scw 		  be32toh(ns->dot3StatsInternalMacTransmitErrors)
    691  1.1  scw 		+ be32toh(ns->dot3StatsCarrierSenseErrors)
    692  1.1  scw 		+ be32toh(ns->TxVLANIdFilterDiscards)
    693  1.1  scw 		;
    694  1.1  scw 	ifp->if_ierrors += be32toh(ns->dot3StatsFCSErrors)
    695  1.1  scw 		+ be32toh(ns->dot3StatsInternalMacReceiveErrors)
    696  1.1  scw 		+ be32toh(ns->RxOverrunDiscards)
    697  1.1  scw 		+ be32toh(ns->RxUnderflowEntryDiscards)
    698  1.1  scw 		;
    699  1.1  scw 	ifp->if_collisions +=
    700  1.1  scw 		  be32toh(ns->dot3StatsSingleCollisionFrames)
    701  1.1  scw 		+ be32toh(ns->dot3StatsMultipleCollisionFrames)
    702  1.1  scw 		;
    703  1.1  scw }
    704  1.1  scw 
    705  1.1  scw static void
    706  1.1  scw npe_tick(void *xsc)
    707  1.1  scw {
    708  1.1  scw #define	ACK	(NPE_RESETSTATS << NPE_MAC_MSGID_SHL)
    709  1.1  scw 	struct npe_softc *sc = xsc;
    710  1.1  scw 	uint32_t msg[2];
    711  1.1  scw 
    712  1.1  scw 	/*
    713  1.1  scw 	 * NB: to avoid sleeping with the softc lock held we
    714  1.1  scw 	 * split the NPE msg processing into two parts.  The
    715  1.1  scw 	 * request for statistics is sent w/o waiting for a
    716  1.1  scw 	 * reply and then on the next tick we retrieve the
    717  1.1  scw 	 * results.  This works because npe_tick is the only
    718  1.1  scw 	 * code that talks via the mailbox's (except at setup).
    719  1.1  scw 	 * This likely can be handled better.
    720  1.1  scw 	 */
    721  1.1  scw 	if (ixpnpe_recvmsg(sc->sc_npe, msg) == 0 && msg[0] == ACK) {
    722  1.1  scw 		bus_dmamap_sync(sc->sc_dt, sc->sc_stats_map, 0,
    723  1.1  scw 		    sizeof(struct npestats), BUS_DMASYNC_POSTREAD);
    724  1.1  scw 		npe_addstats(sc);
    725  1.1  scw 	}
    726  1.1  scw 	npe_updatestats(sc);
    727  1.1  scw 	mii_tick(&sc->sc_mii);
    728  1.1  scw 
    729  1.1  scw 	/* schedule next poll */
    730  1.1  scw 	callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
    731  1.1  scw #undef ACK
    732  1.1  scw }
    733  1.1  scw 
    734  1.1  scw static void
    735  1.1  scw npe_setmac(struct npe_softc *sc, u_char *eaddr)
    736  1.1  scw {
    737  1.1  scw 	WR4(sc, NPE_MAC_UNI_ADDR_1, eaddr[0]);
    738  1.1  scw 	WR4(sc, NPE_MAC_UNI_ADDR_2, eaddr[1]);
    739  1.1  scw 	WR4(sc, NPE_MAC_UNI_ADDR_3, eaddr[2]);
    740  1.1  scw 	WR4(sc, NPE_MAC_UNI_ADDR_4, eaddr[3]);
    741  1.1  scw 	WR4(sc, NPE_MAC_UNI_ADDR_5, eaddr[4]);
    742  1.1  scw 	WR4(sc, NPE_MAC_UNI_ADDR_6, eaddr[5]);
    743  1.1  scw 
    744  1.1  scw }
    745  1.1  scw 
    746  1.1  scw static void
    747  1.1  scw npe_getmac(struct npe_softc *sc, u_char *eaddr)
    748  1.1  scw {
    749  1.1  scw 	/* NB: the unicast address appears to be loaded from EEPROM on reset */
    750  1.1  scw 	eaddr[0] = RD4(sc, NPE_MAC_UNI_ADDR_1) & 0xff;
    751  1.1  scw 	eaddr[1] = RD4(sc, NPE_MAC_UNI_ADDR_2) & 0xff;
    752  1.1  scw 	eaddr[2] = RD4(sc, NPE_MAC_UNI_ADDR_3) & 0xff;
    753  1.1  scw 	eaddr[3] = RD4(sc, NPE_MAC_UNI_ADDR_4) & 0xff;
    754  1.1  scw 	eaddr[4] = RD4(sc, NPE_MAC_UNI_ADDR_5) & 0xff;
    755  1.1  scw 	eaddr[5] = RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff;
    756  1.1  scw }
    757  1.1  scw 
    758  1.1  scw struct txdone {
    759  1.1  scw 	struct npebuf *head;
    760  1.1  scw 	struct npebuf **tail;
    761  1.1  scw 	int count;
    762  1.1  scw };
    763  1.1  scw 
    764  1.1  scw static __inline void
    765  1.1  scw npe_txdone_finish(struct npe_softc *sc, const struct txdone *td)
    766  1.1  scw {
    767  1.1  scw 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    768  1.1  scw 
    769  1.1  scw 	*td->tail = sc->tx_free;
    770  1.1  scw 	sc->tx_free = td->head;
    771  1.1  scw 	/*
    772  1.1  scw 	 * We're no longer busy, so clear the busy flag and call the
    773  1.1  scw 	 * start routine to xmit more packets.
    774  1.1  scw 	 */
    775  1.1  scw 	ifp->if_opackets += td->count;
    776  1.1  scw 	ifp->if_flags &= ~IFF_OACTIVE;
    777  1.1  scw 	ifp->if_timer = 0;
    778  1.1  scw 	npestart(ifp);
    779  1.1  scw }
    780  1.1  scw 
    781  1.1  scw /*
    782  1.1  scw  * Q manager callback on tx done queue.  Reap mbufs
    783  1.1  scw  * and return tx buffers to the free list.  Finally
    784  1.1  scw  * restart output.  Note the microcode has only one
    785  1.1  scw  * txdone q wired into it so we must use the NPE ID
    786  1.1  scw  * returned with each npehwbuf to decide where to
    787  1.1  scw  * send buffers.
    788  1.1  scw  */
    789  1.1  scw static void
    790  1.1  scw npe_txdone(int qid, void *arg)
    791  1.1  scw {
    792  1.1  scw #define	P2V(a, dma) \
    793  1.1  scw 	&(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
    794  1.1  scw 	struct npe_softc *sc;
    795  1.1  scw 	struct npebuf *npe;
    796  1.1  scw 	struct txdone *td, q[NPE_MAX];
    797  1.1  scw 	uint32_t entry;
    798  1.1  scw 
    799  1.1  scw 	/* XXX no NPE-A support */
    800  1.1  scw 	q[NPE_B].tail = &q[NPE_B].head; q[NPE_B].count = 0;
    801  1.1  scw 	q[NPE_C].tail = &q[NPE_C].head; q[NPE_C].count = 0;
    802  1.1  scw 	/* XXX max # at a time? */
    803  1.1  scw 	while (ixpqmgr_qread(qid, &entry) == 0) {
    804  1.1  scw 		sc = npes[NPE_QM_Q_NPE(entry)];
    805  1.1  scw 		DPRINTF(sc, "%s: entry 0x%x NPE %u port %u\n",
    806  1.1  scw 		    __func__, entry, NPE_QM_Q_NPE(entry), NPE_QM_Q_PORT(entry));
    807  1.1  scw 
    808  1.1  scw 		npe = P2V(NPE_QM_Q_ADDR(entry), &sc->txdma);
    809  1.1  scw 		m_freem(npe->ix_m);
    810  1.1  scw 		npe->ix_m = NULL;
    811  1.1  scw 
    812  1.1  scw 		td = &q[NPE_QM_Q_NPE(entry)];
    813  1.1  scw 		*td->tail = npe;
    814  1.1  scw 		td->tail = &npe->ix_next;
    815  1.1  scw 		td->count++;
    816  1.1  scw 	}
    817  1.1  scw 
    818  1.1  scw 	if (q[NPE_B].count)
    819  1.1  scw 		npe_txdone_finish(npes[NPE_B], &q[NPE_B]);
    820  1.1  scw 	if (q[NPE_C].count)
    821  1.1  scw 		npe_txdone_finish(npes[NPE_C], &q[NPE_C]);
    822  1.1  scw #undef P2V
    823  1.1  scw }
    824  1.1  scw 
    825  1.1  scw static __inline struct mbuf *
    826  1.1  scw npe_getcl(void)
    827  1.1  scw {
    828  1.1  scw 	struct mbuf *m;
    829  1.1  scw 
    830  1.1  scw 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    831  1.1  scw 	if (m != NULL) {
    832  1.1  scw 		MCLGET(m, M_DONTWAIT);
    833  1.1  scw 		if ((m->m_flags & M_EXT) == 0) {
    834  1.1  scw 			m_freem(m);
    835  1.1  scw 			m = NULL;
    836  1.1  scw 		}
    837  1.1  scw 	}
    838  1.1  scw 	return (m);
    839  1.1  scw }
    840  1.1  scw 
    841  1.1  scw static int
    842  1.1  scw npe_rxbuf_init(struct npe_softc *sc, struct npebuf *npe, struct mbuf *m)
    843  1.1  scw {
    844  1.1  scw 	struct npehwbuf *hw;
    845  1.1  scw 	int error;
    846  1.1  scw 
    847  1.1  scw 	if (m == NULL) {
    848  1.1  scw 		m = npe_getcl();
    849  1.1  scw 		if (m == NULL)
    850  1.1  scw 			return ENOBUFS;
    851  1.1  scw 	}
    852  1.1  scw 	KASSERT(m->m_ext.ext_size >= (1536 + ETHER_ALIGN));
    853  1.1  scw 	m->m_pkthdr.len = m->m_len = 1536;
    854  1.1  scw 	/* backload payload and align ip hdr */
    855  1.1  scw 	m->m_data = m->m_ext.ext_buf + (m->m_ext.ext_size - (1536+ETHER_ALIGN));
    856  1.1  scw 	error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
    857  1.1  scw 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
    858  1.1  scw 	if (error != 0) {
    859  1.1  scw 		m_freem(m);
    860  1.1  scw 		return error;
    861  1.1  scw 	}
    862  1.1  scw 	hw = npe->ix_hw;
    863  1.1  scw 	hw->ix_ne[0].data = htobe32(npe->ix_map->dm_segs[0].ds_addr);
    864  1.1  scw 	/* NB: NPE requires length be a multiple of 64 */
    865  1.1  scw 	/* NB: buffer length is shifted in word */
    866  1.1  scw 	hw->ix_ne[0].len = htobe32(npe->ix_map->dm_segs[0].ds_len << 16);
    867  1.1  scw 	hw->ix_ne[0].next = 0;
    868  1.1  scw 	npe->ix_m = m;
    869  1.1  scw 	/* Flush the memory in the mbuf */
    870  1.1  scw 	bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0, npe->ix_map->dm_mapsize,
    871  1.1  scw 	    BUS_DMASYNC_PREREAD);
    872  1.1  scw 	return 0;
    873  1.1  scw }
    874  1.1  scw 
    875  1.1  scw /*
    876  1.1  scw  * RX q processing for a specific NPE.  Claim entries
    877  1.1  scw  * from the hardware queue and pass the frames up the
    878  1.1  scw  * stack. Pass the rx buffers to the free list.
    879  1.1  scw  */
    880  1.1  scw static void
    881  1.1  scw npe_rxdone(int qid, void *arg)
    882  1.1  scw {
    883  1.1  scw #define	P2V(a, dma) \
    884  1.1  scw 	&(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
    885  1.1  scw 	struct npe_softc *sc = arg;
    886  1.1  scw 	struct npedma *dma = &sc->rxdma;
    887  1.1  scw 	uint32_t entry;
    888  1.1  scw 
    889  1.1  scw 	while (ixpqmgr_qread(qid, &entry) == 0) {
    890  1.1  scw 		struct npebuf *npe = P2V(NPE_QM_Q_ADDR(entry), dma);
    891  1.1  scw 		struct mbuf *m;
    892  1.1  scw 
    893  1.1  scw 		DPRINTF(sc, "%s: entry 0x%x neaddr 0x%x ne_len 0x%x\n",
    894  1.1  scw 		    __func__, entry, npe->ix_neaddr, npe->ix_hw->ix_ne[0].len);
    895  1.1  scw 		/*
    896  1.1  scw 		 * Allocate a new mbuf to replenish the rx buffer.
    897  1.1  scw 		 * If doing so fails we drop the rx'd frame so we
    898  1.1  scw 		 * can reuse the previous mbuf.  When we're able to
    899  1.1  scw 		 * allocate a new mbuf dispatch the mbuf w/ rx'd
    900  1.1  scw 		 * data up the stack and replace it with the newly
    901  1.1  scw 		 * allocated one.
    902  1.1  scw 		 */
    903  1.1  scw 		m = npe_getcl();
    904  1.1  scw 		if (m != NULL) {
    905  1.1  scw 			struct mbuf *mrx = npe->ix_m;
    906  1.1  scw 			struct npehwbuf *hw = npe->ix_hw;
    907  1.1  scw 			struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    908  1.1  scw 
    909  1.1  scw 			/* Flush mbuf memory for rx'd data */
    910  1.1  scw 			bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
    911  1.1  scw 			    npe->ix_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
    912  1.1  scw 
    913  1.1  scw 			/* XXX flush hw buffer; works now 'cuz coherent */
    914  1.1  scw 			/* set m_len etc. per rx frame size */
    915  1.1  scw 			mrx->m_len = be32toh(hw->ix_ne[0].len) & 0xffff;
    916  1.1  scw 			mrx->m_pkthdr.len = mrx->m_len;
    917  1.1  scw 			mrx->m_pkthdr.rcvif = ifp;
    918  1.1  scw 			mrx->m_flags |= M_HASFCS;
    919  1.1  scw 
    920  1.1  scw 			ifp->if_ipackets++;
    921  1.1  scw 			ifp->if_input(ifp, mrx);
    922  1.1  scw 		} else {
    923  1.1  scw 			/* discard frame and re-use mbuf */
    924  1.1  scw 			m = npe->ix_m;
    925  1.1  scw 		}
    926  1.1  scw 		if (npe_rxbuf_init(sc, npe, m) == 0) {
    927  1.1  scw 			/* return npe buf to rx free list */
    928  1.1  scw 			ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
    929  1.1  scw 		} else {
    930  1.1  scw 			/* XXX should not happen */
    931  1.1  scw 		}
    932  1.1  scw 	}
    933  1.1  scw #undef P2V
    934  1.1  scw }
    935  1.1  scw 
    936  1.1  scw static void
    937  1.1  scw npe_startxmit(struct npe_softc *sc)
    938  1.1  scw {
    939  1.1  scw 	struct npedma *dma = &sc->txdma;
    940  1.1  scw 	int i;
    941  1.1  scw 
    942  1.1  scw 	sc->tx_free = NULL;
    943  1.1  scw 	for (i = 0; i < dma->nbuf; i++) {
    944  1.1  scw 		struct npebuf *npe = &dma->buf[i];
    945  1.1  scw 		if (npe->ix_m != NULL) {
    946  1.1  scw 			/* NB: should not happen */
    947  1.1  scw 			printf("%s: %s: free mbuf at entry %u\n",
    948  1.1  scw 			    sc->sc_dev.dv_xname, __func__, i);
    949  1.1  scw 			m_freem(npe->ix_m);
    950  1.1  scw 		}
    951  1.1  scw 		npe->ix_m = NULL;
    952  1.1  scw 		npe->ix_next = sc->tx_free;
    953  1.1  scw 		sc->tx_free = npe;
    954  1.1  scw 	}
    955  1.1  scw }
    956  1.1  scw 
    957  1.1  scw static void
    958  1.1  scw npe_startrecv(struct npe_softc *sc)
    959  1.1  scw {
    960  1.1  scw 	struct npedma *dma = &sc->rxdma;
    961  1.1  scw 	struct npebuf *npe;
    962  1.1  scw 	int i;
    963  1.1  scw 
    964  1.1  scw 	for (i = 0; i < dma->nbuf; i++) {
    965  1.1  scw 		npe = &dma->buf[i];
    966  1.1  scw 		npe_rxbuf_init(sc, npe, npe->ix_m);
    967  1.1  scw 		/* set npe buf on rx free list */
    968  1.1  scw 		ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
    969  1.1  scw 	}
    970  1.1  scw }
    971  1.1  scw 
    972  1.1  scw /*
    973  1.1  scw  * Reset and initialize the chip
    974  1.1  scw  */
    975  1.1  scw static void
    976  1.1  scw npeinit_locked(void *xsc)
    977  1.1  scw {
    978  1.1  scw 	struct npe_softc *sc = xsc;
    979  1.1  scw 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    980  1.1  scw 
    981  1.1  scw if (ifp->if_flags & IFF_RUNNING) return;/*XXX*/
    982  1.1  scw 
    983  1.1  scw 	/*
    984  1.1  scw 	 * Reset MAC core.
    985  1.1  scw 	 */
    986  1.1  scw 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
    987  1.1  scw 	DELAY(NPE_MAC_RESET_DELAY);
    988  1.1  scw 	/* configure MAC to generate MDC clock */
    989  1.1  scw 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
    990  1.1  scw 
    991  1.1  scw 	/* disable transmitter and reciver in the MAC */
    992  1.1  scw  	WR4(sc, NPE_MAC_RX_CNTRL1,
    993  1.1  scw 	    RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
    994  1.1  scw  	WR4(sc, NPE_MAC_TX_CNTRL1,
    995  1.1  scw 	    RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
    996  1.1  scw 
    997  1.1  scw 	/*
    998  1.1  scw 	 * Set the MAC core registers.
    999  1.1  scw 	 */
   1000  1.1  scw 	WR4(sc, NPE_MAC_INT_CLK_THRESH, 0x1);	/* clock ratio: for ipx4xx */
   1001  1.1  scw 	WR4(sc, NPE_MAC_TX_CNTRL2,	0xf);	/* max retries */
   1002  1.1  scw 	WR4(sc, NPE_MAC_RANDOM_SEED,	0x8);	/* LFSR back-off seed */
   1003  1.1  scw 	/* thresholds determined by NPE firmware FS */
   1004  1.1  scw 	WR4(sc, NPE_MAC_THRESH_P_EMPTY,	0x12);
   1005  1.1  scw 	WR4(sc, NPE_MAC_THRESH_P_FULL,	0x30);
   1006  1.1  scw 	WR4(sc, NPE_MAC_BUF_SIZE_TX,	0x8);	/* tx fifo threshold (bytes) */
   1007  1.1  scw 	WR4(sc, NPE_MAC_TX_DEFER,	0x15);	/* for single deferral */
   1008  1.1  scw 	WR4(sc, NPE_MAC_RX_DEFER,	0x16);	/* deferral on inter-frame gap*/
   1009  1.1  scw 	WR4(sc, NPE_MAC_TX_TWO_DEFER_1,	0x8);	/* for 2-part deferral */
   1010  1.1  scw 	WR4(sc, NPE_MAC_TX_TWO_DEFER_2,	0x7);	/* for 2-part deferral */
   1011  1.1  scw 	WR4(sc, NPE_MAC_SLOT_TIME,	0x80);	/* assumes MII mode */
   1012  1.1  scw 
   1013  1.1  scw 	WR4(sc, NPE_MAC_TX_CNTRL1,
   1014  1.1  scw 		  NPE_TX_CNTRL1_RETRY		/* retry failed xmits */
   1015  1.1  scw 		| NPE_TX_CNTRL1_FCS_EN		/* append FCS */
   1016  1.1  scw 		| NPE_TX_CNTRL1_2DEFER		/* 2-part deferal */
   1017  1.1  scw 		| NPE_TX_CNTRL1_PAD_EN);	/* pad runt frames */
   1018  1.1  scw 	/* XXX pad strip? */
   1019  1.1  scw 	WR4(sc, NPE_MAC_RX_CNTRL1,
   1020  1.1  scw 		  NPE_RX_CNTRL1_CRC_EN		/* include CRC/FCS */
   1021  1.1  scw 		| NPE_RX_CNTRL1_PAUSE_EN);	/* ena pause frame handling */
   1022  1.1  scw 	WR4(sc, NPE_MAC_RX_CNTRL2, 0);
   1023  1.1  scw 
   1024  1.1  scw 	npe_setmac(sc, LLADDR(ifp->if_sadl));
   1025  1.1  scw 	npe_setmcast(sc);
   1026  1.1  scw 
   1027  1.1  scw 	npe_startxmit(sc);
   1028  1.1  scw 	npe_startrecv(sc);
   1029  1.1  scw 
   1030  1.1  scw 	ifp->if_flags |= IFF_RUNNING;
   1031  1.1  scw 	ifp->if_flags &= ~IFF_OACTIVE;
   1032  1.1  scw 	ifp->if_timer = 0;		/* just in case */
   1033  1.1  scw 
   1034  1.1  scw 	/* enable transmitter and reciver in the MAC */
   1035  1.1  scw  	WR4(sc, NPE_MAC_RX_CNTRL1,
   1036  1.1  scw 	    RD4(sc, NPE_MAC_RX_CNTRL1) | NPE_RX_CNTRL1_RX_EN);
   1037  1.1  scw  	WR4(sc, NPE_MAC_TX_CNTRL1,
   1038  1.1  scw 	    RD4(sc, NPE_MAC_TX_CNTRL1) | NPE_TX_CNTRL1_TX_EN);
   1039  1.1  scw 
   1040  1.1  scw 	callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
   1041  1.1  scw }
   1042  1.1  scw 
   1043  1.1  scw static int
   1044  1.1  scw npeinit(struct ifnet *ifp)
   1045  1.1  scw {
   1046  1.1  scw 	struct npe_softc *sc = ifp->if_softc;
   1047  1.1  scw 	int s;
   1048  1.1  scw 
   1049  1.1  scw 	s = splnet();
   1050  1.1  scw 	npeinit_locked(sc);
   1051  1.1  scw 	splx(s);
   1052  1.1  scw 
   1053  1.1  scw 	return (0);
   1054  1.1  scw }
   1055  1.1  scw 
   1056  1.1  scw /*
   1057  1.1  scw  * Defragment an mbuf chain, returning at most maxfrags separate
   1058  1.1  scw  * mbufs+clusters.  If this is not possible NULL is returned and
   1059  1.1  scw  * the original mbuf chain is left in it's present (potentially
   1060  1.1  scw  * modified) state.  We use two techniques: collapsing consecutive
   1061  1.1  scw  * mbufs and replacing consecutive mbufs by a cluster.
   1062  1.1  scw  */
   1063  1.1  scw static __inline struct mbuf *
   1064  1.1  scw npe_defrag(struct mbuf *m0)
   1065  1.1  scw {
   1066  1.1  scw 	struct mbuf *m;
   1067  1.1  scw 
   1068  1.1  scw 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1069  1.1  scw 	if (m == NULL)
   1070  1.1  scw 		return (NULL);
   1071  1.1  scw 	M_COPY_PKTHDR(m, m0);
   1072  1.1  scw 
   1073  1.1  scw 	if ((m->m_len = m0->m_pkthdr.len) > MHLEN) {
   1074  1.1  scw 		MCLGET(m, M_DONTWAIT);
   1075  1.1  scw 		if ((m->m_flags & M_EXT) == 0) {
   1076  1.1  scw 			m_freem(m);
   1077  1.1  scw 			return (NULL);
   1078  1.1  scw 		}
   1079  1.1  scw 	}
   1080  1.1  scw 
   1081  1.1  scw 	m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1082  1.1  scw 	m_freem(m0);
   1083  1.1  scw 
   1084  1.1  scw 	return (m);
   1085  1.1  scw }
   1086  1.1  scw 
   1087  1.1  scw /*
   1088  1.1  scw  * Dequeue packets and place on the h/w transmit queue.
   1089  1.1  scw  */
   1090  1.1  scw static void
   1091  1.1  scw npestart(struct ifnet *ifp)
   1092  1.1  scw {
   1093  1.1  scw 	struct npe_softc *sc = ifp->if_softc;
   1094  1.1  scw 	struct npebuf *npe;
   1095  1.1  scw 	struct npehwbuf *hw;
   1096  1.1  scw 	struct mbuf *m, *n;
   1097  1.1  scw 	bus_dma_segment_t *segs;
   1098  1.1  scw 	int nseg, len, error, i;
   1099  1.1  scw 	uint32_t next;
   1100  1.1  scw 
   1101  1.1  scw 	/* XXX can this happen? */
   1102  1.1  scw 	if (ifp->if_flags & IFF_OACTIVE)
   1103  1.1  scw 		return;
   1104  1.1  scw 
   1105  1.1  scw 	while (sc->tx_free != NULL) {
   1106  1.1  scw 		IFQ_DEQUEUE(&ifp->if_snd, m);
   1107  1.1  scw 		if (m == NULL) {
   1108  1.1  scw 			/* XXX? */
   1109  1.1  scw 			ifp->if_flags &= ~IFF_OACTIVE;
   1110  1.1  scw 			return;
   1111  1.1  scw 		}
   1112  1.1  scw 		npe = sc->tx_free;
   1113  1.1  scw 		error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
   1114  1.1  scw 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1115  1.1  scw 		if (error == EFBIG) {
   1116  1.1  scw 			n = npe_defrag(m);
   1117  1.1  scw 			if (n == NULL) {
   1118  1.1  scw 				printf("%s: %s: too many fragments\n",
   1119  1.1  scw 				    sc->sc_dev.dv_xname, __func__);
   1120  1.1  scw 				m_freem(m);
   1121  1.1  scw 				return;	/* XXX? */
   1122  1.1  scw 			}
   1123  1.1  scw 			m = n;
   1124  1.1  scw 			error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map,
   1125  1.1  scw 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1126  1.1  scw 		}
   1127  1.1  scw 		if (error != 0) {
   1128  1.1  scw 			printf("%s: %s: error %u\n",
   1129  1.1  scw 			    sc->sc_dev.dv_xname, __func__, error);
   1130  1.1  scw 			m_freem(m);
   1131  1.1  scw 			return;	/* XXX? */
   1132  1.1  scw 		}
   1133  1.1  scw 		sc->tx_free = npe->ix_next;
   1134  1.1  scw 
   1135  1.1  scw #if NBPFILTER > 0
   1136  1.1  scw 		/*
   1137  1.1  scw 		 * Tap off here if there is a bpf listener.
   1138  1.1  scw 		 */
   1139  1.1  scw 		if (__predict_false(ifp->if_bpf))
   1140  1.1  scw 			bpf_mtap(ifp->if_bpf, m);
   1141  1.1  scw #endif
   1142  1.1  scw 
   1143  1.1  scw 		bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
   1144  1.1  scw 		    npe->ix_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1145  1.1  scw 
   1146  1.1  scw 		npe->ix_m = m;
   1147  1.1  scw 		hw = npe->ix_hw;
   1148  1.1  scw 		len = m->m_pkthdr.len;
   1149  1.1  scw 		nseg = npe->ix_map->dm_nsegs;
   1150  1.1  scw 		segs = npe->ix_map->dm_segs;
   1151  1.1  scw 		next = npe->ix_neaddr + sizeof(hw->ix_ne[0]);
   1152  1.1  scw 		for (i = 0; i < nseg; i++) {
   1153  1.1  scw 			hw->ix_ne[i].data = htobe32(segs[i].ds_addr);
   1154  1.1  scw 			hw->ix_ne[i].len = htobe32((segs[i].ds_len<<16) | len);
   1155  1.1  scw 			hw->ix_ne[i].next = htobe32(next);
   1156  1.1  scw 
   1157  1.1  scw 			len = 0;		/* zero for segments > 1 */
   1158  1.1  scw 			next += sizeof(hw->ix_ne[0]);
   1159  1.1  scw 		}
   1160  1.1  scw 		hw->ix_ne[i-1].next = 0;	/* zero last in chain */
   1161  1.1  scw 		/* XXX flush descriptor instead of using uncached memory */
   1162  1.1  scw 
   1163  1.1  scw 		DPRINTF(sc, "%s: qwrite(%u, 0x%x) ne_data %x ne_len 0x%x\n",
   1164  1.1  scw 		    __func__, sc->tx_qid, npe->ix_neaddr,
   1165  1.1  scw 		    hw->ix_ne[0].data, hw->ix_ne[0].len);
   1166  1.1  scw 		/* stick it on the tx q */
   1167  1.1  scw 		/* XXX add vlan priority */
   1168  1.1  scw 		ixpqmgr_qwrite(sc->tx_qid, npe->ix_neaddr);
   1169  1.1  scw 
   1170  1.1  scw 		ifp->if_timer = 5;
   1171  1.1  scw 	}
   1172  1.1  scw 	if (sc->tx_free == NULL)
   1173  1.1  scw 		ifp->if_flags |= IFF_OACTIVE;
   1174  1.1  scw }
   1175  1.1  scw 
   1176  1.1  scw static void
   1177  1.1  scw npe_stopxmit(struct npe_softc *sc)
   1178  1.1  scw {
   1179  1.1  scw 	struct npedma *dma = &sc->txdma;
   1180  1.1  scw 	int i;
   1181  1.1  scw 
   1182  1.1  scw 	/* XXX qmgr */
   1183  1.1  scw 	for (i = 0; i < dma->nbuf; i++) {
   1184  1.1  scw 		struct npebuf *npe = &dma->buf[i];
   1185  1.1  scw 
   1186  1.1  scw 		if (npe->ix_m != NULL) {
   1187  1.1  scw 			bus_dmamap_unload(sc->sc_dt, npe->ix_map);
   1188  1.1  scw 			m_freem(npe->ix_m);
   1189  1.1  scw 			npe->ix_m = NULL;
   1190  1.1  scw 		}
   1191  1.1  scw 	}
   1192  1.1  scw }
   1193  1.1  scw 
   1194  1.1  scw static void
   1195  1.1  scw npe_stoprecv(struct npe_softc *sc)
   1196  1.1  scw {
   1197  1.1  scw 	struct npedma *dma = &sc->rxdma;
   1198  1.1  scw 	int i;
   1199  1.1  scw 
   1200  1.1  scw 	/* XXX qmgr */
   1201  1.1  scw 	for (i = 0; i < dma->nbuf; i++) {
   1202  1.1  scw 		struct npebuf *npe = &dma->buf[i];
   1203  1.1  scw 
   1204  1.1  scw 		if (npe->ix_m != NULL) {
   1205  1.1  scw 			bus_dmamap_unload(sc->sc_dt, npe->ix_map);
   1206  1.1  scw 			m_freem(npe->ix_m);
   1207  1.1  scw 			npe->ix_m = NULL;
   1208  1.1  scw 		}
   1209  1.1  scw 	}
   1210  1.1  scw }
   1211  1.1  scw 
   1212  1.1  scw /*
   1213  1.1  scw  * Turn off interrupts, and stop the nic.
   1214  1.1  scw  */
   1215  1.1  scw void
   1216  1.1  scw npestop(struct ifnet *ifp, int disable)
   1217  1.1  scw {
   1218  1.1  scw 	struct npe_softc *sc = ifp->if_softc;
   1219  1.1  scw 
   1220  1.1  scw 	/*  disable transmitter and reciver in the MAC  */
   1221  1.1  scw  	WR4(sc, NPE_MAC_RX_CNTRL1,
   1222  1.1  scw 	    RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
   1223  1.1  scw  	WR4(sc, NPE_MAC_TX_CNTRL1,
   1224  1.1  scw 	    RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
   1225  1.1  scw 
   1226  1.1  scw 	ifp->if_timer = 0;
   1227  1.1  scw 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1228  1.1  scw 
   1229  1.1  scw 	callout_stop(&sc->sc_tick_ch);
   1230  1.1  scw 
   1231  1.1  scw 	npe_stopxmit(sc);
   1232  1.1  scw 	npe_stoprecv(sc);
   1233  1.1  scw 	/* XXX go into loopback & drain q's? */
   1234  1.1  scw 	/* XXX but beware of disabling tx above */
   1235  1.1  scw 
   1236  1.1  scw 	/*
   1237  1.1  scw 	 * The MAC core rx/tx disable may leave the MAC hardware in an
   1238  1.1  scw 	 * unpredictable state. A hw reset is executed before resetting
   1239  1.1  scw 	 * all the MAC parameters to a known value.
   1240  1.1  scw 	 */
   1241  1.1  scw 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
   1242  1.1  scw 	DELAY(NPE_MAC_RESET_DELAY);
   1243  1.1  scw 	WR4(sc, NPE_MAC_INT_CLK_THRESH, NPE_MAC_INT_CLK_THRESH_DEFAULT);
   1244  1.1  scw 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
   1245  1.1  scw }
   1246  1.1  scw 
   1247  1.1  scw void
   1248  1.1  scw npewatchdog(struct ifnet *ifp)
   1249  1.1  scw {
   1250  1.1  scw 	struct npe_softc *sc = ifp->if_softc;
   1251  1.1  scw 	int s;
   1252  1.1  scw 
   1253  1.1  scw 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1254  1.1  scw 	s = splnet();
   1255  1.1  scw 	ifp->if_oerrors++;
   1256  1.1  scw 	npeinit_locked(sc);
   1257  1.1  scw 	splx(s);
   1258  1.1  scw }
   1259  1.1  scw 
   1260  1.1  scw static int
   1261  1.1  scw npeioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1262  1.1  scw {
   1263  1.1  scw 	struct npe_softc *sc = ifp->if_softc;
   1264  1.1  scw  	struct ifreq *ifr = (struct ifreq *)data;
   1265  1.1  scw 	int s, error = 0;
   1266  1.1  scw 
   1267  1.1  scw 	s = splnet();
   1268  1.1  scw 
   1269  1.1  scw 	switch (cmd) {
   1270  1.1  scw   	case SIOCSIFMEDIA:
   1271  1.1  scw   	case SIOCGIFMEDIA:
   1272  1.1  scw  		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1273  1.1  scw   		break;
   1274  1.1  scw 
   1275  1.1  scw 	default:
   1276  1.1  scw 		error = ether_ioctl(ifp, cmd, data);
   1277  1.1  scw 		if (error == ENETRESET) {
   1278  1.1  scw 			if ((ifp->if_flags & IFF_UP) == 0 &&
   1279  1.1  scw 			    ifp->if_flags & IFF_RUNNING) {
   1280  1.1  scw 				ifp->if_flags &= ~IFF_RUNNING;
   1281  1.1  scw 				npestop(&sc->sc_ethercom.ec_if, 0);
   1282  1.1  scw 			} else {
   1283  1.1  scw 				/* reinitialize card on any parameter change */
   1284  1.1  scw 				npeinit_locked(sc);
   1285  1.1  scw 			}
   1286  1.1  scw 			error = 0;
   1287  1.1  scw 		}
   1288  1.1  scw 		break;
   1289  1.1  scw 	}
   1290  1.1  scw 
   1291  1.1  scw 	npestart(ifp);
   1292  1.1  scw 
   1293  1.1  scw 	splx(s);
   1294  1.1  scw 	return error;
   1295  1.1  scw }
   1296  1.1  scw 
   1297  1.1  scw /*
   1298  1.1  scw  * Setup a traffic class -> rx queue mapping.
   1299  1.1  scw  */
   1300  1.1  scw static int
   1301  1.1  scw npe_setrxqosentry(struct npe_softc *sc, int classix, int trafclass, int qid)
   1302  1.1  scw {
   1303  1.1  scw 	int npeid = npeconfig[sc->sc_unit].npeid;
   1304  1.1  scw 	uint32_t msg[2];
   1305  1.1  scw 
   1306  1.1  scw 	msg[0] = (NPE_SETRXQOSENTRY << 24) | (npeid << 20) | classix;
   1307  1.1  scw 	msg[1] = (trafclass << 24) | (1 << 23) | (qid << 16) | (qid << 4);
   1308  1.1  scw 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
   1309  1.1  scw }
   1310  1.1  scw 
   1311  1.1  scw /*
   1312  1.1  scw  * Update and reset the statistics in the NPE.
   1313  1.1  scw  */
   1314  1.1  scw static int
   1315  1.1  scw npe_updatestats(struct npe_softc *sc)
   1316  1.1  scw {
   1317  1.1  scw 	uint32_t msg[2];
   1318  1.1  scw 
   1319  1.1  scw 	msg[0] = NPE_RESETSTATS << NPE_MAC_MSGID_SHL;
   1320  1.1  scw 	msg[1] = sc->sc_stats_phys;	/* physical address of stat block */
   1321  1.1  scw 	return ixpnpe_sendmsg(sc->sc_npe, msg);		/* NB: no recv */
   1322  1.1  scw }
   1323  1.1  scw 
   1324  1.1  scw #if 0
   1325  1.1  scw /*
   1326  1.1  scw  * Get the current statistics block.
   1327  1.1  scw  */
   1328  1.1  scw static int
   1329  1.1  scw npe_getstats(struct npe_softc *sc)
   1330  1.1  scw {
   1331  1.1  scw 	uint32_t msg[2];
   1332  1.1  scw 
   1333  1.1  scw 	msg[0] = NPE_GETSTATS << NPE_MAC_MSGID_SHL;
   1334  1.1  scw 	msg[1] = sc->sc_stats_phys;	/* physical address of stat block */
   1335  1.1  scw 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
   1336  1.1  scw }
   1337  1.1  scw 
   1338  1.1  scw /*
   1339  1.1  scw  * Query the image id of the loaded firmware.
   1340  1.1  scw  */
   1341  1.1  scw static uint32_t
   1342  1.1  scw npe_getimageid(struct npe_softc *sc)
   1343  1.1  scw {
   1344  1.1  scw 	uint32_t msg[2];
   1345  1.1  scw 
   1346  1.1  scw 	msg[0] = NPE_GETSTATUS << NPE_MAC_MSGID_SHL;
   1347  1.1  scw 	msg[1] = 0;
   1348  1.1  scw 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg) == 0 ? msg[1] : 0;
   1349  1.1  scw }
   1350  1.1  scw 
   1351  1.1  scw /*
   1352  1.1  scw  * Enable/disable loopback.
   1353  1.1  scw  */
   1354  1.1  scw static int
   1355  1.1  scw npe_setloopback(struct npe_softc *sc, int ena)
   1356  1.1  scw {
   1357  1.1  scw 	uint32_t msg[2];
   1358  1.1  scw 
   1359  1.1  scw 	msg[0] = (NPE_SETLOOPBACK << NPE_MAC_MSGID_SHL) | (ena != 0);
   1360  1.1  scw 	msg[1] = 0;
   1361  1.1  scw 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
   1362  1.1  scw }
   1363  1.1  scw #endif
   1364  1.1  scw 
   1365  1.1  scw /*
   1366  1.1  scw  * MII bus support routines.
   1367  1.1  scw  *
   1368  1.1  scw  * NB: ixp425 has one PHY per NPE
   1369  1.1  scw  */
   1370  1.1  scw static uint32_t
   1371  1.1  scw npe_mii_mdio_read(struct npe_softc *sc, int reg)
   1372  1.1  scw {
   1373  1.1  scw #define	MII_RD4(sc, reg)	bus_space_read_4(sc->sc_iot, sc->sc_miih, reg)
   1374  1.1  scw 	uint32_t v;
   1375  1.1  scw 
   1376  1.1  scw 	/* NB: registers are known to be sequential */
   1377  1.1  scw 	v =  (MII_RD4(sc, reg+0) & 0xff) << 0;
   1378  1.1  scw 	v |= (MII_RD4(sc, reg+4) & 0xff) << 8;
   1379  1.1  scw 	v |= (MII_RD4(sc, reg+8) & 0xff) << 16;
   1380  1.1  scw 	v |= (MII_RD4(sc, reg+12) & 0xff) << 24;
   1381  1.1  scw 	return v;
   1382  1.1  scw #undef MII_RD4
   1383  1.1  scw }
   1384  1.1  scw 
   1385  1.1  scw static void
   1386  1.1  scw npe_mii_mdio_write(struct npe_softc *sc, int reg, uint32_t cmd)
   1387  1.1  scw {
   1388  1.1  scw #define	MII_WR4(sc, reg, v) \
   1389  1.1  scw 	bus_space_write_4(sc->sc_iot, sc->sc_miih, reg, v)
   1390  1.1  scw 
   1391  1.1  scw 	/* NB: registers are known to be sequential */
   1392  1.1  scw 	MII_WR4(sc, reg+0, cmd & 0xff);
   1393  1.1  scw 	MII_WR4(sc, reg+4, (cmd >> 8) & 0xff);
   1394  1.1  scw 	MII_WR4(sc, reg+8, (cmd >> 16) & 0xff);
   1395  1.1  scw 	MII_WR4(sc, reg+12, (cmd >> 24) & 0xff);
   1396  1.1  scw #undef MII_WR4
   1397  1.1  scw }
   1398  1.1  scw 
   1399  1.1  scw static int
   1400  1.1  scw npe_mii_mdio_wait(struct npe_softc *sc)
   1401  1.1  scw {
   1402  1.1  scw #define	MAXTRIES	100	/* XXX */
   1403  1.1  scw 	uint32_t v;
   1404  1.1  scw 	int i;
   1405  1.1  scw 
   1406  1.1  scw 	for (i = 0; i < MAXTRIES; i++) {
   1407  1.1  scw 		v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_CMD);
   1408  1.1  scw 		if ((v & NPE_MII_GO) == 0)
   1409  1.1  scw 			return 1;
   1410  1.1  scw 	}
   1411  1.1  scw 	return 0;		/* NB: timeout */
   1412  1.1  scw #undef MAXTRIES
   1413  1.1  scw }
   1414  1.1  scw 
   1415  1.1  scw static int
   1416  1.1  scw npe_miibus_readreg(struct device *self, int phy, int reg)
   1417  1.1  scw {
   1418  1.1  scw 	struct npe_softc *sc = (void *)self;
   1419  1.1  scw 	uint32_t v;
   1420  1.1  scw 
   1421  1.1  scw 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
   1422  1.1  scw 		return 0xffff;
   1423  1.1  scw 	v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
   1424  1.1  scw 	  | NPE_MII_GO;
   1425  1.1  scw 	npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
   1426  1.1  scw 	if (npe_mii_mdio_wait(sc)) {
   1427  1.1  scw 		v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_STS);
   1428  1.1  scw 	else
   1429  1.1  scw 		v = 0xffff | NPE_MII_READ_FAIL;
   1430  1.1  scw 	return (v & NPE_MII_READ_FAIL) ? 0xffff : (v & 0xffff);
   1431  1.1  scw #undef MAXTRIES
   1432  1.1  scw }
   1433  1.1  scw 
   1434  1.1  scw static void
   1435  1.1  scw npe_miibus_writereg(struct device *self, int phy, int reg, int data)
   1436  1.1  scw {
   1437  1.1  scw 	struct npe_softc *sc = (void *)self;
   1438  1.1  scw 	uint32_t v;
   1439  1.1  scw 
   1440  1.1  scw 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
   1441  1.1  scw 		return;
   1442  1.1  scw 	v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
   1443  1.1  scw 	  | data | NPE_MII_WRITE
   1444  1.1  scw 	  | NPE_MII_GO;
   1445  1.1  scw 	npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
   1446  1.1  scw 	/* XXX complain about timeout */
   1447  1.1  scw 	(void) npe_mii_mdio_wait(sc);
   1448  1.1  scw }
   1449  1.1  scw 
   1450  1.1  scw static void
   1451  1.1  scw npe_miibus_statchg(struct device *self)
   1452  1.1  scw {
   1453  1.1  scw 	struct npe_softc *sc = (void *)self;
   1454  1.1  scw 	uint32_t tx1, rx1;
   1455  1.1  scw 
   1456  1.1  scw 	/* sync MAC duplex state */
   1457  1.1  scw 	tx1 = RD4(sc, NPE_MAC_TX_CNTRL1);
   1458  1.1  scw 	rx1 = RD4(sc, NPE_MAC_RX_CNTRL1);
   1459  1.1  scw 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1460  1.1  scw 		tx1 &= ~NPE_TX_CNTRL1_DUPLEX;
   1461  1.1  scw 		rx1 |= NPE_RX_CNTRL1_PAUSE_EN;
   1462  1.1  scw 	} else {
   1463  1.1  scw 		tx1 |= NPE_TX_CNTRL1_DUPLEX;
   1464  1.1  scw 		rx1 &= ~NPE_RX_CNTRL1_PAUSE_EN;
   1465  1.1  scw 	}
   1466  1.1  scw 	WR4(sc, NPE_MAC_RX_CNTRL1, rx1);
   1467  1.1  scw 	WR4(sc, NPE_MAC_TX_CNTRL1, tx1);
   1468  1.1  scw }
   1469