Home | History | Annotate | Line # | Download | only in xscale
ixp425_if_npe.c revision 1.54
      1  1.54  riastrad /*	$NetBSD: ixp425_if_npe.c,v 1.54 2024/06/29 12:11:10 riastradh Exp $ */
      2   1.1       scw 
      3   1.1       scw /*-
      4   1.1       scw  * Copyright (c) 2006 Sam Leffler.  All rights reserved.
      5   1.1       scw  *
      6   1.1       scw  * Redistribution and use in source and binary forms, with or without
      7   1.1       scw  * modification, are permitted provided that the following conditions
      8   1.1       scw  * are met:
      9   1.1       scw  * 1. Redistributions of source code must retain the above copyright
     10   1.1       scw  *    notice, this list of conditions and the following disclaimer.
     11   1.1       scw  * 2. Redistributions in binary form must reproduce the above copyright
     12   1.1       scw  *    notice, this list of conditions and the following disclaimer in the
     13   1.1       scw  *    documentation and/or other materials provided with the distribution.
     14   1.1       scw  *
     15   1.1       scw  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     16   1.1       scw  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     17   1.1       scw  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     18   1.1       scw  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     19   1.1       scw  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     20   1.1       scw  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     21   1.1       scw  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     22   1.1       scw  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     23   1.1       scw  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     24   1.1       scw  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     25   1.1       scw  */
     26   1.1       scw 
     27   1.1       scw #include <sys/cdefs.h>
     28   1.1       scw #if 0
     29   1.1       scw __FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/if_npe.c,v 1.1 2006/11/19 23:55:23 sam Exp $");
     30   1.1       scw #endif
     31  1.54  riastrad __KERNEL_RCSID(0, "$NetBSD: ixp425_if_npe.c,v 1.54 2024/06/29 12:11:10 riastradh Exp $");
     32   1.1       scw 
     33   1.1       scw /*
     34   1.1       scw  * Intel XScale NPE Ethernet driver.
     35   1.1       scw  *
     36   1.1       scw  * This driver handles the two ports present on the IXP425.
     37   1.1       scw  * Packet processing is done by the Network Processing Engines
     38   1.1       scw  * (NPE's) that work together with a MAC and PHY. The MAC
     39   1.1       scw  * is also mapped to the XScale cpu; the PHY is accessed via
     40   1.1       scw  * the MAC. NPE-XScale communication happens through h/w
     41   1.1       scw  * queues managed by the Q Manager block.
     42   1.1       scw  *
     43   1.1       scw  * The code here replaces the ethAcc, ethMii, and ethDB classes
     44   1.1       scw  * in the Intel Access Library (IAL) and the OS-specific driver.
     45   1.1       scw  *
     46   1.1       scw  * XXX add vlan support
     47   1.1       scw  * XXX NPE-C port doesn't work yet
     48   1.1       scw  */
     49   1.1       scw 
     50   1.1       scw #include <sys/param.h>
     51   1.1       scw #include <sys/systm.h>
     52   1.1       scw #include <sys/kernel.h>
     53   1.1       scw #include <sys/device.h>
     54   1.1       scw #include <sys/callout.h>
     55  1.53     skrll #include <sys/kmem.h>
     56   1.1       scw #include <sys/mbuf.h>
     57   1.1       scw #include <sys/socket.h>
     58   1.1       scw #include <sys/endian.h>
     59   1.1       scw #include <sys/ioctl.h>
     60  1.11   msaitoh #include <sys/syslog.h>
     61  1.20    dyoung #include <sys/bus.h>
     62  1.39   msaitoh #include <sys/rndsource.h>
     63   1.1       scw 
     64   1.1       scw #include <net/if.h>
     65   1.1       scw #include <net/if_dl.h>
     66   1.1       scw #include <net/if_media.h>
     67   1.1       scw #include <net/if_ether.h>
     68   1.1       scw #include <net/bpf.h>
     69   1.1       scw 
     70   1.1       scw #include <arm/xscale/ixp425reg.h>
     71   1.1       scw #include <arm/xscale/ixp425var.h>
     72   1.1       scw #include <arm/xscale/ixp425_qmgr.h>
     73   1.1       scw #include <arm/xscale/ixp425_npevar.h>
     74   1.1       scw #include <arm/xscale/ixp425_if_npereg.h>
     75   1.1       scw 
     76   1.1       scw #include <dev/mii/miivar.h>
     77   1.1       scw 
     78   1.1       scw #include "locators.h"
     79   1.1       scw 
     80   1.1       scw struct npebuf {
     81   1.1       scw 	struct npebuf	*ix_next;	/* chain to next buffer */
     82   1.1       scw 	void		*ix_m;		/* backpointer to mbuf */
     83   1.1       scw 	bus_dmamap_t	ix_map;		/* bus dma map for associated data */
     84   1.1       scw 	struct npehwbuf	*ix_hw;		/* associated h/w block */
     85   1.1       scw 	uint32_t	ix_neaddr;	/* phys address of ix_hw */
     86   1.1       scw };
     87   1.1       scw 
     88   1.1       scw struct npedma {
     89   1.1       scw 	const char*	name;
     90   1.1       scw 	int		nbuf;		/* # npebuf's allocated */
     91   1.1       scw 	bus_dmamap_t	m_map;
     92   1.1       scw 	struct npehwbuf	*hwbuf;		/* NPE h/w buffers */
     93   1.1       scw 	bus_dmamap_t	buf_map;
     94   1.1       scw 	bus_addr_t	buf_phys;	/* phys addr of buffers */
     95   1.1       scw 	struct npebuf	*buf;		/* s/w buffers (1-1 w/ h/w) */
     96   1.1       scw };
     97   1.1       scw 
     98   1.1       scw struct npe_softc {
     99  1.23      matt 	device_t	sc_dev;
    100   1.1       scw 	struct ethercom	sc_ethercom;
    101  1.11   msaitoh 	uint8_t		sc_enaddr[ETHER_ADDR_LEN];
    102   1.1       scw 	struct mii_data	sc_mii;
    103  1.39   msaitoh 	bus_space_tag_t	sc_iot;
    104   1.1       scw 	bus_dma_tag_t	sc_dt;
    105   1.1       scw 	bus_space_handle_t sc_ioh;	/* MAC register window */
    106   1.1       scw 	bus_space_handle_t sc_miih;	/* MII register window */
    107   1.1       scw 	struct ixpnpe_softc *sc_npe;	/* NPE support */
    108   1.1       scw 	int		sc_unit;
    109   1.1       scw 	int		sc_phy;
    110   1.1       scw 	struct callout	sc_tick_ch;	/* Tick callout */
    111   1.1       scw 	struct npedma	txdma;
    112   1.1       scw 	struct npebuf	*tx_free;	/* list of free tx buffers */
    113   1.1       scw 	struct npedma	rxdma;
    114   1.1       scw 	int		rx_qid;		/* rx qid */
    115   1.1       scw 	int		rx_freeqid;	/* rx free buffers qid */
    116   1.1       scw 	int		tx_qid;		/* tx qid */
    117   1.1       scw 	int		tx_doneqid;	/* tx completed qid */
    118   1.1       scw 	struct npestats	*sc_stats;
    119   1.1       scw 	bus_dmamap_t	sc_stats_map;
    120   1.1       scw 	bus_addr_t	sc_stats_phys;	/* phys addr of sc_stats */
    121  1.42   msaitoh 	u_short		sc_if_flags;	/* keep last if_flags */
    122  1.21       tls 	krndsource_t rnd_source; /* random source */
    123   1.1       scw };
    124   1.1       scw 
    125   1.1       scw /*
    126   1.1       scw  * Per-unit static configuration for IXP425.  The tx and
    127   1.1       scw  * rx free Q id's are fixed by the NPE microcode.  The
    128   1.1       scw  * rx Q id's are programmed to be separate to simplify
    129   1.1       scw  * multi-port processing.  It may be better to handle
    130   1.1       scw  * all traffic through one Q (as done by the Intel drivers).
    131   1.1       scw  *
    132   1.1       scw  * Note that the PHY's are accessible only from MAC A
    133   1.1       scw  * on the IXP425.  This and other platform-specific
    134   1.1       scw  * assumptions probably need to be handled through hints.
    135   1.1       scw  */
    136   1.1       scw static const struct {
    137   1.1       scw 	const char	*desc;		/* device description */
    138   1.1       scw 	int		npeid;		/* NPE assignment */
    139  1.16   msaitoh 	int		macport;	/* Port number of the MAC */
    140   1.1       scw 	uint32_t	imageid;	/* NPE firmware image id */
    141   1.1       scw 	uint32_t	regbase;
    142   1.1       scw 	int		regsize;
    143   1.1       scw 	uint32_t	miibase;
    144   1.1       scw 	int		miisize;
    145   1.1       scw 	uint8_t		rx_qid;
    146   1.1       scw 	uint8_t		rx_freeqid;
    147   1.1       scw 	uint8_t		tx_qid;
    148   1.1       scw 	uint8_t		tx_doneqid;
    149   1.1       scw } npeconfig[NPE_PORTS_MAX] = {
    150   1.1       scw 	{ .desc		= "IXP NPE-B",
    151   1.1       scw 	  .npeid	= NPE_B,
    152  1.16   msaitoh 	  .macport	= 0x10,
    153   1.1       scw 	  .imageid	= IXP425_NPE_B_IMAGEID,
    154   1.1       scw 	  .regbase	= IXP425_MAC_A_HWBASE,
    155   1.1       scw 	  .regsize	= IXP425_MAC_A_SIZE,
    156   1.1       scw 	  .miibase	= IXP425_MAC_A_HWBASE,
    157   1.1       scw 	  .miisize	= IXP425_MAC_A_SIZE,
    158   1.1       scw 	  .rx_qid	= 4,
    159   1.1       scw 	  .rx_freeqid	= 27,
    160   1.1       scw 	  .tx_qid	= 24,
    161   1.1       scw 	  .tx_doneqid	= 31
    162   1.1       scw 	},
    163   1.1       scw 	{ .desc		= "IXP NPE-C",
    164   1.1       scw 	  .npeid	= NPE_C,
    165  1.16   msaitoh 	  .macport	= 0x20,
    166   1.1       scw 	  .imageid	= IXP425_NPE_C_IMAGEID,
    167   1.1       scw 	  .regbase	= IXP425_MAC_B_HWBASE,
    168   1.1       scw 	  .regsize	= IXP425_MAC_B_SIZE,
    169   1.1       scw 	  .miibase	= IXP425_MAC_A_HWBASE,
    170   1.1       scw 	  .miisize	= IXP425_MAC_A_SIZE,
    171   1.1       scw 	  .rx_qid	= 12,
    172   1.1       scw 	  .rx_freeqid	= 28,
    173   1.1       scw 	  .tx_qid	= 25,
    174   1.1       scw 	  .tx_doneqid	= 31
    175   1.1       scw 	},
    176   1.1       scw };
    177   1.1       scw static struct npe_softc *npes[NPE_MAX];	/* NB: indexed by npeid */
    178   1.1       scw 
    179   1.1       scw static __inline uint32_t
    180   1.1       scw RD4(struct npe_softc *sc, bus_size_t off)
    181   1.1       scw {
    182   1.1       scw 	return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
    183   1.1       scw }
    184   1.1       scw 
    185   1.1       scw static __inline void
    186   1.1       scw WR4(struct npe_softc *sc, bus_size_t off, uint32_t val)
    187   1.1       scw {
    188   1.1       scw 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
    189   1.1       scw }
    190   1.1       scw 
    191   1.1       scw static int	npe_activate(struct npe_softc *);
    192   1.1       scw #if 0
    193   1.1       scw static void	npe_deactivate(struct npe_softc *);
    194   1.1       scw #endif
    195  1.40   msaitoh static void	npe_setmac(struct npe_softc *, const u_char *);
    196  1.40   msaitoh static void	npe_getmac(struct npe_softc *);
    197  1.40   msaitoh static void	npe_txdone(int, void *);
    198   1.1       scw static int	npe_rxbuf_init(struct npe_softc *, struct npebuf *,
    199   1.1       scw 			struct mbuf *);
    200  1.40   msaitoh static void	npe_rxdone(int, void *);
    201  1.13   msaitoh static void	npeinit_macreg(struct npe_softc *);
    202   1.1       scw static int	npeinit(struct ifnet *);
    203  1.16   msaitoh static void	npeinit_resetcb(void *);
    204  1.13   msaitoh static void	npeinit_locked(void *);
    205   1.1       scw static void	npestart(struct ifnet *);
    206   1.1       scw static void	npestop(struct ifnet *, int);
    207   1.1       scw static void	npewatchdog(struct ifnet *);
    208  1.40   msaitoh static int	npeioctl(struct ifnet *, u_long, void *);
    209   1.1       scw 
    210  1.40   msaitoh static int	npe_setrxqosentry(struct npe_softc *, int, int, int);
    211   1.1       scw static int	npe_updatestats(struct npe_softc *);
    212   1.1       scw #if 0
    213   1.1       scw static int	npe_getstats(struct npe_softc *);
    214   1.1       scw static uint32_t	npe_getimageid(struct npe_softc *);
    215  1.40   msaitoh static int	npe_setloopback(struct npe_softc *, int);
    216   1.1       scw #endif
    217   1.1       scw 
    218  1.36   msaitoh static int	npe_miibus_readreg(device_t, int, int, uint16_t *);
    219  1.36   msaitoh static int	npe_miibus_writereg(device_t, int, int, uint16_t);
    220  1.23      matt static void	npe_miibus_statchg(struct ifnet *);
    221   1.1       scw 
    222   1.1       scw static int	npe_debug;
    223   1.1       scw #define DPRINTF(sc, fmt, ...) do {			\
    224   1.1       scw 	if (npe_debug) printf(fmt, __VA_ARGS__);	\
    225   1.1       scw } while (0)
    226   1.1       scw #define DPRINTFn(n, sc, fmt, ...) do {			\
    227   1.1       scw 	if (npe_debug >= n) printf(fmt, __VA_ARGS__);	\
    228   1.1       scw } while (0)
    229   1.1       scw 
    230   1.1       scw #define	NPE_TXBUF	128
    231   1.1       scw #define	NPE_RXBUF	64
    232   1.1       scw 
    233  1.11   msaitoh #define MAC2UINT64(addr)	(((uint64_t)addr[0] << 40)	\
    234  1.11   msaitoh 				    + ((uint64_t)addr[1] << 32)	\
    235  1.11   msaitoh 				    + ((uint64_t)addr[2] << 24)	\
    236  1.11   msaitoh 				    + ((uint64_t)addr[3] << 16)	\
    237  1.11   msaitoh 				    + ((uint64_t)addr[4] << 8)	\
    238  1.11   msaitoh 				    + (uint64_t)addr[5])
    239  1.11   msaitoh 
    240   1.1       scw /* NB: all tx done processing goes through one queue */
    241   1.1       scw static int tx_doneqid = -1;
    242   1.1       scw 
    243  1.11   msaitoh void (*npe_getmac_md)(int, uint8_t *);
    244  1.11   msaitoh 
    245  1.23      matt static int npe_match(device_t, cfdata_t, void *);
    246  1.23      matt static void npe_attach(device_t, device_t, void *);
    247   1.1       scw 
    248  1.23      matt CFATTACH_DECL_NEW(npe, sizeof(struct npe_softc),
    249   1.1       scw     npe_match, npe_attach, NULL, NULL);
    250   1.1       scw 
    251   1.1       scw static int
    252  1.23      matt npe_match(device_t parent, cfdata_t cf, void *arg)
    253   1.1       scw {
    254   1.1       scw 	struct ixpnpe_attach_args *na = arg;
    255   1.1       scw 
    256   1.1       scw 	return (na->na_unit == NPE_B || na->na_unit == NPE_C);
    257   1.1       scw }
    258   1.1       scw 
    259   1.1       scw static void
    260  1.23      matt npe_attach(device_t parent, device_t self, void *arg)
    261   1.1       scw {
    262  1.23      matt 	struct npe_softc *sc = device_private(self);
    263  1.23      matt 	struct ixpnpe_softc *isc = device_private(parent);
    264   1.1       scw 	struct ixpnpe_attach_args *na = arg;
    265   1.1       scw 	struct ifnet *ifp;
    266  1.40   msaitoh 	struct mii_data * const mii = &sc->sc_mii;
    267   1.1       scw 
    268   1.1       scw 	aprint_naive("\n");
    269   1.1       scw 	aprint_normal(": Ethernet co-processor\n");
    270   1.1       scw 
    271  1.23      matt 	sc->sc_dev = self;
    272   1.1       scw 	sc->sc_iot = na->na_iot;
    273   1.1       scw 	sc->sc_dt = na->na_dt;
    274   1.1       scw 	sc->sc_npe = na->na_npe;
    275   1.1       scw 	sc->sc_unit = (na->na_unit == NPE_B) ? 0 : 1;
    276   1.1       scw 	sc->sc_phy = na->na_phy;
    277   1.1       scw 
    278   1.1       scw 	memset(&sc->sc_ethercom, 0, sizeof(sc->sc_ethercom));
    279  1.40   msaitoh 	memset(mii, 0, sizeof(*mii));
    280   1.1       scw 
    281   1.4        ad 	callout_init(&sc->sc_tick_ch, 0);
    282   1.1       scw 
    283   1.1       scw 	if (npe_activate(sc)) {
    284  1.23      matt 		aprint_error_dev(sc->sc_dev,
    285  1.23      matt 		    "Failed to activate NPE (missing microcode?)\n");
    286   1.1       scw 		return;
    287   1.1       scw 	}
    288   1.1       scw 
    289  1.14   msaitoh 	npe_getmac(sc);
    290  1.13   msaitoh 	npeinit_macreg(sc);
    291   1.1       scw 
    292  1.23      matt 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    293  1.11   msaitoh 	    ether_sprintf(sc->sc_enaddr));
    294   1.1       scw 
    295   1.1       scw 	ifp = &sc->sc_ethercom.ec_if;
    296  1.40   msaitoh 	mii->mii_ifp = ifp;
    297  1.40   msaitoh 	mii->mii_readreg = npe_miibus_readreg;
    298  1.40   msaitoh 	mii->mii_writereg = npe_miibus_writereg;
    299  1.40   msaitoh 	mii->mii_statchg = npe_miibus_statchg;
    300  1.40   msaitoh 	sc->sc_ethercom.ec_mii = mii;
    301  1.15   msaitoh 
    302  1.40   msaitoh 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    303  1.47   thorpej 	    ether_mediastatus);
    304   1.1       scw 
    305  1.40   msaitoh 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
    306  1.15   msaitoh 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
    307  1.40   msaitoh 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    308  1.40   msaitoh 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
    309  1.40   msaitoh 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
    310  1.15   msaitoh 	} else
    311  1.40   msaitoh 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    312   1.1       scw 
    313   1.1       scw 	ifp->if_softc = sc;
    314  1.23      matt 	strcpy(ifp->if_xname, device_xname(sc->sc_dev));
    315   1.1       scw 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    316   1.1       scw 	ifp->if_start = npestart;
    317   1.1       scw 	ifp->if_ioctl = npeioctl;
    318   1.1       scw 	ifp->if_watchdog = npewatchdog;
    319   1.1       scw 	ifp->if_init = npeinit;
    320   1.1       scw 	ifp->if_stop = npestop;
    321   1.1       scw 	IFQ_SET_READY(&ifp->if_snd);
    322   1.1       scw 
    323  1.10   msaitoh 	/* VLAN capable */
    324  1.10   msaitoh 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    325  1.10   msaitoh 
    326   1.1       scw 	if_attach(ifp);
    327  1.33    nonaka 	if_deferred_start_init(ifp, NULL);
    328  1.11   msaitoh 	ether_ifattach(ifp, sc->sc_enaddr);
    329  1.23      matt 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    330  1.26       tls 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    331  1.16   msaitoh 
    332  1.16   msaitoh 	/* callback function to reset MAC */
    333  1.16   msaitoh 	isc->macresetcbfunc = npeinit_resetcb;
    334  1.16   msaitoh 	isc->macresetcbarg = sc;
    335   1.1       scw }
    336   1.1       scw 
    337   1.1       scw /*
    338   1.1       scw  * Compute and install the multicast filter.
    339   1.1       scw  */
    340   1.1       scw static void
    341   1.1       scw npe_setmcast(struct npe_softc *sc)
    342   1.1       scw {
    343  1.40   msaitoh 	struct ethercom *ec = &sc->sc_ethercom;
    344  1.40   msaitoh 	struct ifnet *ifp = &ec->ec_if;
    345   1.1       scw 	uint8_t mask[ETHER_ADDR_LEN], addr[ETHER_ADDR_LEN];
    346  1.11   msaitoh 	uint32_t reg;
    347  1.16   msaitoh 	uint32_t msg[2];
    348   1.1       scw 	int i;
    349   1.1       scw 
    350  1.11   msaitoh 	/* Always use filter. Is here a correct position? */
    351  1.11   msaitoh 	reg = RD4(sc, NPE_MAC_RX_CNTRL1);
    352  1.11   msaitoh 	WR4(sc, NPE_MAC_RX_CNTRL1, reg | NPE_RX_CNTRL1_ADDR_FLTR_EN);
    353  1.11   msaitoh 
    354   1.1       scw 	if (ifp->if_flags & IFF_PROMISC) {
    355   1.1       scw 		memset(mask, 0, ETHER_ADDR_LEN);
    356   1.1       scw 		memset(addr, 0, ETHER_ADDR_LEN);
    357   1.1       scw 	} else if (ifp->if_flags & IFF_ALLMULTI) {
    358   1.1       scw 		static const uint8_t allmulti[ETHER_ADDR_LEN] =
    359   1.1       scw 		    { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
    360   1.1       scw  all_multi:
    361   1.1       scw 		memcpy(mask, allmulti, ETHER_ADDR_LEN);
    362   1.1       scw 		memcpy(addr, allmulti, ETHER_ADDR_LEN);
    363   1.1       scw 	} else {
    364   1.1       scw 		uint8_t clr[ETHER_ADDR_LEN], set[ETHER_ADDR_LEN];
    365   1.1       scw 		struct ether_multistep step;
    366   1.1       scw 		struct ether_multi *enm;
    367   1.1       scw 
    368   1.1       scw 		memset(clr, 0, ETHER_ADDR_LEN);
    369   1.1       scw 		memset(set, 0xff, ETHER_ADDR_LEN);
    370   1.1       scw 
    371  1.41   msaitoh 		ETHER_LOCK(ec);
    372  1.40   msaitoh 		ETHER_FIRST_MULTI(step, ec, enm);
    373   1.1       scw 		while (enm != NULL) {
    374  1.39   msaitoh 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    375  1.39   msaitoh 			    ETHER_ADDR_LEN)) {
    376   1.1       scw 				ifp->if_flags |= IFF_ALLMULTI;
    377  1.41   msaitoh 				ETHER_UNLOCK(ec);
    378   1.1       scw 				goto all_multi;
    379   1.1       scw 			}
    380   1.1       scw 
    381   1.1       scw 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
    382   1.1       scw 				clr[i] |= enm->enm_addrlo[i];
    383   1.1       scw 				set[i] &= enm->enm_addrlo[i];
    384   1.1       scw 			}
    385   1.1       scw 
    386   1.1       scw 			ETHER_NEXT_MULTI(step, enm);
    387   1.1       scw 		}
    388  1.41   msaitoh 		ETHER_UNLOCK(ec);
    389   1.1       scw 
    390   1.1       scw 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
    391   1.1       scw 			mask[i] = set[i] | ~clr[i];
    392   1.1       scw 			addr[i] = set[i];
    393   1.1       scw 		}
    394   1.1       scw 	}
    395   1.1       scw 
    396   1.1       scw 	/*
    397   1.1       scw 	 * Write the mask and address registers.
    398   1.1       scw 	 */
    399   1.1       scw 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
    400   1.1       scw 		WR4(sc, NPE_MAC_ADDR_MASK(i), mask[i]);
    401   1.1       scw 		WR4(sc, NPE_MAC_ADDR(i), addr[i]);
    402   1.1       scw 	}
    403  1.16   msaitoh 
    404  1.16   msaitoh 	msg[0] = NPE_ADDRESSFILTERCONFIG << NPE_MAC_MSGID_SHL
    405  1.16   msaitoh 	    | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL);
    406  1.16   msaitoh 	msg[1] = ((ifp->if_flags & IFF_PROMISC) ? 1 : 0) << 24
    407  1.16   msaitoh 	    | ((RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff) << 16)
    408  1.16   msaitoh 	    | (addr[5] << 8) | mask[5];
    409  1.16   msaitoh 	ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
    410   1.1       scw }
    411   1.1       scw 
    412   1.1       scw static int
    413   1.1       scw npe_dma_setup(struct npe_softc *sc, struct npedma *dma,
    414   1.1       scw 	const char *name, int nbuf, int maxseg)
    415   1.1       scw {
    416   1.1       scw 	bus_dma_segment_t seg;
    417   1.1       scw 	int rseg, error, i;
    418   1.3  christos 	void *hwbuf;
    419   1.1       scw 	size_t size;
    420   1.1       scw 
    421  1.10   msaitoh 	memset(dma, 0, sizeof(*dma));
    422   1.1       scw 
    423   1.1       scw 	dma->name = name;
    424   1.1       scw 	dma->nbuf = nbuf;
    425   1.1       scw 
    426   1.1       scw 	size = nbuf * sizeof(struct npehwbuf);
    427   1.1       scw 
    428   1.1       scw 	/* XXX COHERENT for now */
    429   1.1       scw 	error = bus_dmamem_alloc(sc->sc_dt, size, sizeof(uint32_t), 0, &seg,
    430   1.1       scw 	    1, &rseg, BUS_DMA_NOWAIT);
    431   1.1       scw 	if (error) {
    432  1.23      matt 		aprint_error_dev(sc->sc_dev,
    433  1.23      matt 		    "unable to %s for %s %s buffers, error %u\n",
    434  1.23      matt 		    "allocate memory", dma->name, "h/w", error);
    435   1.1       scw 	}
    436   1.1       scw 
    437   1.1       scw 	error = bus_dmamem_map(sc->sc_dt, &seg, 1, size, &hwbuf,
    438   1.1       scw 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_NOCACHE);
    439   1.1       scw 	if (error) {
    440  1.23      matt 		aprint_error_dev(sc->sc_dev,
    441  1.23      matt 		    "unable to %s for %s %s buffers, error %u\n",
    442  1.23      matt 		    "map memory", dma->name, "h/w", error);
    443   1.1       scw  free_dmamem:
    444   1.1       scw 		bus_dmamem_free(sc->sc_dt, &seg, rseg);
    445   1.1       scw 		return error;
    446   1.1       scw 	}
    447   1.1       scw 	dma->hwbuf = (void *)hwbuf;
    448   1.1       scw 
    449   1.1       scw 	error = bus_dmamap_create(sc->sc_dt, size, 1, size, 0,
    450   1.1       scw 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &dma->buf_map);
    451   1.1       scw 	if (error) {
    452  1.23      matt 		aprint_error_dev(sc->sc_dev,
    453  1.23      matt 		    "unable to %s for %s %s buffers, error %u\n",
    454  1.23      matt 		    "create map", dma->name, "h/w", error);
    455   1.1       scw  unmap_dmamem:
    456   1.1       scw 		dma->hwbuf = NULL;
    457   1.1       scw 		bus_dmamem_unmap(sc->sc_dt, hwbuf, size);
    458   1.1       scw 		goto free_dmamem;
    459   1.1       scw 	}
    460   1.1       scw 
    461   1.1       scw 	error = bus_dmamap_load(sc->sc_dt, dma->buf_map, hwbuf, size, NULL,
    462   1.1       scw 	    BUS_DMA_NOWAIT);
    463   1.1       scw 	if (error) {
    464  1.23      matt 		aprint_error_dev(sc->sc_dev,
    465  1.23      matt 		    "unable to %s for %s %s buffers, error %u\n",
    466  1.23      matt 		    "load map", dma->name, "h/w", error);
    467   1.1       scw 		bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
    468   1.1       scw 		goto unmap_dmamem;
    469   1.1       scw 	}
    470   1.1       scw 
    471  1.53     skrll 	dma->buf = kmem_zalloc(nbuf * sizeof(struct npebuf), KM_SLEEP);
    472   1.1       scw 	dma->buf_phys = dma->buf_map->dm_segs[0].ds_addr;
    473   1.1       scw 	for (i = 0; i < dma->nbuf; i++) {
    474   1.1       scw 		struct npebuf *npe = &dma->buf[i];
    475   1.1       scw 		struct npehwbuf *hw = &dma->hwbuf[i];
    476   1.1       scw 
    477  1.39   msaitoh 		/* Calculate offset to shared area */
    478   1.1       scw 		npe->ix_neaddr = dma->buf_phys +
    479   1.1       scw 			((uintptr_t)hw - (uintptr_t)dma->hwbuf);
    480   1.1       scw 		KASSERT((npe->ix_neaddr & 0x1f) == 0);
    481  1.10   msaitoh 		error = bus_dmamap_create(sc->sc_dt, MCLBYTES, maxseg,
    482   1.1       scw 		    MCLBYTES, 0, 0, &npe->ix_map);
    483   1.1       scw 		if (error != 0) {
    484  1.23      matt 			aprint_error_dev(sc->sc_dev,
    485  1.23      matt 			    "unable to %s for %s buffer %u, error %u\n",
    486  1.23      matt 			    "create dmamap", dma->name, i, error);
    487   1.1       scw 			/* XXXSCW: Free up maps... */
    488   1.1       scw 			return error;
    489   1.1       scw 		}
    490   1.1       scw 		npe->ix_hw = hw;
    491   1.1       scw 	}
    492   1.1       scw 	bus_dmamap_sync(sc->sc_dt, dma->buf_map, 0, dma->buf_map->dm_mapsize,
    493   1.1       scw 	    BUS_DMASYNC_PREWRITE);
    494   1.1       scw 	return 0;
    495   1.1       scw }
    496   1.1       scw 
    497   1.1       scw #if 0
    498   1.1       scw static void
    499   1.1       scw npe_dma_destroy(struct npe_softc *sc, struct npedma *dma)
    500   1.1       scw {
    501   1.1       scw 	int i;
    502   1.1       scw 
    503   1.1       scw /* XXXSCW: Clean this up */
    504   1.1       scw 
    505   1.1       scw 	if (dma->hwbuf != NULL) {
    506   1.1       scw 		for (i = 0; i < dma->nbuf; i++) {
    507   1.1       scw 			struct npebuf *npe = &dma->buf[i];
    508   1.1       scw 			bus_dmamap_destroy(sc->sc_dt, npe->ix_map);
    509   1.1       scw 		}
    510   1.1       scw 		bus_dmamap_unload(sc->sc_dt, dma->buf_map);
    511   1.3  christos 		bus_dmamem_free(sc->sc_dt, (void *)dma->hwbuf, dma->buf_map);
    512   1.1       scw 		bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
    513   1.1       scw 	}
    514   1.1       scw 	if (dma->buf != NULL)
    515  1.53     skrll 		kmem_free(dma->buf, dma->nbuf * sizeof(struct npebuf));
    516   1.1       scw 	memset(dma, 0, sizeof(*dma));
    517   1.1       scw }
    518   1.1       scw #endif
    519   1.1       scw 
    520   1.1       scw static int
    521   1.1       scw npe_activate(struct npe_softc *sc)
    522   1.1       scw {
    523   1.1       scw 	bus_dma_segment_t seg;
    524   1.1       scw 	int unit = sc->sc_unit;
    525   1.1       scw 	int error, i, rseg;
    526   1.3  christos 	void *statbuf;
    527   1.1       scw 
    528   1.1       scw 	/* load NPE firmware and start it running */
    529   1.1       scw 	error = ixpnpe_init(sc->sc_npe, "npe_fw", npeconfig[unit].imageid);
    530   1.1       scw 	if (error != 0)
    531   1.1       scw 		return error;
    532   1.1       scw 
    533   1.1       scw 	if (bus_space_map(sc->sc_iot, npeconfig[unit].regbase,
    534   1.1       scw 	    npeconfig[unit].regsize, 0, &sc->sc_ioh)) {
    535  1.23      matt 		aprint_error_dev(sc->sc_dev, "Cannot map registers 0x%x:0x%x\n",
    536  1.23      matt 		    npeconfig[unit].regbase, npeconfig[unit].regsize);
    537   1.1       scw 		return ENOMEM;
    538   1.1       scw 	}
    539   1.1       scw 
    540   1.1       scw 	if (npeconfig[unit].miibase != npeconfig[unit].regbase) {
    541   1.1       scw 		/*
    542   1.1       scw 		 * The PHY's are only accessible from one MAC (it appears)
    543   1.1       scw 		 * so for other MAC's setup an additional mapping for
    544   1.1       scw 		 * frobbing the PHY registers.
    545   1.1       scw 		 */
    546   1.1       scw 		if (bus_space_map(sc->sc_iot, npeconfig[unit].miibase,
    547   1.1       scw 		    npeconfig[unit].miisize, 0, &sc->sc_miih)) {
    548  1.23      matt 			aprint_error_dev(sc->sc_dev,
    549  1.23      matt 			    "Cannot map MII registers 0x%x:0x%x\n",
    550  1.23      matt 			    npeconfig[unit].miibase, npeconfig[unit].miisize);
    551   1.1       scw 			return ENOMEM;
    552   1.1       scw 		}
    553   1.1       scw 	} else
    554   1.1       scw 		sc->sc_miih = sc->sc_ioh;
    555   1.1       scw 	error = npe_dma_setup(sc, &sc->txdma, "tx", NPE_TXBUF, NPE_MAXSEG);
    556   1.1       scw 	if (error != 0)
    557   1.1       scw 		return error;
    558   1.1       scw 	error = npe_dma_setup(sc, &sc->rxdma, "rx", NPE_RXBUF, 1);
    559   1.1       scw 	if (error != 0)
    560   1.1       scw 		return error;
    561   1.1       scw 
    562   1.1       scw 	/* setup statistics block */
    563   1.1       scw 	error = bus_dmamem_alloc(sc->sc_dt, sizeof(struct npestats),
    564   1.1       scw 	    sizeof(uint32_t), 0, &seg, 1, &rseg, BUS_DMA_NOWAIT);
    565   1.1       scw 	if (error) {
    566  1.23      matt 		aprint_error_dev(sc->sc_dev,
    567  1.23      matt 		    "unable to %s for %s, error %u\n",
    568  1.23      matt 		    "allocate memory", "stats block", error);
    569   1.1       scw 		return error;
    570   1.1       scw 	}
    571   1.1       scw 
    572   1.1       scw 	error = bus_dmamem_map(sc->sc_dt, &seg, 1, sizeof(struct npestats),
    573   1.1       scw 	    &statbuf, BUS_DMA_NOWAIT);
    574   1.1       scw 	if (error) {
    575  1.23      matt 		aprint_error_dev(sc->sc_dev,
    576  1.23      matt 		    "unable to %s for %s, error %u\n",
    577  1.23      matt 		    "map memory", "stats block", error);
    578   1.1       scw 		return error;
    579   1.1       scw 	}
    580   1.1       scw 	sc->sc_stats = (void *)statbuf;
    581   1.1       scw 
    582   1.1       scw 	error = bus_dmamap_create(sc->sc_dt, sizeof(struct npestats), 1,
    583   1.1       scw 	    sizeof(struct npestats), 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    584   1.1       scw 	    &sc->sc_stats_map);
    585   1.1       scw 	if (error) {
    586  1.23      matt 		aprint_error_dev(sc->sc_dev,
    587  1.23      matt 		    "unable to %s for %s, error %u\n",
    588  1.23      matt 		    "create map", "stats block", error);
    589   1.1       scw 		return error;
    590   1.1       scw 	}
    591   1.1       scw 
    592  1.29      maxv 	error = bus_dmamap_load(sc->sc_dt, sc->sc_stats_map, sc->sc_stats,
    593  1.29      maxv 	    sizeof(struct npestats), NULL, BUS_DMA_NOWAIT);
    594  1.29      maxv 	if (error) {
    595  1.23      matt 		aprint_error_dev(sc->sc_dev,
    596  1.23      matt 		    "unable to %s for %s, error %u\n",
    597  1.23      matt 		    "load map", "stats block", error);
    598   1.1       scw 		return error;
    599   1.1       scw 	}
    600   1.1       scw 	sc->sc_stats_phys = sc->sc_stats_map->dm_segs[0].ds_addr;
    601   1.1       scw 
    602   1.1       scw 	/* XXX disable half-bridge LEARNING+FILTERING feature */
    603   1.1       scw 
    604   1.1       scw 	/*
    605   1.1       scw 	 * Setup h/w rx/tx queues.  There are four q's:
    606   1.1       scw 	 *   rx		inbound q of rx'd frames
    607   1.1       scw 	 *   rx_free	pool of ixpbuf's for receiving frames
    608   1.1       scw 	 *   tx		outbound q of frames to send
    609   1.1       scw 	 *   tx_done	q of tx frames that have been processed
    610   1.1       scw 	 *
    611   1.1       scw 	 * The NPE handles the actual tx/rx process and the q manager
    612   1.1       scw 	 * handles the queues.  The driver just writes entries to the
    613   1.1       scw 	 * q manager mailbox's and gets callbacks when there are rx'd
    614   1.1       scw 	 * frames to process or tx'd frames to reap.  These callbacks
    615   1.1       scw 	 * are controlled by the q configurations; e.g. we get a
    616   1.1       scw 	 * callback when tx_done has 2 or more frames to process and
    617  1.48    andvar 	 * when the rx q has at least one frame.  These settings can
    618   1.1       scw 	 * changed at the time the q is configured.
    619   1.1       scw 	 */
    620   1.1       scw 	sc->rx_qid = npeconfig[unit].rx_qid;
    621   1.1       scw 	ixpqmgr_qconfig(sc->rx_qid, NPE_RXBUF, 0,  1,
    622   1.1       scw 		IX_QMGR_Q_SOURCE_ID_NOT_E, npe_rxdone, sc);
    623   1.1       scw 	sc->rx_freeqid = npeconfig[unit].rx_freeqid;
    624   1.1       scw 	ixpqmgr_qconfig(sc->rx_freeqid,	NPE_RXBUF, 0, NPE_RXBUF/2, 0, NULL, sc);
    625   1.1       scw 	/* tell the NPE to direct all traffic to rx_qid */
    626   1.1       scw #if 0
    627   1.1       scw 	for (i = 0; i < 8; i++)
    628   1.1       scw #else
    629  1.23      matt printf("%s: remember to fix rx q setup\n", device_xname(sc->sc_dev));
    630   1.1       scw 	for (i = 0; i < 4; i++)
    631   1.1       scw #endif
    632   1.1       scw 		npe_setrxqosentry(sc, i, 0, sc->rx_qid);
    633   1.1       scw 
    634   1.1       scw 	sc->tx_qid = npeconfig[unit].tx_qid;
    635   1.1       scw 	sc->tx_doneqid = npeconfig[unit].tx_doneqid;
    636   1.1       scw 	ixpqmgr_qconfig(sc->tx_qid, NPE_TXBUF, 0, NPE_TXBUF, 0, NULL, sc);
    637   1.1       scw 	if (tx_doneqid == -1) {
    638   1.1       scw 		ixpqmgr_qconfig(sc->tx_doneqid,	NPE_TXBUF, 0,  2,
    639   1.1       scw 			IX_QMGR_Q_SOURCE_ID_NOT_E, npe_txdone, sc);
    640   1.1       scw 		tx_doneqid = sc->tx_doneqid;
    641   1.1       scw 	}
    642   1.1       scw 
    643   1.1       scw 	KASSERT(npes[npeconfig[unit].npeid] == NULL);
    644   1.1       scw 	npes[npeconfig[unit].npeid] = sc;
    645   1.1       scw 
    646   1.1       scw 	return 0;
    647   1.1       scw }
    648   1.1       scw 
    649   1.1       scw #if 0
    650   1.1       scw static void
    651   1.1       scw npe_deactivate(struct npe_softc *sc);
    652   1.1       scw {
    653   1.1       scw 	int unit = sc->sc_unit;
    654   1.1       scw 
    655   1.1       scw 	npes[npeconfig[unit].npeid] = NULL;
    656   1.1       scw 
    657   1.1       scw 	/* XXX disable q's */
    658   1.1       scw 	if (sc->sc_npe != NULL)
    659   1.1       scw 		ixpnpe_stop(sc->sc_npe);
    660   1.1       scw 	if (sc->sc_stats != NULL) {
    661   1.1       scw 		bus_dmamap_unload(sc->sc_stats_tag, sc->sc_stats_map);
    662   1.1       scw 		bus_dmamem_free(sc->sc_stats_tag, sc->sc_stats,
    663   1.1       scw 			sc->sc_stats_map);
    664   1.1       scw 		bus_dmamap_destroy(sc->sc_stats_tag, sc->sc_stats_map);
    665   1.1       scw 	}
    666   1.1       scw 	if (sc->sc_stats_tag != NULL)
    667   1.1       scw 		bus_dma_tag_destroy(sc->sc_stats_tag);
    668   1.1       scw 	npe_dma_destroy(sc, &sc->txdma);
    669   1.1       scw 	npe_dma_destroy(sc, &sc->rxdma);
    670   1.1       scw 	bus_generic_detach(sc->sc_dev);
    671  1.46   thorpej 	XXX ifmedia_fini somewhere
    672   1.1       scw 	if (sc->sc_mii)
    673   1.1       scw 		device_delete_child(sc->sc_dev, sc->sc_mii);
    674   1.1       scw #if 0
    675   1.1       scw 	/* XXX sc_ioh and sc_miih */
    676   1.1       scw 	if (sc->mem_res)
    677   1.1       scw 		bus_release_resource(dev, SYS_RES_IOPORT,
    678   1.1       scw 		    rman_get_rid(sc->mem_res), sc->mem_res);
    679   1.1       scw 	sc->mem_res = 0;
    680   1.1       scw #endif
    681   1.1       scw }
    682   1.1       scw #endif
    683   1.1       scw 
    684   1.1       scw static void
    685   1.1       scw npe_addstats(struct npe_softc *sc)
    686   1.1       scw {
    687   1.1       scw 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    688   1.1       scw 	struct npestats *ns = sc->sc_stats;
    689   1.1       scw 
    690  1.45   thorpej 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
    691  1.54  riastrad 	if_statadd_ref(ifp, nsr, if_oerrors,
    692   1.1       scw 		  be32toh(ns->dot3StatsInternalMacTransmitErrors)
    693   1.1       scw 		+ be32toh(ns->dot3StatsCarrierSenseErrors)
    694   1.1       scw 		+ be32toh(ns->TxVLANIdFilterDiscards)
    695  1.45   thorpej 		);
    696  1.54  riastrad 	if_statadd_ref(ifp, nsr, if_ierrors,
    697  1.45   thorpej 		  be32toh(ns->dot3StatsFCSErrors)
    698   1.1       scw 		+ be32toh(ns->dot3StatsInternalMacReceiveErrors)
    699   1.1       scw 		+ be32toh(ns->RxOverrunDiscards)
    700   1.1       scw 		+ be32toh(ns->RxUnderflowEntryDiscards)
    701  1.45   thorpej 		);
    702  1.54  riastrad 	if_statadd_ref(ifp, nsr, if_collisions,
    703   1.1       scw 		  be32toh(ns->dot3StatsSingleCollisionFrames)
    704   1.1       scw 		+ be32toh(ns->dot3StatsMultipleCollisionFrames)
    705  1.45   thorpej 		);
    706  1.45   thorpej 	IF_STAT_PUTREF(ifp);
    707   1.1       scw }
    708   1.1       scw 
    709   1.1       scw static void
    710   1.1       scw npe_tick(void *xsc)
    711   1.1       scw {
    712   1.1       scw #define	ACK	(NPE_RESETSTATS << NPE_MAC_MSGID_SHL)
    713   1.1       scw 	struct npe_softc *sc = xsc;
    714   1.1       scw 	uint32_t msg[2];
    715   1.1       scw 
    716   1.1       scw 	/*
    717   1.1       scw 	 * NB: to avoid sleeping with the softc lock held we
    718   1.1       scw 	 * split the NPE msg processing into two parts.  The
    719   1.1       scw 	 * request for statistics is sent w/o waiting for a
    720   1.1       scw 	 * reply and then on the next tick we retrieve the
    721   1.1       scw 	 * results.  This works because npe_tick is the only
    722   1.1       scw 	 * code that talks via the mailbox's (except at setup).
    723   1.1       scw 	 * This likely can be handled better.
    724   1.1       scw 	 */
    725   1.1       scw 	if (ixpnpe_recvmsg(sc->sc_npe, msg) == 0 && msg[0] == ACK) {
    726   1.1       scw 		bus_dmamap_sync(sc->sc_dt, sc->sc_stats_map, 0,
    727   1.1       scw 		    sizeof(struct npestats), BUS_DMASYNC_POSTREAD);
    728   1.1       scw 		npe_addstats(sc);
    729   1.1       scw 	}
    730   1.1       scw 	npe_updatestats(sc);
    731   1.1       scw 	mii_tick(&sc->sc_mii);
    732   1.1       scw 
    733  1.39   msaitoh 	/* Schedule next poll */
    734   1.1       scw 	callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
    735   1.1       scw #undef ACK
    736   1.1       scw }
    737   1.1       scw 
    738   1.1       scw static void
    739   1.6      matt npe_setmac(struct npe_softc *sc, const u_char *eaddr)
    740   1.1       scw {
    741  1.11   msaitoh 
    742   1.1       scw 	WR4(sc, NPE_MAC_UNI_ADDR_1, eaddr[0]);
    743   1.1       scw 	WR4(sc, NPE_MAC_UNI_ADDR_2, eaddr[1]);
    744   1.1       scw 	WR4(sc, NPE_MAC_UNI_ADDR_3, eaddr[2]);
    745   1.1       scw 	WR4(sc, NPE_MAC_UNI_ADDR_4, eaddr[3]);
    746   1.1       scw 	WR4(sc, NPE_MAC_UNI_ADDR_5, eaddr[4]);
    747   1.1       scw 	WR4(sc, NPE_MAC_UNI_ADDR_6, eaddr[5]);
    748   1.1       scw }
    749   1.1       scw 
    750   1.1       scw static void
    751  1.11   msaitoh npe_getmac(struct npe_softc *sc)
    752   1.1       scw {
    753  1.11   msaitoh 	uint8_t *eaddr = sc->sc_enaddr;
    754  1.11   msaitoh 
    755  1.11   msaitoh 	if (npe_getmac_md != NULL) {
    756  1.23      matt 		(*npe_getmac_md)(device_unit(sc->sc_dev), eaddr);
    757  1.11   msaitoh 	} else {
    758  1.11   msaitoh 		/*
    759  1.11   msaitoh 		 * Some system's unicast address appears to be loaded from
    760  1.11   msaitoh 		 * EEPROM on reset
    761  1.11   msaitoh 		 */
    762  1.11   msaitoh 		eaddr[0] = RD4(sc, NPE_MAC_UNI_ADDR_1) & 0xff;
    763  1.11   msaitoh 		eaddr[1] = RD4(sc, NPE_MAC_UNI_ADDR_2) & 0xff;
    764  1.11   msaitoh 		eaddr[2] = RD4(sc, NPE_MAC_UNI_ADDR_3) & 0xff;
    765  1.11   msaitoh 		eaddr[3] = RD4(sc, NPE_MAC_UNI_ADDR_4) & 0xff;
    766  1.11   msaitoh 		eaddr[4] = RD4(sc, NPE_MAC_UNI_ADDR_5) & 0xff;
    767  1.11   msaitoh 		eaddr[5] = RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff;
    768  1.11   msaitoh 	}
    769   1.1       scw }
    770   1.1       scw 
    771   1.1       scw struct txdone {
    772   1.1       scw 	struct npebuf *head;
    773   1.1       scw 	struct npebuf **tail;
    774   1.1       scw 	int count;
    775   1.1       scw };
    776   1.1       scw 
    777   1.1       scw static __inline void
    778   1.1       scw npe_txdone_finish(struct npe_softc *sc, const struct txdone *td)
    779   1.1       scw {
    780   1.1       scw 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    781   1.1       scw 
    782   1.1       scw 	*td->tail = sc->tx_free;
    783   1.1       scw 	sc->tx_free = td->head;
    784   1.1       scw 	/*
    785   1.1       scw 	 * We're no longer busy, so clear the busy flag and call the
    786   1.1       scw 	 * start routine to xmit more packets.
    787   1.1       scw 	 */
    788  1.45   thorpej 	if_statadd(ifp, if_opackets, td->count);
    789   1.1       scw 	ifp->if_timer = 0;
    790  1.33    nonaka 	if_schedule_deferred_start(ifp);
    791   1.1       scw }
    792   1.1       scw 
    793   1.1       scw /*
    794   1.1       scw  * Q manager callback on tx done queue.  Reap mbufs
    795   1.1       scw  * and return tx buffers to the free list.  Finally
    796   1.1       scw  * restart output.  Note the microcode has only one
    797   1.1       scw  * txdone q wired into it so we must use the NPE ID
    798   1.1       scw  * returned with each npehwbuf to decide where to
    799   1.1       scw  * send buffers.
    800   1.1       scw  */
    801   1.1       scw static void
    802   1.1       scw npe_txdone(int qid, void *arg)
    803   1.1       scw {
    804   1.1       scw #define	P2V(a, dma) \
    805   1.1       scw 	&(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
    806   1.1       scw 	struct npe_softc *sc;
    807   1.1       scw 	struct npebuf *npe;
    808   1.1       scw 	struct txdone *td, q[NPE_MAX];
    809   1.1       scw 	uint32_t entry;
    810   1.1       scw 
    811   1.1       scw 	/* XXX no NPE-A support */
    812   1.1       scw 	q[NPE_B].tail = &q[NPE_B].head; q[NPE_B].count = 0;
    813   1.1       scw 	q[NPE_C].tail = &q[NPE_C].head; q[NPE_C].count = 0;
    814   1.1       scw 	/* XXX max # at a time? */
    815   1.1       scw 	while (ixpqmgr_qread(qid, &entry) == 0) {
    816   1.1       scw 		sc = npes[NPE_QM_Q_NPE(entry)];
    817   1.1       scw 		DPRINTF(sc, "%s: entry 0x%x NPE %u port %u\n",
    818   1.1       scw 		    __func__, entry, NPE_QM_Q_NPE(entry), NPE_QM_Q_PORT(entry));
    819  1.22       tls 		rnd_add_uint32(&sc->rnd_source, entry);
    820   1.1       scw 
    821   1.1       scw 		npe = P2V(NPE_QM_Q_ADDR(entry), &sc->txdma);
    822   1.1       scw 		m_freem(npe->ix_m);
    823   1.1       scw 		npe->ix_m = NULL;
    824   1.1       scw 
    825   1.1       scw 		td = &q[NPE_QM_Q_NPE(entry)];
    826   1.1       scw 		*td->tail = npe;
    827   1.1       scw 		td->tail = &npe->ix_next;
    828   1.1       scw 		td->count++;
    829   1.1       scw 	}
    830   1.1       scw 
    831   1.1       scw 	if (q[NPE_B].count)
    832   1.1       scw 		npe_txdone_finish(npes[NPE_B], &q[NPE_B]);
    833   1.1       scw 	if (q[NPE_C].count)
    834   1.1       scw 		npe_txdone_finish(npes[NPE_C], &q[NPE_C]);
    835   1.1       scw #undef P2V
    836   1.1       scw }
    837   1.1       scw 
    838   1.1       scw static __inline struct mbuf *
    839   1.1       scw npe_getcl(void)
    840   1.1       scw {
    841   1.1       scw 	struct mbuf *m;
    842   1.1       scw 
    843   1.1       scw 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    844   1.1       scw 	if (m != NULL) {
    845   1.1       scw 		MCLGET(m, M_DONTWAIT);
    846   1.1       scw 		if ((m->m_flags & M_EXT) == 0) {
    847   1.1       scw 			m_freem(m);
    848   1.1       scw 			m = NULL;
    849   1.1       scw 		}
    850   1.1       scw 	}
    851  1.39   msaitoh 	return m;
    852   1.1       scw }
    853   1.1       scw 
    854   1.1       scw static int
    855   1.1       scw npe_rxbuf_init(struct npe_softc *sc, struct npebuf *npe, struct mbuf *m)
    856   1.1       scw {
    857   1.1       scw 	struct npehwbuf *hw;
    858   1.1       scw 	int error;
    859   1.1       scw 
    860   1.1       scw 	if (m == NULL) {
    861   1.1       scw 		m = npe_getcl();
    862   1.1       scw 		if (m == NULL)
    863   1.1       scw 			return ENOBUFS;
    864   1.1       scw 	}
    865  1.11   msaitoh 	KASSERT(m->m_ext.ext_size >= (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
    866  1.11   msaitoh 	m->m_pkthdr.len = m->m_len = NPE_FRAME_SIZE_DEFAULT;
    867   1.1       scw 	/* backload payload and align ip hdr */
    868  1.11   msaitoh 	m->m_data = m->m_ext.ext_buf + (m->m_ext.ext_size
    869  1.11   msaitoh 	    - (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
    870   1.1       scw 	error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
    871  1.40   msaitoh 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
    872   1.1       scw 	if (error != 0) {
    873   1.1       scw 		m_freem(m);
    874   1.1       scw 		return error;
    875   1.1       scw 	}
    876   1.1       scw 	hw = npe->ix_hw;
    877   1.1       scw 	hw->ix_ne[0].data = htobe32(npe->ix_map->dm_segs[0].ds_addr);
    878   1.1       scw 	/* NB: NPE requires length be a multiple of 64 */
    879   1.1       scw 	/* NB: buffer length is shifted in word */
    880   1.1       scw 	hw->ix_ne[0].len = htobe32(npe->ix_map->dm_segs[0].ds_len << 16);
    881   1.1       scw 	hw->ix_ne[0].next = 0;
    882   1.1       scw 	npe->ix_m = m;
    883   1.1       scw 	/* Flush the memory in the mbuf */
    884   1.1       scw 	bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0, npe->ix_map->dm_mapsize,
    885   1.1       scw 	    BUS_DMASYNC_PREREAD);
    886   1.1       scw 	return 0;
    887   1.1       scw }
    888   1.1       scw 
    889   1.1       scw /*
    890   1.1       scw  * RX q processing for a specific NPE.  Claim entries
    891   1.1       scw  * from the hardware queue and pass the frames up the
    892   1.1       scw  * stack. Pass the rx buffers to the free list.
    893   1.1       scw  */
    894   1.1       scw static void
    895   1.1       scw npe_rxdone(int qid, void *arg)
    896   1.1       scw {
    897   1.1       scw #define	P2V(a, dma) \
    898   1.1       scw 	&(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
    899   1.1       scw 	struct npe_softc *sc = arg;
    900   1.1       scw 	struct npedma *dma = &sc->rxdma;
    901   1.1       scw 	uint32_t entry;
    902   1.1       scw 
    903   1.1       scw 	while (ixpqmgr_qread(qid, &entry) == 0) {
    904   1.1       scw 		struct npebuf *npe = P2V(NPE_QM_Q_ADDR(entry), dma);
    905   1.1       scw 		struct mbuf *m;
    906   1.1       scw 
    907   1.1       scw 		DPRINTF(sc, "%s: entry 0x%x neaddr 0x%x ne_len 0x%x\n",
    908   1.1       scw 		    __func__, entry, npe->ix_neaddr, npe->ix_hw->ix_ne[0].len);
    909  1.22       tls 		rnd_add_uint32(&sc->rnd_source, entry);
    910   1.1       scw 		/*
    911   1.1       scw 		 * Allocate a new mbuf to replenish the rx buffer.
    912   1.1       scw 		 * If doing so fails we drop the rx'd frame so we
    913   1.1       scw 		 * can reuse the previous mbuf.  When we're able to
    914   1.1       scw 		 * allocate a new mbuf dispatch the mbuf w/ rx'd
    915   1.1       scw 		 * data up the stack and replace it with the newly
    916   1.1       scw 		 * allocated one.
    917   1.1       scw 		 */
    918   1.1       scw 		m = npe_getcl();
    919   1.1       scw 		if (m != NULL) {
    920   1.1       scw 			struct mbuf *mrx = npe->ix_m;
    921   1.1       scw 			struct npehwbuf *hw = npe->ix_hw;
    922   1.1       scw 			struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    923   1.1       scw 
    924   1.1       scw 			/* Flush mbuf memory for rx'd data */
    925   1.1       scw 			bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
    926   1.1       scw 			    npe->ix_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
    927   1.1       scw 
    928   1.1       scw 			/* XXX flush hw buffer; works now 'cuz coherent */
    929   1.1       scw 			/* set m_len etc. per rx frame size */
    930   1.1       scw 			mrx->m_len = be32toh(hw->ix_ne[0].len) & 0xffff;
    931   1.1       scw 			mrx->m_pkthdr.len = mrx->m_len;
    932  1.31     ozaki 			m_set_rcvif(mrx, ifp);
    933  1.11   msaitoh 			/* Don't add M_HASFCS. See below */
    934  1.11   msaitoh 
    935  1.11   msaitoh #if 1
    936  1.11   msaitoh 			if (mrx->m_pkthdr.len < sizeof(struct ether_header)) {
    937  1.11   msaitoh 				log(LOG_INFO, "%s: too short frame (len=%d)\n",
    938  1.39   msaitoh 				    device_xname(sc->sc_dev),
    939  1.39   msaitoh 				    mrx->m_pkthdr.len);
    940  1.11   msaitoh 				/* Back out "newly allocated" mbuf. */
    941  1.11   msaitoh 				m_freem(m);
    942  1.45   thorpej 				if_statinc(ifp, if_ierrors);
    943  1.11   msaitoh 				goto fail;
    944  1.11   msaitoh 			}
    945  1.11   msaitoh 			if ((ifp->if_flags & IFF_PROMISC) == 0) {
    946  1.11   msaitoh 				struct ether_header *eh;
    947  1.11   msaitoh 
    948  1.11   msaitoh 				/*
    949  1.11   msaitoh 				 * Workaround for "Non-Intel XScale Technology
    950  1.11   msaitoh 				 * Eratta" No. 29. AA:BB:CC:DD:EE:xF's packet
    951  1.11   msaitoh 				 * matches the filter (both unicast and
    952  1.11   msaitoh 				 * multicast).
    953  1.11   msaitoh 				 */
    954  1.11   msaitoh 				eh = mtod(mrx, struct ether_header *);
    955  1.11   msaitoh 				if (ETHER_IS_MULTICAST(eh->ether_dhost) == 0) {
    956  1.39   msaitoh 					/* Unicast */
    957  1.11   msaitoh 
    958  1.11   msaitoh 					if (sc->sc_enaddr[5] != eh->ether_dhost[5]) {
    959  1.39   msaitoh 						/* Discard it */
    960  1.11   msaitoh #if 0
    961  1.11   msaitoh 						printf("discard it\n");
    962  1.11   msaitoh #endif
    963  1.11   msaitoh 						/*
    964  1.11   msaitoh 						 * Back out "newly allocated"
    965  1.11   msaitoh 						 * mbuf.
    966  1.11   msaitoh 						 */
    967  1.11   msaitoh 						m_freem(m);
    968  1.11   msaitoh 						goto fail;
    969  1.11   msaitoh 					}
    970  1.11   msaitoh 				} else if (memcmp(eh->ether_dhost,
    971  1.11   msaitoh 					etherbroadcastaddr, 6) == 0) {
    972  1.11   msaitoh 					/* Always accept broadcast packet*/
    973  1.11   msaitoh 				} else {
    974  1.11   msaitoh 					struct ethercom *ec = &sc->sc_ethercom;
    975  1.11   msaitoh 					struct ether_multi *enm;
    976  1.11   msaitoh 					struct ether_multistep step;
    977  1.11   msaitoh 					int match = 0;
    978  1.11   msaitoh 
    979  1.39   msaitoh 					/* Multicast */
    980  1.11   msaitoh 
    981  1.41   msaitoh 					ETHER_LOCK(ec);
    982  1.11   msaitoh 					ETHER_FIRST_MULTI(step, ec, enm);
    983  1.11   msaitoh 					while (enm != NULL) {
    984  1.11   msaitoh 						uint64_t lowint, highint, dest;
    985  1.11   msaitoh 
    986  1.11   msaitoh 						lowint = MAC2UINT64(enm->enm_addrlo);
    987  1.11   msaitoh 						highint = MAC2UINT64(enm->enm_addrhi);
    988  1.11   msaitoh 						dest = MAC2UINT64(eh->ether_dhost);
    989  1.11   msaitoh #if 0
    990  1.11   msaitoh 						printf("%llx\n", lowint);
    991  1.11   msaitoh 						printf("%llx\n", dest);
    992  1.11   msaitoh 						printf("%llx\n", highint);
    993  1.11   msaitoh #endif
    994  1.11   msaitoh 						if ((lowint <= dest) && (dest <= highint)) {
    995  1.11   msaitoh 							match = 1;
    996  1.11   msaitoh 							break;
    997  1.11   msaitoh 						}
    998  1.11   msaitoh 						ETHER_NEXT_MULTI(step, enm);
    999  1.11   msaitoh 					}
   1000  1.41   msaitoh 					ETHER_UNLOCK(ec);
   1001  1.41   msaitoh 
   1002  1.11   msaitoh 					if (match == 0) {
   1003  1.39   msaitoh 						/* Discard it */
   1004  1.11   msaitoh #if 0
   1005  1.11   msaitoh 						printf("discard it(M)\n");
   1006  1.11   msaitoh #endif
   1007  1.11   msaitoh 						/*
   1008  1.11   msaitoh 						 * Back out "newly allocated"
   1009  1.11   msaitoh 						 * mbuf.
   1010  1.11   msaitoh 						 */
   1011  1.11   msaitoh 						m_freem(m);
   1012  1.11   msaitoh 						goto fail;
   1013  1.11   msaitoh 					}
   1014  1.11   msaitoh 				}
   1015  1.11   msaitoh 			}
   1016  1.11   msaitoh 			if (mrx->m_pkthdr.len > NPE_FRAME_SIZE_DEFAULT) {
   1017  1.11   msaitoh 				log(LOG_INFO, "%s: oversized frame (len=%d)\n",
   1018  1.23      matt 				    device_xname(sc->sc_dev), mrx->m_pkthdr.len);
   1019  1.11   msaitoh 				/* Back out "newly allocated" mbuf. */
   1020  1.11   msaitoh 				m_freem(m);
   1021  1.45   thorpej 				if_statinc(ifp, if_ierrors);
   1022  1.11   msaitoh 				goto fail;
   1023  1.11   msaitoh 			}
   1024  1.11   msaitoh #endif
   1025  1.11   msaitoh 
   1026  1.11   msaitoh 			/*
   1027  1.11   msaitoh 			 * Trim FCS!
   1028  1.11   msaitoh 			 * NPE always adds the FCS by this driver's setting,
   1029  1.11   msaitoh 			 * so we always trim it here and not add M_HASFCS.
   1030  1.11   msaitoh 			 */
   1031  1.11   msaitoh 			m_adj(mrx, -ETHER_CRC_LEN);
   1032   1.1       scw 
   1033  1.10   msaitoh 			/*
   1034  1.10   msaitoh 			 * Tap off here if there is a bpf listener.
   1035  1.10   msaitoh 			 */
   1036  1.32     ozaki 
   1037  1.30     ozaki 			if_percpuq_enqueue(ifp->if_percpuq, mrx);
   1038   1.1       scw 		} else {
   1039  1.11   msaitoh fail:
   1040   1.1       scw 			/* discard frame and re-use mbuf */
   1041   1.1       scw 			m = npe->ix_m;
   1042   1.1       scw 		}
   1043   1.1       scw 		if (npe_rxbuf_init(sc, npe, m) == 0) {
   1044   1.1       scw 			/* return npe buf to rx free list */
   1045   1.1       scw 			ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
   1046   1.1       scw 		} else {
   1047   1.1       scw 			/* XXX should not happen */
   1048   1.1       scw 		}
   1049   1.1       scw 	}
   1050   1.1       scw #undef P2V
   1051   1.1       scw }
   1052   1.1       scw 
   1053   1.1       scw static void
   1054   1.1       scw npe_startxmit(struct npe_softc *sc)
   1055   1.1       scw {
   1056   1.1       scw 	struct npedma *dma = &sc->txdma;
   1057   1.1       scw 	int i;
   1058   1.1       scw 
   1059   1.1       scw 	sc->tx_free = NULL;
   1060   1.1       scw 	for (i = 0; i < dma->nbuf; i++) {
   1061   1.1       scw 		struct npebuf *npe = &dma->buf[i];
   1062   1.1       scw 		if (npe->ix_m != NULL) {
   1063   1.1       scw 			/* NB: should not happen */
   1064   1.1       scw 			printf("%s: %s: free mbuf at entry %u\n",
   1065  1.23      matt 			    device_xname(sc->sc_dev), __func__, i);
   1066   1.1       scw 			m_freem(npe->ix_m);
   1067   1.1       scw 		}
   1068   1.1       scw 		npe->ix_m = NULL;
   1069   1.1       scw 		npe->ix_next = sc->tx_free;
   1070   1.1       scw 		sc->tx_free = npe;
   1071   1.1       scw 	}
   1072   1.1       scw }
   1073   1.1       scw 
   1074   1.1       scw static void
   1075   1.1       scw npe_startrecv(struct npe_softc *sc)
   1076   1.1       scw {
   1077   1.1       scw 	struct npedma *dma = &sc->rxdma;
   1078   1.1       scw 	struct npebuf *npe;
   1079   1.1       scw 	int i;
   1080   1.1       scw 
   1081   1.1       scw 	for (i = 0; i < dma->nbuf; i++) {
   1082   1.1       scw 		npe = &dma->buf[i];
   1083   1.1       scw 		npe_rxbuf_init(sc, npe, npe->ix_m);
   1084  1.39   msaitoh 		/* Set npe buf on rx free list */
   1085   1.1       scw 		ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
   1086   1.1       scw 	}
   1087   1.1       scw }
   1088   1.1       scw 
   1089   1.1       scw static void
   1090  1.13   msaitoh npeinit_macreg(struct npe_softc *sc)
   1091   1.1       scw {
   1092   1.1       scw 
   1093   1.1       scw 	/*
   1094   1.1       scw 	 * Reset MAC core.
   1095   1.1       scw 	 */
   1096   1.1       scw 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
   1097   1.1       scw 	DELAY(NPE_MAC_RESET_DELAY);
   1098  1.39   msaitoh 	/* Configure MAC to generate MDC clock */
   1099   1.1       scw 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
   1100   1.1       scw 
   1101  1.44   msaitoh 	/* Disable transmitter and receiver in the MAC */
   1102  1.39   msaitoh 	WR4(sc, NPE_MAC_RX_CNTRL1,
   1103   1.1       scw 	    RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
   1104  1.39   msaitoh 	WR4(sc, NPE_MAC_TX_CNTRL1,
   1105   1.1       scw 	    RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
   1106   1.1       scw 
   1107   1.1       scw 	/*
   1108   1.1       scw 	 * Set the MAC core registers.
   1109   1.1       scw 	 */
   1110   1.1       scw 	WR4(sc, NPE_MAC_INT_CLK_THRESH, 0x1);	/* clock ratio: for ipx4xx */
   1111   1.1       scw 	WR4(sc, NPE_MAC_TX_CNTRL2,	0xf);	/* max retries */
   1112   1.1       scw 	WR4(sc, NPE_MAC_RANDOM_SEED,	0x8);	/* LFSR back-off seed */
   1113  1.39   msaitoh 	/* Thresholds determined by NPE firmware FS */
   1114   1.1       scw 	WR4(sc, NPE_MAC_THRESH_P_EMPTY,	0x12);
   1115   1.1       scw 	WR4(sc, NPE_MAC_THRESH_P_FULL,	0x30);
   1116  1.12   msaitoh 	WR4(sc, NPE_MAC_BUF_SIZE_TX, NPE_MAC_BUF_SIZE_TX_DEFAULT);
   1117  1.12   msaitoh 						/* tx fifo threshold (bytes) */
   1118   1.1       scw 	WR4(sc, NPE_MAC_TX_DEFER,	0x15);	/* for single deferral */
   1119   1.1       scw 	WR4(sc, NPE_MAC_RX_DEFER,	0x16);	/* deferral on inter-frame gap*/
   1120   1.1       scw 	WR4(sc, NPE_MAC_TX_TWO_DEFER_1,	0x8);	/* for 2-part deferral */
   1121   1.1       scw 	WR4(sc, NPE_MAC_TX_TWO_DEFER_2,	0x7);	/* for 2-part deferral */
   1122  1.12   msaitoh 	WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
   1123  1.12   msaitoh 						/* assumes MII mode */
   1124   1.1       scw 	WR4(sc, NPE_MAC_TX_CNTRL1,
   1125   1.1       scw 		  NPE_TX_CNTRL1_RETRY		/* retry failed xmits */
   1126   1.1       scw 		| NPE_TX_CNTRL1_FCS_EN		/* append FCS */
   1127   1.1       scw 		| NPE_TX_CNTRL1_2DEFER		/* 2-part deferal */
   1128   1.1       scw 		| NPE_TX_CNTRL1_PAD_EN);	/* pad runt frames */
   1129   1.1       scw 	/* XXX pad strip? */
   1130   1.1       scw 	WR4(sc, NPE_MAC_RX_CNTRL1,
   1131   1.1       scw 		  NPE_RX_CNTRL1_CRC_EN		/* include CRC/FCS */
   1132   1.1       scw 		| NPE_RX_CNTRL1_PAUSE_EN);	/* ena pause frame handling */
   1133   1.1       scw 	WR4(sc, NPE_MAC_RX_CNTRL2, 0);
   1134  1.13   msaitoh }
   1135   1.1       scw 
   1136  1.16   msaitoh static void
   1137  1.16   msaitoh npeinit_resetcb(void *xsc)
   1138  1.16   msaitoh {
   1139  1.16   msaitoh 	struct npe_softc *sc = xsc;
   1140  1.16   msaitoh 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1141  1.16   msaitoh 	uint32_t msg[2];
   1142  1.16   msaitoh 
   1143  1.45   thorpej 	if_statinc(ifp, if_oerrors);
   1144  1.16   msaitoh 	npeinit_locked(sc);
   1145  1.16   msaitoh 
   1146  1.16   msaitoh 	msg[0] = NPE_NOTIFYMACRECOVERYDONE << NPE_MAC_MSGID_SHL
   1147  1.16   msaitoh 	    | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL);
   1148  1.16   msaitoh 	msg[1] = 0;
   1149  1.16   msaitoh 	ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
   1150  1.16   msaitoh }
   1151  1.16   msaitoh 
   1152  1.13   msaitoh /*
   1153  1.13   msaitoh  * Reset and initialize the chip
   1154  1.13   msaitoh  */
   1155  1.13   msaitoh static void
   1156  1.13   msaitoh npeinit_locked(void *xsc)
   1157  1.13   msaitoh {
   1158  1.13   msaitoh 	struct npe_softc *sc = xsc;
   1159  1.13   msaitoh 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1160  1.13   msaitoh 
   1161  1.13   msaitoh 	/* Cancel any pending I/O. */
   1162  1.13   msaitoh 	npestop(ifp, 0);
   1163  1.13   msaitoh 
   1164  1.13   msaitoh 	/* Reset the chip to a known state. */
   1165  1.13   msaitoh 	npeinit_macreg(sc);
   1166   1.6      matt 	npe_setmac(sc, CLLADDR(ifp->if_sadl));
   1167  1.15   msaitoh 	ether_mediachange(ifp);
   1168   1.1       scw 	npe_setmcast(sc);
   1169   1.1       scw 
   1170   1.1       scw 	npe_startxmit(sc);
   1171   1.1       scw 	npe_startrecv(sc);
   1172   1.1       scw 
   1173   1.1       scw 	ifp->if_flags |= IFF_RUNNING;
   1174   1.1       scw 	ifp->if_timer = 0;		/* just in case */
   1175   1.1       scw 
   1176  1.44   msaitoh 	/* Enable transmitter and receiver in the MAC */
   1177  1.39   msaitoh 	WR4(sc, NPE_MAC_RX_CNTRL1,
   1178   1.1       scw 	    RD4(sc, NPE_MAC_RX_CNTRL1) | NPE_RX_CNTRL1_RX_EN);
   1179  1.39   msaitoh 	WR4(sc, NPE_MAC_TX_CNTRL1,
   1180   1.1       scw 	    RD4(sc, NPE_MAC_TX_CNTRL1) | NPE_TX_CNTRL1_TX_EN);
   1181   1.1       scw 
   1182   1.1       scw 	callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
   1183   1.1       scw }
   1184   1.1       scw 
   1185   1.1       scw static int
   1186   1.1       scw npeinit(struct ifnet *ifp)
   1187   1.1       scw {
   1188   1.1       scw 	struct npe_softc *sc = ifp->if_softc;
   1189   1.1       scw 	int s;
   1190   1.1       scw 
   1191   1.1       scw 	s = splnet();
   1192   1.1       scw 	npeinit_locked(sc);
   1193   1.1       scw 	splx(s);
   1194   1.1       scw 
   1195  1.39   msaitoh 	return 0;
   1196   1.1       scw }
   1197   1.1       scw 
   1198   1.1       scw /*
   1199   1.1       scw  * Defragment an mbuf chain, returning at most maxfrags separate
   1200   1.1       scw  * mbufs+clusters.  If this is not possible NULL is returned and
   1201  1.27       snj  * the original mbuf chain is left in its present (potentially
   1202   1.1       scw  * modified) state.  We use two techniques: collapsing consecutive
   1203   1.1       scw  * mbufs and replacing consecutive mbufs by a cluster.
   1204   1.1       scw  */
   1205   1.1       scw static __inline struct mbuf *
   1206   1.1       scw npe_defrag(struct mbuf *m0)
   1207   1.1       scw {
   1208   1.1       scw 	struct mbuf *m;
   1209   1.1       scw 
   1210   1.1       scw 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1211   1.1       scw 	if (m == NULL)
   1212  1.39   msaitoh 		return NULL;
   1213  1.35      maxv 	m_copy_pkthdr(m, m0);
   1214   1.1       scw 
   1215   1.1       scw 	if ((m->m_len = m0->m_pkthdr.len) > MHLEN) {
   1216   1.1       scw 		MCLGET(m, M_DONTWAIT);
   1217   1.1       scw 		if ((m->m_flags & M_EXT) == 0) {
   1218   1.1       scw 			m_freem(m);
   1219  1.39   msaitoh 			return NULL;
   1220   1.1       scw 		}
   1221   1.1       scw 	}
   1222   1.1       scw 
   1223   1.3  christos 	m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1224   1.1       scw 	m_freem(m0);
   1225   1.1       scw 
   1226  1.39   msaitoh 	return m;
   1227   1.1       scw }
   1228   1.1       scw 
   1229   1.1       scw /*
   1230   1.1       scw  * Dequeue packets and place on the h/w transmit queue.
   1231   1.1       scw  */
   1232   1.1       scw static void
   1233   1.1       scw npestart(struct ifnet *ifp)
   1234   1.1       scw {
   1235   1.1       scw 	struct npe_softc *sc = ifp->if_softc;
   1236   1.1       scw 	struct npebuf *npe;
   1237   1.1       scw 	struct npehwbuf *hw;
   1238   1.1       scw 	struct mbuf *m, *n;
   1239   1.1       scw 	bus_dma_segment_t *segs;
   1240   1.1       scw 	int nseg, len, error, i;
   1241   1.1       scw 	uint32_t next;
   1242   1.1       scw 
   1243  1.52   thorpej 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   1244   1.1       scw 		return;
   1245   1.1       scw 
   1246   1.1       scw 	while (sc->tx_free != NULL) {
   1247   1.1       scw 		IFQ_DEQUEUE(&ifp->if_snd, m);
   1248  1.13   msaitoh 		if (m == NULL)
   1249  1.13   msaitoh 			break;
   1250   1.1       scw 		npe = sc->tx_free;
   1251   1.1       scw 		error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
   1252  1.40   msaitoh 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1253   1.1       scw 		if (error == EFBIG) {
   1254   1.1       scw 			n = npe_defrag(m);
   1255   1.1       scw 			if (n == NULL) {
   1256   1.1       scw 				printf("%s: %s: too many fragments\n",
   1257  1.23      matt 				    device_xname(sc->sc_dev), __func__);
   1258   1.1       scw 				m_freem(m);
   1259   1.1       scw 				return;	/* XXX? */
   1260   1.1       scw 			}
   1261   1.1       scw 			m = n;
   1262   1.1       scw 			error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map,
   1263  1.40   msaitoh 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1264   1.1       scw 		}
   1265   1.1       scw 		if (error != 0) {
   1266   1.1       scw 			printf("%s: %s: error %u\n",
   1267  1.23      matt 			    device_xname(sc->sc_dev), __func__, error);
   1268   1.1       scw 			m_freem(m);
   1269   1.1       scw 			return;	/* XXX? */
   1270   1.1       scw 		}
   1271   1.1       scw 		sc->tx_free = npe->ix_next;
   1272   1.1       scw 
   1273   1.1       scw 		/*
   1274   1.1       scw 		 * Tap off here if there is a bpf listener.
   1275   1.1       scw 		 */
   1276  1.34   msaitoh 		bpf_mtap(ifp, m, BPF_D_OUT);
   1277   1.1       scw 
   1278   1.1       scw 		bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
   1279   1.1       scw 		    npe->ix_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1280   1.1       scw 
   1281   1.1       scw 		npe->ix_m = m;
   1282   1.1       scw 		hw = npe->ix_hw;
   1283   1.1       scw 		len = m->m_pkthdr.len;
   1284   1.1       scw 		nseg = npe->ix_map->dm_nsegs;
   1285   1.1       scw 		segs = npe->ix_map->dm_segs;
   1286   1.1       scw 		next = npe->ix_neaddr + sizeof(hw->ix_ne[0]);
   1287   1.1       scw 		for (i = 0; i < nseg; i++) {
   1288   1.1       scw 			hw->ix_ne[i].data = htobe32(segs[i].ds_addr);
   1289   1.1       scw 			hw->ix_ne[i].len = htobe32((segs[i].ds_len<<16) | len);
   1290   1.1       scw 			hw->ix_ne[i].next = htobe32(next);
   1291   1.1       scw 
   1292   1.1       scw 			len = 0;		/* zero for segments > 1 */
   1293   1.1       scw 			next += sizeof(hw->ix_ne[0]);
   1294   1.1       scw 		}
   1295   1.1       scw 		hw->ix_ne[i-1].next = 0;	/* zero last in chain */
   1296   1.1       scw 		/* XXX flush descriptor instead of using uncached memory */
   1297   1.1       scw 
   1298   1.1       scw 		DPRINTF(sc, "%s: qwrite(%u, 0x%x) ne_data %x ne_len 0x%x\n",
   1299   1.1       scw 		    __func__, sc->tx_qid, npe->ix_neaddr,
   1300   1.1       scw 		    hw->ix_ne[0].data, hw->ix_ne[0].len);
   1301   1.1       scw 		/* stick it on the tx q */
   1302   1.1       scw 		/* XXX add vlan priority */
   1303   1.1       scw 		ixpqmgr_qwrite(sc->tx_qid, npe->ix_neaddr);
   1304   1.1       scw 
   1305   1.1       scw 		ifp->if_timer = 5;
   1306   1.1       scw 	}
   1307   1.1       scw }
   1308   1.1       scw 
   1309   1.1       scw static void
   1310   1.1       scw npe_stopxmit(struct npe_softc *sc)
   1311   1.1       scw {
   1312   1.1       scw 	struct npedma *dma = &sc->txdma;
   1313   1.1       scw 	int i;
   1314   1.1       scw 
   1315   1.1       scw 	/* XXX qmgr */
   1316   1.1       scw 	for (i = 0; i < dma->nbuf; i++) {
   1317   1.1       scw 		struct npebuf *npe = &dma->buf[i];
   1318   1.1       scw 
   1319   1.1       scw 		if (npe->ix_m != NULL) {
   1320   1.1       scw 			bus_dmamap_unload(sc->sc_dt, npe->ix_map);
   1321   1.1       scw 			m_freem(npe->ix_m);
   1322   1.1       scw 			npe->ix_m = NULL;
   1323   1.1       scw 		}
   1324   1.1       scw 	}
   1325   1.1       scw }
   1326   1.1       scw 
   1327   1.1       scw static void
   1328   1.1       scw npe_stoprecv(struct npe_softc *sc)
   1329   1.1       scw {
   1330   1.1       scw 	struct npedma *dma = &sc->rxdma;
   1331   1.1       scw 	int i;
   1332   1.1       scw 
   1333   1.1       scw 	/* XXX qmgr */
   1334   1.1       scw 	for (i = 0; i < dma->nbuf; i++) {
   1335   1.1       scw 		struct npebuf *npe = &dma->buf[i];
   1336   1.1       scw 
   1337   1.1       scw 		if (npe->ix_m != NULL) {
   1338   1.1       scw 			bus_dmamap_unload(sc->sc_dt, npe->ix_map);
   1339   1.1       scw 			m_freem(npe->ix_m);
   1340   1.1       scw 			npe->ix_m = NULL;
   1341   1.1       scw 		}
   1342   1.1       scw 	}
   1343   1.1       scw }
   1344   1.1       scw 
   1345   1.1       scw /*
   1346   1.1       scw  * Turn off interrupts, and stop the nic.
   1347   1.1       scw  */
   1348   1.1       scw void
   1349   1.1       scw npestop(struct ifnet *ifp, int disable)
   1350   1.1       scw {
   1351   1.1       scw 	struct npe_softc *sc = ifp->if_softc;
   1352   1.1       scw 
   1353  1.44   msaitoh 	/* Disable transmitter and receiver in the MAC */
   1354  1.39   msaitoh 	WR4(sc, NPE_MAC_RX_CNTRL1,
   1355   1.1       scw 	    RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
   1356  1.39   msaitoh 	WR4(sc, NPE_MAC_TX_CNTRL1,
   1357   1.1       scw 	    RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
   1358   1.1       scw 
   1359   1.1       scw 	callout_stop(&sc->sc_tick_ch);
   1360   1.1       scw 
   1361   1.1       scw 	npe_stopxmit(sc);
   1362   1.1       scw 	npe_stoprecv(sc);
   1363   1.1       scw 	/* XXX go into loopback & drain q's? */
   1364   1.1       scw 	/* XXX but beware of disabling tx above */
   1365   1.1       scw 
   1366   1.1       scw 	/*
   1367   1.1       scw 	 * The MAC core rx/tx disable may leave the MAC hardware in an
   1368  1.39   msaitoh 	 * unpredictable state. A hw reset is executed before resetting
   1369   1.1       scw 	 * all the MAC parameters to a known value.
   1370   1.1       scw 	 */
   1371   1.1       scw 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
   1372   1.1       scw 	DELAY(NPE_MAC_RESET_DELAY);
   1373   1.1       scw 	WR4(sc, NPE_MAC_INT_CLK_THRESH, NPE_MAC_INT_CLK_THRESH_DEFAULT);
   1374   1.1       scw 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
   1375  1.13   msaitoh 
   1376  1.13   msaitoh 	ifp->if_timer = 0;
   1377  1.52   thorpej 	ifp->if_flags &= ~IFF_RUNNING;
   1378   1.1       scw }
   1379   1.1       scw 
   1380   1.1       scw void
   1381   1.1       scw npewatchdog(struct ifnet *ifp)
   1382   1.1       scw {
   1383   1.1       scw 	struct npe_softc *sc = ifp->if_softc;
   1384   1.1       scw 	int s;
   1385   1.1       scw 
   1386  1.23      matt 	aprint_error_dev(sc->sc_dev, "device timeout\n");
   1387   1.1       scw 	s = splnet();
   1388  1.45   thorpej 	if_statinc(ifp, if_oerrors);
   1389   1.1       scw 	npeinit_locked(sc);
   1390   1.1       scw 	splx(s);
   1391   1.1       scw }
   1392   1.1       scw 
   1393   1.1       scw static int
   1394   1.3  christos npeioctl(struct ifnet *ifp, u_long cmd, void *data)
   1395   1.1       scw {
   1396   1.1       scw 	struct npe_softc *sc = ifp->if_softc;
   1397  1.13   msaitoh 	struct ifreq *ifr = (struct ifreq *) data;
   1398   1.1       scw 	int s, error = 0;
   1399   1.1       scw 
   1400   1.1       scw 	s = splnet();
   1401   1.1       scw 
   1402  1.13   msaitoh 	switch (cmd) {
   1403  1.13   msaitoh 	case SIOCSIFMEDIA:
   1404  1.13   msaitoh #if 0 /* not yet */
   1405  1.13   msaitoh 		/* Flow control requires full-duplex mode. */
   1406  1.13   msaitoh 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1407  1.13   msaitoh 		    (ifr->ifr_media & IFM_FDX) == 0)
   1408  1.13   msaitoh 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1409  1.13   msaitoh 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1410  1.13   msaitoh 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1411  1.13   msaitoh 				/* We can do both TXPAUSE and RXPAUSE. */
   1412  1.13   msaitoh 				ifr->ifr_media |=
   1413  1.13   msaitoh 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1414  1.13   msaitoh 			}
   1415  1.13   msaitoh 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1416  1.13   msaitoh 		}
   1417  1.13   msaitoh #endif
   1418  1.13   msaitoh 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1419  1.13   msaitoh 		break;
   1420  1.13   msaitoh 	case SIOCSIFFLAGS:
   1421  1.40   msaitoh 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_RUNNING) {
   1422  1.13   msaitoh 			/*
   1423  1.13   msaitoh 			 * If interface is marked down and it is running,
   1424  1.13   msaitoh 			 * then stop and disable it.
   1425  1.13   msaitoh 			 */
   1426  1.49  riastrad 			if_stop(ifp, 1);
   1427  1.40   msaitoh 		} else if ((ifp->if_flags & (IFF_UP |IFF_RUNNING)) == IFF_UP) {
   1428  1.13   msaitoh 			/*
   1429  1.13   msaitoh 			 * If interface is marked up and it is stopped, then
   1430  1.13   msaitoh 			 * start it.
   1431  1.13   msaitoh 			 */
   1432  1.50  riastrad 			error = if_init(ifp);
   1433  1.13   msaitoh 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1434  1.42   msaitoh 			u_short diff;
   1435  1.13   msaitoh 
   1436  1.13   msaitoh 			/* Up (AND RUNNING). */
   1437  1.13   msaitoh 
   1438  1.13   msaitoh 			diff = (ifp->if_flags ^ sc->sc_if_flags)
   1439  1.40   msaitoh 			    & (IFF_PROMISC | IFF_ALLMULTI);
   1440  1.40   msaitoh 			if ((diff & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
   1441  1.13   msaitoh 				/*
   1442  1.51    andvar 				 * If the difference between last flag and
   1443  1.13   msaitoh 				 * new flag only IFF_PROMISC or IFF_ALLMULTI,
   1444  1.13   msaitoh 				 * set multicast filter only (don't reset to
   1445  1.13   msaitoh 				 * prevent link down).
   1446  1.13   msaitoh 				 */
   1447  1.13   msaitoh 				npe_setmcast(sc);
   1448  1.13   msaitoh 			} else {
   1449  1.13   msaitoh 				/*
   1450  1.13   msaitoh 				 * Reset the interface to pick up changes in
   1451  1.13   msaitoh 				 * any other flags that affect the hardware
   1452  1.13   msaitoh 				 * state.
   1453  1.13   msaitoh 				 */
   1454  1.50  riastrad 				error = if_init(ifp);
   1455  1.13   msaitoh 			}
   1456  1.13   msaitoh 		}
   1457  1.13   msaitoh 		sc->sc_if_flags = ifp->if_flags;
   1458  1.13   msaitoh 		break;
   1459  1.13   msaitoh 	default:
   1460  1.13   msaitoh 		error = ether_ioctl(ifp, cmd, data);
   1461  1.13   msaitoh 		if (error == ENETRESET) {
   1462  1.13   msaitoh 			/*
   1463  1.13   msaitoh 			 * Multicast list has changed; set the hardware filter
   1464  1.13   msaitoh 			 * accordingly.
   1465  1.13   msaitoh 			 */
   1466  1.13   msaitoh 			npe_setmcast(sc);
   1467  1.13   msaitoh 			error = 0;
   1468   1.1       scw 		}
   1469   1.1       scw 	}
   1470   1.1       scw 
   1471   1.1       scw 	npestart(ifp);
   1472   1.1       scw 
   1473   1.1       scw 	splx(s);
   1474   1.1       scw 	return error;
   1475   1.1       scw }
   1476   1.1       scw 
   1477   1.1       scw /*
   1478   1.1       scw  * Setup a traffic class -> rx queue mapping.
   1479   1.1       scw  */
   1480   1.1       scw static int
   1481   1.1       scw npe_setrxqosentry(struct npe_softc *sc, int classix, int trafclass, int qid)
   1482   1.1       scw {
   1483   1.1       scw 	int npeid = npeconfig[sc->sc_unit].npeid;
   1484   1.1       scw 	uint32_t msg[2];
   1485   1.1       scw 
   1486  1.15   msaitoh 	msg[0] = (NPE_SETRXQOSENTRY << NPE_MAC_MSGID_SHL) | (npeid << 20)
   1487  1.15   msaitoh 	    | classix;
   1488   1.1       scw 	msg[1] = (trafclass << 24) | (1 << 23) | (qid << 16) | (qid << 4);
   1489   1.1       scw 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
   1490   1.1       scw }
   1491   1.1       scw 
   1492   1.1       scw /*
   1493   1.1       scw  * Update and reset the statistics in the NPE.
   1494   1.1       scw  */
   1495   1.1       scw static int
   1496   1.1       scw npe_updatestats(struct npe_softc *sc)
   1497   1.1       scw {
   1498   1.1       scw 	uint32_t msg[2];
   1499   1.1       scw 
   1500   1.1       scw 	msg[0] = NPE_RESETSTATS << NPE_MAC_MSGID_SHL;
   1501   1.1       scw 	msg[1] = sc->sc_stats_phys;	/* physical address of stat block */
   1502   1.1       scw 	return ixpnpe_sendmsg(sc->sc_npe, msg);		/* NB: no recv */
   1503   1.1       scw }
   1504   1.1       scw 
   1505   1.1       scw #if 0
   1506   1.1       scw /*
   1507   1.1       scw  * Get the current statistics block.
   1508   1.1       scw  */
   1509   1.1       scw static int
   1510   1.1       scw npe_getstats(struct npe_softc *sc)
   1511   1.1       scw {
   1512   1.1       scw 	uint32_t msg[2];
   1513   1.1       scw 
   1514   1.1       scw 	msg[0] = NPE_GETSTATS << NPE_MAC_MSGID_SHL;
   1515   1.1       scw 	msg[1] = sc->sc_stats_phys;	/* physical address of stat block */
   1516   1.1       scw 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
   1517   1.1       scw }
   1518   1.1       scw 
   1519   1.1       scw /*
   1520   1.1       scw  * Query the image id of the loaded firmware.
   1521   1.1       scw  */
   1522   1.1       scw static uint32_t
   1523   1.1       scw npe_getimageid(struct npe_softc *sc)
   1524   1.1       scw {
   1525   1.1       scw 	uint32_t msg[2];
   1526   1.1       scw 
   1527   1.1       scw 	msg[0] = NPE_GETSTATUS << NPE_MAC_MSGID_SHL;
   1528   1.1       scw 	msg[1] = 0;
   1529   1.1       scw 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg) == 0 ? msg[1] : 0;
   1530   1.1       scw }
   1531   1.1       scw 
   1532   1.1       scw /*
   1533   1.1       scw  * Enable/disable loopback.
   1534   1.1       scw  */
   1535   1.1       scw static int
   1536   1.1       scw npe_setloopback(struct npe_softc *sc, int ena)
   1537   1.1       scw {
   1538   1.1       scw 	uint32_t msg[2];
   1539   1.1       scw 
   1540   1.1       scw 	msg[0] = (NPE_SETLOOPBACK << NPE_MAC_MSGID_SHL) | (ena != 0);
   1541   1.1       scw 	msg[1] = 0;
   1542   1.1       scw 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
   1543   1.1       scw }
   1544   1.1       scw #endif
   1545   1.1       scw 
   1546   1.1       scw /*
   1547   1.1       scw  * MII bus support routines.
   1548   1.1       scw  *
   1549   1.1       scw  * NB: ixp425 has one PHY per NPE
   1550   1.1       scw  */
   1551   1.1       scw static uint32_t
   1552   1.1       scw npe_mii_mdio_read(struct npe_softc *sc, int reg)
   1553   1.1       scw {
   1554   1.1       scw #define	MII_RD4(sc, reg)	bus_space_read_4(sc->sc_iot, sc->sc_miih, reg)
   1555   1.1       scw 	uint32_t v;
   1556   1.1       scw 
   1557   1.1       scw 	/* NB: registers are known to be sequential */
   1558   1.1       scw 	v =  (MII_RD4(sc, reg+0) & 0xff) << 0;
   1559   1.1       scw 	v |= (MII_RD4(sc, reg+4) & 0xff) << 8;
   1560   1.1       scw 	v |= (MII_RD4(sc, reg+8) & 0xff) << 16;
   1561   1.1       scw 	v |= (MII_RD4(sc, reg+12) & 0xff) << 24;
   1562   1.1       scw 	return v;
   1563   1.1       scw #undef MII_RD4
   1564   1.1       scw }
   1565   1.1       scw 
   1566   1.1       scw static void
   1567   1.1       scw npe_mii_mdio_write(struct npe_softc *sc, int reg, uint32_t cmd)
   1568   1.1       scw {
   1569   1.1       scw #define	MII_WR4(sc, reg, v) \
   1570   1.1       scw 	bus_space_write_4(sc->sc_iot, sc->sc_miih, reg, v)
   1571   1.1       scw 
   1572   1.1       scw 	/* NB: registers are known to be sequential */
   1573   1.1       scw 	MII_WR4(sc, reg+0, cmd & 0xff);
   1574   1.1       scw 	MII_WR4(sc, reg+4, (cmd >> 8) & 0xff);
   1575   1.1       scw 	MII_WR4(sc, reg+8, (cmd >> 16) & 0xff);
   1576   1.1       scw 	MII_WR4(sc, reg+12, (cmd >> 24) & 0xff);
   1577   1.1       scw #undef MII_WR4
   1578   1.1       scw }
   1579   1.1       scw 
   1580   1.1       scw static int
   1581   1.1       scw npe_mii_mdio_wait(struct npe_softc *sc)
   1582   1.1       scw {
   1583   1.1       scw #define	MAXTRIES	100	/* XXX */
   1584   1.1       scw 	uint32_t v;
   1585   1.1       scw 	int i;
   1586   1.1       scw 
   1587   1.1       scw 	for (i = 0; i < MAXTRIES; i++) {
   1588   1.1       scw 		v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_CMD);
   1589   1.1       scw 		if ((v & NPE_MII_GO) == 0)
   1590  1.36   msaitoh 			return 0;
   1591   1.1       scw 	}
   1592  1.36   msaitoh 	return ETIMEDOUT;
   1593   1.1       scw #undef MAXTRIES
   1594   1.1       scw }
   1595   1.1       scw 
   1596   1.1       scw static int
   1597  1.36   msaitoh npe_miibus_readreg(device_t self, int phy, int reg, uint16_t *val)
   1598   1.1       scw {
   1599  1.23      matt 	struct npe_softc *sc = device_private(self);
   1600   1.1       scw 	uint32_t v;
   1601   1.1       scw 
   1602   1.1       scw 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
   1603  1.36   msaitoh 		return -1;
   1604   1.1       scw 	v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
   1605   1.1       scw 	  | NPE_MII_GO;
   1606   1.1       scw 	npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
   1607  1.36   msaitoh 	if (npe_mii_mdio_wait(sc) == 0)
   1608   1.1       scw 		v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_STS);
   1609   1.1       scw 	else
   1610   1.1       scw 		v = 0xffff | NPE_MII_READ_FAIL;
   1611  1.36   msaitoh 
   1612  1.36   msaitoh 	if ((v & NPE_MII_READ_FAIL) != 0)
   1613  1.36   msaitoh 		return -1;
   1614  1.36   msaitoh 
   1615  1.36   msaitoh 	*val = v & 0xffff;
   1616  1.36   msaitoh 	return 0;
   1617   1.1       scw #undef MAXTRIES
   1618   1.1       scw }
   1619   1.1       scw 
   1620  1.36   msaitoh static int
   1621  1.36   msaitoh npe_miibus_writereg(device_t self, int phy, int reg, uint16_t val)
   1622   1.1       scw {
   1623  1.23      matt 	struct npe_softc *sc = device_private(self);
   1624   1.1       scw 	uint32_t v;
   1625   1.1       scw 
   1626   1.1       scw 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
   1627  1.36   msaitoh 		return -1;
   1628   1.1       scw 	v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
   1629  1.36   msaitoh 	  | val | NPE_MII_WRITE
   1630   1.1       scw 	  | NPE_MII_GO;
   1631   1.1       scw 	npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
   1632  1.36   msaitoh 
   1633  1.36   msaitoh 	return npe_mii_mdio_wait(sc);
   1634   1.1       scw }
   1635   1.1       scw 
   1636   1.1       scw static void
   1637  1.23      matt npe_miibus_statchg(struct ifnet *ifp)
   1638   1.1       scw {
   1639  1.23      matt 	struct npe_softc *sc = ifp->if_softc;
   1640   1.1       scw 	uint32_t tx1, rx1;
   1641  1.16   msaitoh 	uint32_t randoff;
   1642   1.1       scw 
   1643  1.39   msaitoh 	/* Sync MAC duplex state */
   1644   1.1       scw 	tx1 = RD4(sc, NPE_MAC_TX_CNTRL1);
   1645   1.1       scw 	rx1 = RD4(sc, NPE_MAC_RX_CNTRL1);
   1646   1.1       scw 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1647  1.16   msaitoh 		WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
   1648   1.1       scw 		tx1 &= ~NPE_TX_CNTRL1_DUPLEX;
   1649   1.1       scw 		rx1 |= NPE_RX_CNTRL1_PAUSE_EN;
   1650   1.1       scw 	} else {
   1651  1.16   msaitoh 		struct timeval now;
   1652  1.16   msaitoh 		getmicrotime(&now);
   1653  1.16   msaitoh 		randoff = (RD4(sc, NPE_MAC_UNI_ADDR_6) ^ now.tv_usec)
   1654  1.16   msaitoh 		    & 0x7f;
   1655  1.16   msaitoh 		WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT
   1656  1.16   msaitoh 		    + randoff);
   1657   1.1       scw 		tx1 |= NPE_TX_CNTRL1_DUPLEX;
   1658   1.1       scw 		rx1 &= ~NPE_RX_CNTRL1_PAUSE_EN;
   1659   1.1       scw 	}
   1660   1.1       scw 	WR4(sc, NPE_MAC_RX_CNTRL1, rx1);
   1661   1.1       scw 	WR4(sc, NPE_MAC_TX_CNTRL1, tx1);
   1662   1.1       scw }
   1663