ixp425_if_npe.c revision 1.6 1 1.6 matt /* $NetBSD: ixp425_if_npe.c,v 1.6 2008/01/08 02:07:52 matt Exp $ */
2 1.1 scw
3 1.1 scw /*-
4 1.1 scw * Copyright (c) 2006 Sam Leffler. All rights reserved.
5 1.1 scw *
6 1.1 scw * Redistribution and use in source and binary forms, with or without
7 1.1 scw * modification, are permitted provided that the following conditions
8 1.1 scw * are met:
9 1.1 scw * 1. Redistributions of source code must retain the above copyright
10 1.1 scw * notice, this list of conditions and the following disclaimer.
11 1.1 scw * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 scw * notice, this list of conditions and the following disclaimer in the
13 1.1 scw * documentation and/or other materials provided with the distribution.
14 1.1 scw *
15 1.1 scw * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 1.1 scw * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 1.1 scw * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 1.1 scw * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 1.1 scw * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 1.1 scw * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 1.1 scw * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 1.1 scw * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 1.1 scw * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 1.1 scw * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 1.1 scw */
26 1.1 scw
27 1.1 scw #include <sys/cdefs.h>
28 1.1 scw #if 0
29 1.1 scw __FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/if_npe.c,v 1.1 2006/11/19 23:55:23 sam Exp $");
30 1.1 scw #endif
31 1.6 matt __KERNEL_RCSID(0, "$NetBSD: ixp425_if_npe.c,v 1.6 2008/01/08 02:07:52 matt Exp $");
32 1.1 scw
33 1.1 scw /*
34 1.1 scw * Intel XScale NPE Ethernet driver.
35 1.1 scw *
36 1.1 scw * This driver handles the two ports present on the IXP425.
37 1.1 scw * Packet processing is done by the Network Processing Engines
38 1.1 scw * (NPE's) that work together with a MAC and PHY. The MAC
39 1.1 scw * is also mapped to the XScale cpu; the PHY is accessed via
40 1.1 scw * the MAC. NPE-XScale communication happens through h/w
41 1.1 scw * queues managed by the Q Manager block.
42 1.1 scw *
43 1.1 scw * The code here replaces the ethAcc, ethMii, and ethDB classes
44 1.1 scw * in the Intel Access Library (IAL) and the OS-specific driver.
45 1.1 scw *
46 1.1 scw * XXX add vlan support
47 1.1 scw * XXX NPE-C port doesn't work yet
48 1.1 scw */
49 1.1 scw
50 1.1 scw #include "bpfilter.h"
51 1.1 scw
52 1.1 scw #include <sys/param.h>
53 1.1 scw #include <sys/systm.h>
54 1.1 scw #include <sys/kernel.h>
55 1.1 scw #include <sys/device.h>
56 1.1 scw #include <sys/callout.h>
57 1.1 scw #include <sys/mbuf.h>
58 1.1 scw #include <sys/malloc.h>
59 1.1 scw #include <sys/socket.h>
60 1.1 scw #include <sys/endian.h>
61 1.1 scw #include <sys/ioctl.h>
62 1.1 scw
63 1.1 scw #include <machine/bus.h>
64 1.1 scw
65 1.1 scw #include <net/if.h>
66 1.1 scw #include <net/if_dl.h>
67 1.1 scw #include <net/if_media.h>
68 1.1 scw #include <net/if_ether.h>
69 1.1 scw
70 1.1 scw #if NBPFILTER > 0
71 1.1 scw #include <net/bpf.h>
72 1.1 scw #endif
73 1.1 scw
74 1.1 scw #include <arm/xscale/ixp425reg.h>
75 1.1 scw #include <arm/xscale/ixp425var.h>
76 1.1 scw #include <arm/xscale/ixp425_qmgr.h>
77 1.1 scw #include <arm/xscale/ixp425_npevar.h>
78 1.1 scw #include <arm/xscale/ixp425_if_npereg.h>
79 1.1 scw
80 1.1 scw #include <dev/mii/miivar.h>
81 1.1 scw
82 1.1 scw #include "locators.h"
83 1.1 scw
84 1.1 scw struct npebuf {
85 1.1 scw struct npebuf *ix_next; /* chain to next buffer */
86 1.1 scw void *ix_m; /* backpointer to mbuf */
87 1.1 scw bus_dmamap_t ix_map; /* bus dma map for associated data */
88 1.1 scw struct npehwbuf *ix_hw; /* associated h/w block */
89 1.1 scw uint32_t ix_neaddr; /* phys address of ix_hw */
90 1.1 scw };
91 1.1 scw
92 1.1 scw struct npedma {
93 1.1 scw const char* name;
94 1.1 scw int nbuf; /* # npebuf's allocated */
95 1.1 scw bus_dmamap_t m_map;
96 1.1 scw struct npehwbuf *hwbuf; /* NPE h/w buffers */
97 1.1 scw bus_dmamap_t buf_map;
98 1.1 scw bus_addr_t buf_phys; /* phys addr of buffers */
99 1.1 scw struct npebuf *buf; /* s/w buffers (1-1 w/ h/w) */
100 1.1 scw };
101 1.1 scw
102 1.1 scw struct npe_softc {
103 1.1 scw struct device sc_dev;
104 1.1 scw struct ethercom sc_ethercom;
105 1.1 scw struct mii_data sc_mii;
106 1.1 scw bus_space_tag_t sc_iot;
107 1.1 scw bus_dma_tag_t sc_dt;
108 1.1 scw bus_space_handle_t sc_ioh; /* MAC register window */
109 1.1 scw bus_space_handle_t sc_miih; /* MII register window */
110 1.1 scw struct ixpnpe_softc *sc_npe; /* NPE support */
111 1.1 scw int sc_unit;
112 1.1 scw int sc_phy;
113 1.1 scw struct callout sc_tick_ch; /* Tick callout */
114 1.1 scw struct npedma txdma;
115 1.1 scw struct npebuf *tx_free; /* list of free tx buffers */
116 1.1 scw struct npedma rxdma;
117 1.1 scw int rx_qid; /* rx qid */
118 1.1 scw int rx_freeqid; /* rx free buffers qid */
119 1.1 scw int tx_qid; /* tx qid */
120 1.1 scw int tx_doneqid; /* tx completed qid */
121 1.1 scw struct npestats *sc_stats;
122 1.1 scw bus_dmamap_t sc_stats_map;
123 1.1 scw bus_addr_t sc_stats_phys; /* phys addr of sc_stats */
124 1.1 scw };
125 1.1 scw
126 1.1 scw /*
127 1.1 scw * Per-unit static configuration for IXP425. The tx and
128 1.1 scw * rx free Q id's are fixed by the NPE microcode. The
129 1.1 scw * rx Q id's are programmed to be separate to simplify
130 1.1 scw * multi-port processing. It may be better to handle
131 1.1 scw * all traffic through one Q (as done by the Intel drivers).
132 1.1 scw *
133 1.1 scw * Note that the PHY's are accessible only from MAC A
134 1.1 scw * on the IXP425. This and other platform-specific
135 1.1 scw * assumptions probably need to be handled through hints.
136 1.1 scw */
137 1.1 scw static const struct {
138 1.1 scw const char *desc; /* device description */
139 1.1 scw int npeid; /* NPE assignment */
140 1.1 scw uint32_t imageid; /* NPE firmware image id */
141 1.1 scw uint32_t regbase;
142 1.1 scw int regsize;
143 1.1 scw uint32_t miibase;
144 1.1 scw int miisize;
145 1.1 scw uint8_t rx_qid;
146 1.1 scw uint8_t rx_freeqid;
147 1.1 scw uint8_t tx_qid;
148 1.1 scw uint8_t tx_doneqid;
149 1.1 scw } npeconfig[NPE_PORTS_MAX] = {
150 1.1 scw { .desc = "IXP NPE-B",
151 1.1 scw .npeid = NPE_B,
152 1.1 scw .imageid = IXP425_NPE_B_IMAGEID,
153 1.1 scw .regbase = IXP425_MAC_A_HWBASE,
154 1.1 scw .regsize = IXP425_MAC_A_SIZE,
155 1.1 scw .miibase = IXP425_MAC_A_HWBASE,
156 1.1 scw .miisize = IXP425_MAC_A_SIZE,
157 1.1 scw .rx_qid = 4,
158 1.1 scw .rx_freeqid = 27,
159 1.1 scw .tx_qid = 24,
160 1.1 scw .tx_doneqid = 31
161 1.1 scw },
162 1.1 scw { .desc = "IXP NPE-C",
163 1.1 scw .npeid = NPE_C,
164 1.1 scw .imageid = IXP425_NPE_C_IMAGEID,
165 1.1 scw .regbase = IXP425_MAC_B_HWBASE,
166 1.1 scw .regsize = IXP425_MAC_B_SIZE,
167 1.1 scw .miibase = IXP425_MAC_A_HWBASE,
168 1.1 scw .miisize = IXP425_MAC_A_SIZE,
169 1.1 scw .rx_qid = 12,
170 1.1 scw .rx_freeqid = 28,
171 1.1 scw .tx_qid = 25,
172 1.1 scw .tx_doneqid = 31
173 1.1 scw },
174 1.1 scw };
175 1.1 scw static struct npe_softc *npes[NPE_MAX]; /* NB: indexed by npeid */
176 1.1 scw
177 1.1 scw static __inline uint32_t
178 1.1 scw RD4(struct npe_softc *sc, bus_size_t off)
179 1.1 scw {
180 1.1 scw return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
181 1.1 scw }
182 1.1 scw
183 1.1 scw static __inline void
184 1.1 scw WR4(struct npe_softc *sc, bus_size_t off, uint32_t val)
185 1.1 scw {
186 1.1 scw bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
187 1.1 scw }
188 1.1 scw
189 1.1 scw static int npe_activate(struct npe_softc *);
190 1.1 scw #if 0
191 1.1 scw static void npe_deactivate(struct npe_softc *);
192 1.1 scw #endif
193 1.1 scw static int npe_ifmedia_change(struct ifnet *ifp);
194 1.1 scw static void npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr);
195 1.6 matt static void npe_setmac(struct npe_softc *sc, const u_char *eaddr);
196 1.1 scw static void npe_getmac(struct npe_softc *sc, u_char *eaddr);
197 1.1 scw static void npe_txdone(int qid, void *arg);
198 1.1 scw static int npe_rxbuf_init(struct npe_softc *, struct npebuf *,
199 1.1 scw struct mbuf *);
200 1.1 scw static void npe_rxdone(int qid, void *arg);
201 1.1 scw static int npeinit(struct ifnet *);
202 1.1 scw static void npestart(struct ifnet *);
203 1.1 scw static void npestop(struct ifnet *, int);
204 1.1 scw static void npewatchdog(struct ifnet *);
205 1.3 christos static int npeioctl(struct ifnet * ifp, u_long, void *);
206 1.1 scw
207 1.1 scw static int npe_setrxqosentry(struct npe_softc *, int classix,
208 1.1 scw int trafclass, int qid);
209 1.1 scw static int npe_updatestats(struct npe_softc *);
210 1.1 scw #if 0
211 1.1 scw static int npe_getstats(struct npe_softc *);
212 1.1 scw static uint32_t npe_getimageid(struct npe_softc *);
213 1.1 scw static int npe_setloopback(struct npe_softc *, int ena);
214 1.1 scw #endif
215 1.1 scw
216 1.1 scw static int npe_miibus_readreg(struct device *, int, int);
217 1.1 scw static void npe_miibus_writereg(struct device *, int, int, int);
218 1.1 scw static void npe_miibus_statchg(struct device *);
219 1.1 scw
220 1.1 scw static int npe_debug;
221 1.1 scw #define DPRINTF(sc, fmt, ...) do { \
222 1.1 scw if (npe_debug) printf(fmt, __VA_ARGS__); \
223 1.1 scw } while (0)
224 1.1 scw #define DPRINTFn(n, sc, fmt, ...) do { \
225 1.1 scw if (npe_debug >= n) printf(fmt, __VA_ARGS__); \
226 1.1 scw } while (0)
227 1.1 scw
228 1.1 scw #define NPE_TXBUF 128
229 1.1 scw #define NPE_RXBUF 64
230 1.1 scw
231 1.1 scw #ifndef ETHER_ALIGN
232 1.1 scw #define ETHER_ALIGN 2 /* XXX: Ditch this */
233 1.1 scw #endif
234 1.1 scw
235 1.1 scw /* NB: all tx done processing goes through one queue */
236 1.1 scw static int tx_doneqid = -1;
237 1.1 scw
238 1.1 scw static int npe_match(struct device *, struct cfdata *, void *);
239 1.1 scw static void npe_attach(struct device *, struct device *, void *);
240 1.1 scw
241 1.1 scw CFATTACH_DECL(npe, sizeof(struct npe_softc),
242 1.1 scw npe_match, npe_attach, NULL, NULL);
243 1.1 scw
244 1.1 scw static int
245 1.1 scw npe_match(struct device *parent, struct cfdata *cf, void *arg)
246 1.1 scw {
247 1.1 scw struct ixpnpe_attach_args *na = arg;
248 1.1 scw
249 1.1 scw return (na->na_unit == NPE_B || na->na_unit == NPE_C);
250 1.1 scw }
251 1.1 scw
252 1.1 scw static void
253 1.1 scw npe_attach(struct device *parent, struct device *self, void *arg)
254 1.1 scw {
255 1.1 scw struct npe_softc *sc = (void *)self;
256 1.1 scw struct ixpnpe_attach_args *na = arg;
257 1.1 scw struct ifnet *ifp;
258 1.1 scw u_char eaddr[6];
259 1.1 scw
260 1.1 scw aprint_naive("\n");
261 1.1 scw aprint_normal(": Ethernet co-processor\n");
262 1.1 scw
263 1.1 scw sc->sc_iot = na->na_iot;
264 1.1 scw sc->sc_dt = na->na_dt;
265 1.1 scw sc->sc_npe = na->na_npe;
266 1.1 scw sc->sc_unit = (na->na_unit == NPE_B) ? 0 : 1;
267 1.1 scw sc->sc_phy = na->na_phy;
268 1.1 scw
269 1.1 scw memset(&sc->sc_ethercom, 0, sizeof(sc->sc_ethercom));
270 1.1 scw memset(&sc->sc_mii, 0, sizeof(sc->sc_mii));
271 1.1 scw
272 1.4 ad callout_init(&sc->sc_tick_ch, 0);
273 1.1 scw
274 1.1 scw if (npe_activate(sc)) {
275 1.1 scw aprint_error("%s: Failed to activate NPE (missing "
276 1.1 scw "microcode?)\n", sc->sc_dev.dv_xname);
277 1.1 scw return;
278 1.1 scw }
279 1.1 scw
280 1.1 scw /*
281 1.1 scw * XXXSCW: This is bogus - the NPE may not have been configured for
282 1.1 scw * XXXSCW: Ethernet yet. We must check for a property set by
283 1.1 scw * XXXSCW: board-specific code.
284 1.1 scw */
285 1.1 scw npe_getmac(sc, eaddr);
286 1.1 scw
287 1.1 scw aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
288 1.1 scw ether_sprintf(eaddr));
289 1.1 scw
290 1.1 scw ifp = &sc->sc_ethercom.ec_if;
291 1.1 scw ifmedia_init(&sc->sc_mii.mii_media, 0, npe_ifmedia_change,
292 1.1 scw npe_ifmedia_status);
293 1.1 scw
294 1.1 scw if (sc->sc_phy != IXPNPECF_PHY_DEFAULT) {
295 1.1 scw sc->sc_mii.mii_ifp = ifp;
296 1.1 scw sc->sc_mii.mii_readreg = npe_miibus_readreg;
297 1.1 scw sc->sc_mii.mii_writereg = npe_miibus_writereg;
298 1.1 scw sc->sc_mii.mii_statchg = npe_miibus_statchg;
299 1.1 scw
300 1.1 scw mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
301 1.1 scw (sc->sc_phy > IXPNPECF_PHY_DEFAULT) ?
302 1.1 scw sc->sc_phy : MII_PHY_ANY,
303 1.1 scw MII_OFFSET_ANY, MIIF_NOISOLATE);
304 1.1 scw ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
305 1.1 scw } else {
306 1.1 scw /* Assume direct connection to a 100mbit switch */
307 1.1 scw ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_100_TX, 0,0);
308 1.1 scw ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_100_TX);
309 1.1 scw }
310 1.1 scw
311 1.1 scw ifp->if_softc = sc;
312 1.1 scw strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
313 1.1 scw ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
314 1.1 scw ifp->if_start = npestart;
315 1.1 scw ifp->if_ioctl = npeioctl;
316 1.1 scw ifp->if_watchdog = npewatchdog;
317 1.1 scw ifp->if_init = npeinit;
318 1.1 scw ifp->if_stop = npestop;
319 1.1 scw IFQ_SET_READY(&ifp->if_snd);
320 1.1 scw
321 1.1 scw if_attach(ifp);
322 1.1 scw ether_ifattach(ifp, eaddr);
323 1.1 scw }
324 1.1 scw
325 1.1 scw /*
326 1.1 scw * Compute and install the multicast filter.
327 1.1 scw */
328 1.1 scw static void
329 1.1 scw npe_setmcast(struct npe_softc *sc)
330 1.1 scw {
331 1.1 scw struct ifnet *ifp = &sc->sc_ethercom.ec_if;
332 1.1 scw uint8_t mask[ETHER_ADDR_LEN], addr[ETHER_ADDR_LEN];
333 1.1 scw int i;
334 1.1 scw
335 1.1 scw if (ifp->if_flags & IFF_PROMISC) {
336 1.1 scw memset(mask, 0, ETHER_ADDR_LEN);
337 1.1 scw memset(addr, 0, ETHER_ADDR_LEN);
338 1.1 scw } else if (ifp->if_flags & IFF_ALLMULTI) {
339 1.1 scw static const uint8_t allmulti[ETHER_ADDR_LEN] =
340 1.1 scw { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
341 1.1 scw all_multi:
342 1.1 scw memcpy(mask, allmulti, ETHER_ADDR_LEN);
343 1.1 scw memcpy(addr, allmulti, ETHER_ADDR_LEN);
344 1.1 scw } else {
345 1.1 scw uint8_t clr[ETHER_ADDR_LEN], set[ETHER_ADDR_LEN];
346 1.1 scw struct ether_multistep step;
347 1.1 scw struct ether_multi *enm;
348 1.1 scw
349 1.1 scw memset(clr, 0, ETHER_ADDR_LEN);
350 1.1 scw memset(set, 0xff, ETHER_ADDR_LEN);
351 1.1 scw
352 1.1 scw ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
353 1.1 scw while (enm != NULL) {
354 1.1 scw if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
355 1.1 scw ifp->if_flags |= IFF_ALLMULTI;
356 1.1 scw goto all_multi;
357 1.1 scw }
358 1.1 scw
359 1.1 scw for (i = 0; i < ETHER_ADDR_LEN; i++) {
360 1.1 scw clr[i] |= enm->enm_addrlo[i];
361 1.1 scw set[i] &= enm->enm_addrlo[i];
362 1.1 scw }
363 1.1 scw
364 1.1 scw ETHER_NEXT_MULTI(step, enm);
365 1.1 scw }
366 1.1 scw
367 1.1 scw for (i = 0; i < ETHER_ADDR_LEN; i++) {
368 1.1 scw mask[i] = set[i] | ~clr[i];
369 1.1 scw addr[i] = set[i];
370 1.1 scw }
371 1.1 scw }
372 1.1 scw
373 1.1 scw /*
374 1.1 scw * Write the mask and address registers.
375 1.1 scw */
376 1.1 scw for (i = 0; i < ETHER_ADDR_LEN; i++) {
377 1.1 scw WR4(sc, NPE_MAC_ADDR_MASK(i), mask[i]);
378 1.1 scw WR4(sc, NPE_MAC_ADDR(i), addr[i]);
379 1.1 scw }
380 1.1 scw }
381 1.1 scw
382 1.1 scw static int
383 1.1 scw npe_dma_setup(struct npe_softc *sc, struct npedma *dma,
384 1.1 scw const char *name, int nbuf, int maxseg)
385 1.1 scw {
386 1.1 scw bus_dma_segment_t seg;
387 1.1 scw int rseg, error, i;
388 1.3 christos void *hwbuf;
389 1.1 scw size_t size;
390 1.1 scw
391 1.1 scw memset(dma, 0, sizeof(dma));
392 1.1 scw
393 1.1 scw dma->name = name;
394 1.1 scw dma->nbuf = nbuf;
395 1.1 scw
396 1.1 scw size = nbuf * sizeof(struct npehwbuf);
397 1.1 scw
398 1.1 scw /* XXX COHERENT for now */
399 1.1 scw error = bus_dmamem_alloc(sc->sc_dt, size, sizeof(uint32_t), 0, &seg,
400 1.1 scw 1, &rseg, BUS_DMA_NOWAIT);
401 1.1 scw if (error) {
402 1.1 scw printf("%s: unable to allocate memory for %s h/w buffers, "
403 1.1 scw "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
404 1.1 scw }
405 1.1 scw
406 1.1 scw error = bus_dmamem_map(sc->sc_dt, &seg, 1, size, &hwbuf,
407 1.1 scw BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_NOCACHE);
408 1.1 scw if (error) {
409 1.1 scw printf("%s: unable to map memory for %s h/w buffers, "
410 1.1 scw "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
411 1.1 scw free_dmamem:
412 1.1 scw bus_dmamem_free(sc->sc_dt, &seg, rseg);
413 1.1 scw return error;
414 1.1 scw }
415 1.1 scw dma->hwbuf = (void *)hwbuf;
416 1.1 scw
417 1.1 scw error = bus_dmamap_create(sc->sc_dt, size, 1, size, 0,
418 1.1 scw BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &dma->buf_map);
419 1.1 scw if (error) {
420 1.1 scw printf("%s: unable to create map for %s h/w buffers, "
421 1.1 scw "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
422 1.1 scw unmap_dmamem:
423 1.1 scw dma->hwbuf = NULL;
424 1.1 scw bus_dmamem_unmap(sc->sc_dt, hwbuf, size);
425 1.1 scw goto free_dmamem;
426 1.1 scw }
427 1.1 scw
428 1.1 scw error = bus_dmamap_load(sc->sc_dt, dma->buf_map, hwbuf, size, NULL,
429 1.1 scw BUS_DMA_NOWAIT);
430 1.1 scw if (error) {
431 1.1 scw printf("%s: unable to load map for %s h/w buffers, "
432 1.1 scw "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
433 1.1 scw destroy_dmamap:
434 1.1 scw bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
435 1.1 scw goto unmap_dmamem;
436 1.1 scw }
437 1.1 scw
438 1.1 scw /* XXX M_TEMP */
439 1.1 scw dma->buf = malloc(nbuf * sizeof(struct npebuf), M_TEMP, M_NOWAIT | M_ZERO);
440 1.1 scw if (dma->buf == NULL) {
441 1.1 scw printf("%s: unable to allocate memory for %s s/w buffers\n",
442 1.1 scw sc->sc_dev.dv_xname, dma->name);
443 1.1 scw bus_dmamap_unload(sc->sc_dt, dma->buf_map);
444 1.1 scw error = ENOMEM;
445 1.1 scw goto destroy_dmamap;
446 1.1 scw }
447 1.1 scw
448 1.1 scw dma->buf_phys = dma->buf_map->dm_segs[0].ds_addr;
449 1.1 scw for (i = 0; i < dma->nbuf; i++) {
450 1.1 scw struct npebuf *npe = &dma->buf[i];
451 1.1 scw struct npehwbuf *hw = &dma->hwbuf[i];
452 1.1 scw
453 1.1 scw /* calculate offset to shared area */
454 1.1 scw npe->ix_neaddr = dma->buf_phys +
455 1.1 scw ((uintptr_t)hw - (uintptr_t)dma->hwbuf);
456 1.1 scw KASSERT((npe->ix_neaddr & 0x1f) == 0);
457 1.1 scw error = bus_dmamap_create(sc->sc_dt, MCLBYTES, 1,
458 1.1 scw MCLBYTES, 0, 0, &npe->ix_map);
459 1.1 scw if (error != 0) {
460 1.1 scw printf("%s: unable to create dmamap for %s buffer %u, "
461 1.1 scw "error %u\n", sc->sc_dev.dv_xname, dma->name, i,
462 1.1 scw error);
463 1.1 scw /* XXXSCW: Free up maps... */
464 1.1 scw return error;
465 1.1 scw }
466 1.1 scw npe->ix_hw = hw;
467 1.1 scw }
468 1.1 scw bus_dmamap_sync(sc->sc_dt, dma->buf_map, 0, dma->buf_map->dm_mapsize,
469 1.1 scw BUS_DMASYNC_PREWRITE);
470 1.1 scw return 0;
471 1.1 scw }
472 1.1 scw
473 1.1 scw #if 0
474 1.1 scw static void
475 1.1 scw npe_dma_destroy(struct npe_softc *sc, struct npedma *dma)
476 1.1 scw {
477 1.1 scw int i;
478 1.1 scw
479 1.1 scw /* XXXSCW: Clean this up */
480 1.1 scw
481 1.1 scw if (dma->hwbuf != NULL) {
482 1.1 scw for (i = 0; i < dma->nbuf; i++) {
483 1.1 scw struct npebuf *npe = &dma->buf[i];
484 1.1 scw bus_dmamap_destroy(sc->sc_dt, npe->ix_map);
485 1.1 scw }
486 1.1 scw bus_dmamap_unload(sc->sc_dt, dma->buf_map);
487 1.3 christos bus_dmamem_free(sc->sc_dt, (void *)dma->hwbuf, dma->buf_map);
488 1.1 scw bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
489 1.1 scw }
490 1.1 scw if (dma->buf != NULL)
491 1.1 scw free(dma->buf, M_TEMP);
492 1.1 scw memset(dma, 0, sizeof(*dma));
493 1.1 scw }
494 1.1 scw #endif
495 1.1 scw
496 1.1 scw static int
497 1.1 scw npe_activate(struct npe_softc *sc)
498 1.1 scw {
499 1.1 scw bus_dma_segment_t seg;
500 1.1 scw int unit = sc->sc_unit;
501 1.1 scw int error, i, rseg;
502 1.3 christos void *statbuf;
503 1.1 scw
504 1.1 scw /* load NPE firmware and start it running */
505 1.1 scw error = ixpnpe_init(sc->sc_npe, "npe_fw", npeconfig[unit].imageid);
506 1.1 scw if (error != 0)
507 1.1 scw return error;
508 1.1 scw
509 1.1 scw if (bus_space_map(sc->sc_iot, npeconfig[unit].regbase,
510 1.1 scw npeconfig[unit].regsize, 0, &sc->sc_ioh)) {
511 1.1 scw printf("%s: Cannot map registers 0x%x:0x%x\n",
512 1.1 scw sc->sc_dev.dv_xname, npeconfig[unit].regbase,
513 1.1 scw npeconfig[unit].regsize);
514 1.1 scw return ENOMEM;
515 1.1 scw }
516 1.1 scw
517 1.1 scw if (npeconfig[unit].miibase != npeconfig[unit].regbase) {
518 1.1 scw /*
519 1.1 scw * The PHY's are only accessible from one MAC (it appears)
520 1.1 scw * so for other MAC's setup an additional mapping for
521 1.1 scw * frobbing the PHY registers.
522 1.1 scw */
523 1.1 scw if (bus_space_map(sc->sc_iot, npeconfig[unit].miibase,
524 1.1 scw npeconfig[unit].miisize, 0, &sc->sc_miih)) {
525 1.1 scw printf("%s: Cannot map MII registers 0x%x:0x%x\n",
526 1.1 scw sc->sc_dev.dv_xname, npeconfig[unit].miibase,
527 1.1 scw npeconfig[unit].miisize);
528 1.1 scw return ENOMEM;
529 1.1 scw }
530 1.1 scw } else
531 1.1 scw sc->sc_miih = sc->sc_ioh;
532 1.1 scw error = npe_dma_setup(sc, &sc->txdma, "tx", NPE_TXBUF, NPE_MAXSEG);
533 1.1 scw if (error != 0)
534 1.1 scw return error;
535 1.1 scw error = npe_dma_setup(sc, &sc->rxdma, "rx", NPE_RXBUF, 1);
536 1.1 scw if (error != 0)
537 1.1 scw return error;
538 1.1 scw
539 1.1 scw /* setup statistics block */
540 1.1 scw error = bus_dmamem_alloc(sc->sc_dt, sizeof(struct npestats),
541 1.1 scw sizeof(uint32_t), 0, &seg, 1, &rseg, BUS_DMA_NOWAIT);
542 1.1 scw if (error) {
543 1.1 scw printf("%s: unable to allocate memory for stats block, "
544 1.1 scw "error %u\n", sc->sc_dev.dv_xname, error);
545 1.1 scw return error;
546 1.1 scw }
547 1.1 scw
548 1.1 scw error = bus_dmamem_map(sc->sc_dt, &seg, 1, sizeof(struct npestats),
549 1.1 scw &statbuf, BUS_DMA_NOWAIT);
550 1.1 scw if (error) {
551 1.1 scw printf("%s: unable to map memory for stats block, "
552 1.1 scw "error %u\n", sc->sc_dev.dv_xname, error);
553 1.1 scw return error;
554 1.1 scw }
555 1.1 scw sc->sc_stats = (void *)statbuf;
556 1.1 scw
557 1.1 scw error = bus_dmamap_create(sc->sc_dt, sizeof(struct npestats), 1,
558 1.1 scw sizeof(struct npestats), 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
559 1.1 scw &sc->sc_stats_map);
560 1.1 scw if (error) {
561 1.1 scw printf("%s: unable to create map for stats block, "
562 1.1 scw "error %u\n", sc->sc_dev.dv_xname, error);
563 1.1 scw return error;
564 1.1 scw }
565 1.1 scw
566 1.1 scw if (bus_dmamap_load(sc->sc_dt, sc->sc_stats_map, sc->sc_stats,
567 1.1 scw sizeof(struct npestats), NULL, BUS_DMA_NOWAIT) != 0) {
568 1.1 scw printf("%s: unable to load memory for stats block, error %u\n",
569 1.1 scw sc->sc_dev.dv_xname, error);
570 1.1 scw return error;
571 1.1 scw }
572 1.1 scw sc->sc_stats_phys = sc->sc_stats_map->dm_segs[0].ds_addr;
573 1.1 scw
574 1.1 scw /* XXX disable half-bridge LEARNING+FILTERING feature */
575 1.1 scw
576 1.1 scw /*
577 1.1 scw * Setup h/w rx/tx queues. There are four q's:
578 1.1 scw * rx inbound q of rx'd frames
579 1.1 scw * rx_free pool of ixpbuf's for receiving frames
580 1.1 scw * tx outbound q of frames to send
581 1.1 scw * tx_done q of tx frames that have been processed
582 1.1 scw *
583 1.1 scw * The NPE handles the actual tx/rx process and the q manager
584 1.1 scw * handles the queues. The driver just writes entries to the
585 1.1 scw * q manager mailbox's and gets callbacks when there are rx'd
586 1.1 scw * frames to process or tx'd frames to reap. These callbacks
587 1.1 scw * are controlled by the q configurations; e.g. we get a
588 1.1 scw * callback when tx_done has 2 or more frames to process and
589 1.1 scw * when the rx q has at least one frame. These setings can
590 1.1 scw * changed at the time the q is configured.
591 1.1 scw */
592 1.1 scw sc->rx_qid = npeconfig[unit].rx_qid;
593 1.1 scw ixpqmgr_qconfig(sc->rx_qid, NPE_RXBUF, 0, 1,
594 1.1 scw IX_QMGR_Q_SOURCE_ID_NOT_E, npe_rxdone, sc);
595 1.1 scw sc->rx_freeqid = npeconfig[unit].rx_freeqid;
596 1.1 scw ixpqmgr_qconfig(sc->rx_freeqid, NPE_RXBUF, 0, NPE_RXBUF/2, 0, NULL, sc);
597 1.1 scw /* tell the NPE to direct all traffic to rx_qid */
598 1.1 scw #if 0
599 1.1 scw for (i = 0; i < 8; i++)
600 1.1 scw #else
601 1.1 scw printf("%s: remember to fix rx q setup\n", sc->sc_dev.dv_xname);
602 1.1 scw for (i = 0; i < 4; i++)
603 1.1 scw #endif
604 1.1 scw npe_setrxqosentry(sc, i, 0, sc->rx_qid);
605 1.1 scw
606 1.1 scw sc->tx_qid = npeconfig[unit].tx_qid;
607 1.1 scw sc->tx_doneqid = npeconfig[unit].tx_doneqid;
608 1.1 scw ixpqmgr_qconfig(sc->tx_qid, NPE_TXBUF, 0, NPE_TXBUF, 0, NULL, sc);
609 1.1 scw if (tx_doneqid == -1) {
610 1.1 scw ixpqmgr_qconfig(sc->tx_doneqid, NPE_TXBUF, 0, 2,
611 1.1 scw IX_QMGR_Q_SOURCE_ID_NOT_E, npe_txdone, sc);
612 1.1 scw tx_doneqid = sc->tx_doneqid;
613 1.1 scw }
614 1.1 scw
615 1.1 scw KASSERT(npes[npeconfig[unit].npeid] == NULL);
616 1.1 scw npes[npeconfig[unit].npeid] = sc;
617 1.1 scw
618 1.1 scw return 0;
619 1.1 scw }
620 1.1 scw
621 1.1 scw #if 0
622 1.1 scw static void
623 1.1 scw npe_deactivate(struct npe_softc *sc);
624 1.1 scw {
625 1.1 scw int unit = sc->sc_unit;
626 1.1 scw
627 1.1 scw npes[npeconfig[unit].npeid] = NULL;
628 1.1 scw
629 1.1 scw /* XXX disable q's */
630 1.1 scw if (sc->sc_npe != NULL)
631 1.1 scw ixpnpe_stop(sc->sc_npe);
632 1.1 scw if (sc->sc_stats != NULL) {
633 1.1 scw bus_dmamap_unload(sc->sc_stats_tag, sc->sc_stats_map);
634 1.1 scw bus_dmamem_free(sc->sc_stats_tag, sc->sc_stats,
635 1.1 scw sc->sc_stats_map);
636 1.1 scw bus_dmamap_destroy(sc->sc_stats_tag, sc->sc_stats_map);
637 1.1 scw }
638 1.1 scw if (sc->sc_stats_tag != NULL)
639 1.1 scw bus_dma_tag_destroy(sc->sc_stats_tag);
640 1.1 scw npe_dma_destroy(sc, &sc->txdma);
641 1.1 scw npe_dma_destroy(sc, &sc->rxdma);
642 1.1 scw bus_generic_detach(sc->sc_dev);
643 1.1 scw if (sc->sc_mii)
644 1.1 scw device_delete_child(sc->sc_dev, sc->sc_mii);
645 1.1 scw #if 0
646 1.1 scw /* XXX sc_ioh and sc_miih */
647 1.1 scw if (sc->mem_res)
648 1.1 scw bus_release_resource(dev, SYS_RES_IOPORT,
649 1.1 scw rman_get_rid(sc->mem_res), sc->mem_res);
650 1.1 scw sc->mem_res = 0;
651 1.1 scw #endif
652 1.1 scw }
653 1.1 scw #endif
654 1.1 scw
655 1.1 scw /*
656 1.1 scw * Change media according to request.
657 1.1 scw */
658 1.1 scw static int
659 1.1 scw npe_ifmedia_change(struct ifnet *ifp)
660 1.1 scw {
661 1.1 scw struct npe_softc *sc = ifp->if_softc;
662 1.1 scw
663 1.1 scw if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && ifp->if_flags & IFF_UP)
664 1.1 scw mii_mediachg(&sc->sc_mii);
665 1.1 scw return (0);
666 1.1 scw }
667 1.1 scw
668 1.1 scw /*
669 1.1 scw * Notify the world which media we're using.
670 1.1 scw */
671 1.1 scw static void
672 1.1 scw npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
673 1.1 scw {
674 1.1 scw struct npe_softc *sc = ifp->if_softc;
675 1.1 scw
676 1.1 scw if (sc->sc_phy > IXPNPECF_PHY_DEFAULT)
677 1.1 scw mii_pollstat(&sc->sc_mii);
678 1.1 scw
679 1.1 scw ifmr->ifm_active = sc->sc_mii.mii_media_active;
680 1.1 scw ifmr->ifm_status = sc->sc_mii.mii_media_status;
681 1.1 scw }
682 1.1 scw
683 1.1 scw static void
684 1.1 scw npe_addstats(struct npe_softc *sc)
685 1.1 scw {
686 1.1 scw struct ifnet *ifp = &sc->sc_ethercom.ec_if;
687 1.1 scw struct npestats *ns = sc->sc_stats;
688 1.1 scw
689 1.1 scw ifp->if_oerrors +=
690 1.1 scw be32toh(ns->dot3StatsInternalMacTransmitErrors)
691 1.1 scw + be32toh(ns->dot3StatsCarrierSenseErrors)
692 1.1 scw + be32toh(ns->TxVLANIdFilterDiscards)
693 1.1 scw ;
694 1.1 scw ifp->if_ierrors += be32toh(ns->dot3StatsFCSErrors)
695 1.1 scw + be32toh(ns->dot3StatsInternalMacReceiveErrors)
696 1.1 scw + be32toh(ns->RxOverrunDiscards)
697 1.1 scw + be32toh(ns->RxUnderflowEntryDiscards)
698 1.1 scw ;
699 1.1 scw ifp->if_collisions +=
700 1.1 scw be32toh(ns->dot3StatsSingleCollisionFrames)
701 1.1 scw + be32toh(ns->dot3StatsMultipleCollisionFrames)
702 1.1 scw ;
703 1.1 scw }
704 1.1 scw
705 1.1 scw static void
706 1.1 scw npe_tick(void *xsc)
707 1.1 scw {
708 1.1 scw #define ACK (NPE_RESETSTATS << NPE_MAC_MSGID_SHL)
709 1.1 scw struct npe_softc *sc = xsc;
710 1.1 scw uint32_t msg[2];
711 1.1 scw
712 1.1 scw /*
713 1.1 scw * NB: to avoid sleeping with the softc lock held we
714 1.1 scw * split the NPE msg processing into two parts. The
715 1.1 scw * request for statistics is sent w/o waiting for a
716 1.1 scw * reply and then on the next tick we retrieve the
717 1.1 scw * results. This works because npe_tick is the only
718 1.1 scw * code that talks via the mailbox's (except at setup).
719 1.1 scw * This likely can be handled better.
720 1.1 scw */
721 1.1 scw if (ixpnpe_recvmsg(sc->sc_npe, msg) == 0 && msg[0] == ACK) {
722 1.1 scw bus_dmamap_sync(sc->sc_dt, sc->sc_stats_map, 0,
723 1.1 scw sizeof(struct npestats), BUS_DMASYNC_POSTREAD);
724 1.1 scw npe_addstats(sc);
725 1.1 scw }
726 1.1 scw npe_updatestats(sc);
727 1.1 scw mii_tick(&sc->sc_mii);
728 1.1 scw
729 1.1 scw /* schedule next poll */
730 1.1 scw callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
731 1.1 scw #undef ACK
732 1.1 scw }
733 1.1 scw
734 1.1 scw static void
735 1.6 matt npe_setmac(struct npe_softc *sc, const u_char *eaddr)
736 1.1 scw {
737 1.1 scw WR4(sc, NPE_MAC_UNI_ADDR_1, eaddr[0]);
738 1.1 scw WR4(sc, NPE_MAC_UNI_ADDR_2, eaddr[1]);
739 1.1 scw WR4(sc, NPE_MAC_UNI_ADDR_3, eaddr[2]);
740 1.1 scw WR4(sc, NPE_MAC_UNI_ADDR_4, eaddr[3]);
741 1.1 scw WR4(sc, NPE_MAC_UNI_ADDR_5, eaddr[4]);
742 1.1 scw WR4(sc, NPE_MAC_UNI_ADDR_6, eaddr[5]);
743 1.1 scw
744 1.1 scw }
745 1.1 scw
746 1.1 scw static void
747 1.1 scw npe_getmac(struct npe_softc *sc, u_char *eaddr)
748 1.1 scw {
749 1.1 scw /* NB: the unicast address appears to be loaded from EEPROM on reset */
750 1.1 scw eaddr[0] = RD4(sc, NPE_MAC_UNI_ADDR_1) & 0xff;
751 1.1 scw eaddr[1] = RD4(sc, NPE_MAC_UNI_ADDR_2) & 0xff;
752 1.1 scw eaddr[2] = RD4(sc, NPE_MAC_UNI_ADDR_3) & 0xff;
753 1.1 scw eaddr[3] = RD4(sc, NPE_MAC_UNI_ADDR_4) & 0xff;
754 1.1 scw eaddr[4] = RD4(sc, NPE_MAC_UNI_ADDR_5) & 0xff;
755 1.1 scw eaddr[5] = RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff;
756 1.1 scw }
757 1.1 scw
758 1.1 scw struct txdone {
759 1.1 scw struct npebuf *head;
760 1.1 scw struct npebuf **tail;
761 1.1 scw int count;
762 1.1 scw };
763 1.1 scw
764 1.1 scw static __inline void
765 1.1 scw npe_txdone_finish(struct npe_softc *sc, const struct txdone *td)
766 1.1 scw {
767 1.1 scw struct ifnet *ifp = &sc->sc_ethercom.ec_if;
768 1.1 scw
769 1.1 scw *td->tail = sc->tx_free;
770 1.1 scw sc->tx_free = td->head;
771 1.1 scw /*
772 1.1 scw * We're no longer busy, so clear the busy flag and call the
773 1.1 scw * start routine to xmit more packets.
774 1.1 scw */
775 1.1 scw ifp->if_opackets += td->count;
776 1.1 scw ifp->if_flags &= ~IFF_OACTIVE;
777 1.1 scw ifp->if_timer = 0;
778 1.1 scw npestart(ifp);
779 1.1 scw }
780 1.1 scw
781 1.1 scw /*
782 1.1 scw * Q manager callback on tx done queue. Reap mbufs
783 1.1 scw * and return tx buffers to the free list. Finally
784 1.1 scw * restart output. Note the microcode has only one
785 1.1 scw * txdone q wired into it so we must use the NPE ID
786 1.1 scw * returned with each npehwbuf to decide where to
787 1.1 scw * send buffers.
788 1.1 scw */
789 1.1 scw static void
790 1.1 scw npe_txdone(int qid, void *arg)
791 1.1 scw {
792 1.1 scw #define P2V(a, dma) \
793 1.1 scw &(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
794 1.1 scw struct npe_softc *sc;
795 1.1 scw struct npebuf *npe;
796 1.1 scw struct txdone *td, q[NPE_MAX];
797 1.1 scw uint32_t entry;
798 1.1 scw
799 1.1 scw /* XXX no NPE-A support */
800 1.1 scw q[NPE_B].tail = &q[NPE_B].head; q[NPE_B].count = 0;
801 1.1 scw q[NPE_C].tail = &q[NPE_C].head; q[NPE_C].count = 0;
802 1.1 scw /* XXX max # at a time? */
803 1.1 scw while (ixpqmgr_qread(qid, &entry) == 0) {
804 1.1 scw sc = npes[NPE_QM_Q_NPE(entry)];
805 1.1 scw DPRINTF(sc, "%s: entry 0x%x NPE %u port %u\n",
806 1.1 scw __func__, entry, NPE_QM_Q_NPE(entry), NPE_QM_Q_PORT(entry));
807 1.1 scw
808 1.1 scw npe = P2V(NPE_QM_Q_ADDR(entry), &sc->txdma);
809 1.1 scw m_freem(npe->ix_m);
810 1.1 scw npe->ix_m = NULL;
811 1.1 scw
812 1.1 scw td = &q[NPE_QM_Q_NPE(entry)];
813 1.1 scw *td->tail = npe;
814 1.1 scw td->tail = &npe->ix_next;
815 1.1 scw td->count++;
816 1.1 scw }
817 1.1 scw
818 1.1 scw if (q[NPE_B].count)
819 1.1 scw npe_txdone_finish(npes[NPE_B], &q[NPE_B]);
820 1.1 scw if (q[NPE_C].count)
821 1.1 scw npe_txdone_finish(npes[NPE_C], &q[NPE_C]);
822 1.1 scw #undef P2V
823 1.1 scw }
824 1.1 scw
825 1.1 scw static __inline struct mbuf *
826 1.1 scw npe_getcl(void)
827 1.1 scw {
828 1.1 scw struct mbuf *m;
829 1.1 scw
830 1.1 scw MGETHDR(m, M_DONTWAIT, MT_DATA);
831 1.1 scw if (m != NULL) {
832 1.1 scw MCLGET(m, M_DONTWAIT);
833 1.1 scw if ((m->m_flags & M_EXT) == 0) {
834 1.1 scw m_freem(m);
835 1.1 scw m = NULL;
836 1.1 scw }
837 1.1 scw }
838 1.1 scw return (m);
839 1.1 scw }
840 1.1 scw
841 1.1 scw static int
842 1.1 scw npe_rxbuf_init(struct npe_softc *sc, struct npebuf *npe, struct mbuf *m)
843 1.1 scw {
844 1.1 scw struct npehwbuf *hw;
845 1.1 scw int error;
846 1.1 scw
847 1.1 scw if (m == NULL) {
848 1.1 scw m = npe_getcl();
849 1.1 scw if (m == NULL)
850 1.1 scw return ENOBUFS;
851 1.1 scw }
852 1.1 scw KASSERT(m->m_ext.ext_size >= (1536 + ETHER_ALIGN));
853 1.1 scw m->m_pkthdr.len = m->m_len = 1536;
854 1.1 scw /* backload payload and align ip hdr */
855 1.1 scw m->m_data = m->m_ext.ext_buf + (m->m_ext.ext_size - (1536+ETHER_ALIGN));
856 1.1 scw error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
857 1.1 scw BUS_DMA_READ|BUS_DMA_NOWAIT);
858 1.1 scw if (error != 0) {
859 1.1 scw m_freem(m);
860 1.1 scw return error;
861 1.1 scw }
862 1.1 scw hw = npe->ix_hw;
863 1.1 scw hw->ix_ne[0].data = htobe32(npe->ix_map->dm_segs[0].ds_addr);
864 1.1 scw /* NB: NPE requires length be a multiple of 64 */
865 1.1 scw /* NB: buffer length is shifted in word */
866 1.1 scw hw->ix_ne[0].len = htobe32(npe->ix_map->dm_segs[0].ds_len << 16);
867 1.1 scw hw->ix_ne[0].next = 0;
868 1.1 scw npe->ix_m = m;
869 1.1 scw /* Flush the memory in the mbuf */
870 1.1 scw bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0, npe->ix_map->dm_mapsize,
871 1.1 scw BUS_DMASYNC_PREREAD);
872 1.1 scw return 0;
873 1.1 scw }
874 1.1 scw
875 1.1 scw /*
876 1.1 scw * RX q processing for a specific NPE. Claim entries
877 1.1 scw * from the hardware queue and pass the frames up the
878 1.1 scw * stack. Pass the rx buffers to the free list.
879 1.1 scw */
880 1.1 scw static void
881 1.1 scw npe_rxdone(int qid, void *arg)
882 1.1 scw {
883 1.1 scw #define P2V(a, dma) \
884 1.1 scw &(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
885 1.1 scw struct npe_softc *sc = arg;
886 1.1 scw struct npedma *dma = &sc->rxdma;
887 1.1 scw uint32_t entry;
888 1.1 scw
889 1.1 scw while (ixpqmgr_qread(qid, &entry) == 0) {
890 1.1 scw struct npebuf *npe = P2V(NPE_QM_Q_ADDR(entry), dma);
891 1.1 scw struct mbuf *m;
892 1.1 scw
893 1.1 scw DPRINTF(sc, "%s: entry 0x%x neaddr 0x%x ne_len 0x%x\n",
894 1.1 scw __func__, entry, npe->ix_neaddr, npe->ix_hw->ix_ne[0].len);
895 1.1 scw /*
896 1.1 scw * Allocate a new mbuf to replenish the rx buffer.
897 1.1 scw * If doing so fails we drop the rx'd frame so we
898 1.1 scw * can reuse the previous mbuf. When we're able to
899 1.1 scw * allocate a new mbuf dispatch the mbuf w/ rx'd
900 1.1 scw * data up the stack and replace it with the newly
901 1.1 scw * allocated one.
902 1.1 scw */
903 1.1 scw m = npe_getcl();
904 1.1 scw if (m != NULL) {
905 1.1 scw struct mbuf *mrx = npe->ix_m;
906 1.1 scw struct npehwbuf *hw = npe->ix_hw;
907 1.1 scw struct ifnet *ifp = &sc->sc_ethercom.ec_if;
908 1.1 scw
909 1.1 scw /* Flush mbuf memory for rx'd data */
910 1.1 scw bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
911 1.1 scw npe->ix_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
912 1.1 scw
913 1.1 scw /* XXX flush hw buffer; works now 'cuz coherent */
914 1.1 scw /* set m_len etc. per rx frame size */
915 1.1 scw mrx->m_len = be32toh(hw->ix_ne[0].len) & 0xffff;
916 1.1 scw mrx->m_pkthdr.len = mrx->m_len;
917 1.1 scw mrx->m_pkthdr.rcvif = ifp;
918 1.1 scw mrx->m_flags |= M_HASFCS;
919 1.1 scw
920 1.1 scw ifp->if_ipackets++;
921 1.1 scw ifp->if_input(ifp, mrx);
922 1.1 scw } else {
923 1.1 scw /* discard frame and re-use mbuf */
924 1.1 scw m = npe->ix_m;
925 1.1 scw }
926 1.1 scw if (npe_rxbuf_init(sc, npe, m) == 0) {
927 1.1 scw /* return npe buf to rx free list */
928 1.1 scw ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
929 1.1 scw } else {
930 1.1 scw /* XXX should not happen */
931 1.1 scw }
932 1.1 scw }
933 1.1 scw #undef P2V
934 1.1 scw }
935 1.1 scw
936 1.1 scw static void
937 1.1 scw npe_startxmit(struct npe_softc *sc)
938 1.1 scw {
939 1.1 scw struct npedma *dma = &sc->txdma;
940 1.1 scw int i;
941 1.1 scw
942 1.1 scw sc->tx_free = NULL;
943 1.1 scw for (i = 0; i < dma->nbuf; i++) {
944 1.1 scw struct npebuf *npe = &dma->buf[i];
945 1.1 scw if (npe->ix_m != NULL) {
946 1.1 scw /* NB: should not happen */
947 1.1 scw printf("%s: %s: free mbuf at entry %u\n",
948 1.1 scw sc->sc_dev.dv_xname, __func__, i);
949 1.1 scw m_freem(npe->ix_m);
950 1.1 scw }
951 1.1 scw npe->ix_m = NULL;
952 1.1 scw npe->ix_next = sc->tx_free;
953 1.1 scw sc->tx_free = npe;
954 1.1 scw }
955 1.1 scw }
956 1.1 scw
957 1.1 scw static void
958 1.1 scw npe_startrecv(struct npe_softc *sc)
959 1.1 scw {
960 1.1 scw struct npedma *dma = &sc->rxdma;
961 1.1 scw struct npebuf *npe;
962 1.1 scw int i;
963 1.1 scw
964 1.1 scw for (i = 0; i < dma->nbuf; i++) {
965 1.1 scw npe = &dma->buf[i];
966 1.1 scw npe_rxbuf_init(sc, npe, npe->ix_m);
967 1.1 scw /* set npe buf on rx free list */
968 1.1 scw ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
969 1.1 scw }
970 1.1 scw }
971 1.1 scw
972 1.1 scw /*
973 1.1 scw * Reset and initialize the chip
974 1.1 scw */
975 1.1 scw static void
976 1.1 scw npeinit_locked(void *xsc)
977 1.1 scw {
978 1.1 scw struct npe_softc *sc = xsc;
979 1.1 scw struct ifnet *ifp = &sc->sc_ethercom.ec_if;
980 1.1 scw
981 1.1 scw if (ifp->if_flags & IFF_RUNNING) return;/*XXX*/
982 1.1 scw
983 1.1 scw /*
984 1.1 scw * Reset MAC core.
985 1.1 scw */
986 1.1 scw WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
987 1.1 scw DELAY(NPE_MAC_RESET_DELAY);
988 1.1 scw /* configure MAC to generate MDC clock */
989 1.1 scw WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
990 1.1 scw
991 1.1 scw /* disable transmitter and reciver in the MAC */
992 1.1 scw WR4(sc, NPE_MAC_RX_CNTRL1,
993 1.1 scw RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
994 1.1 scw WR4(sc, NPE_MAC_TX_CNTRL1,
995 1.1 scw RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
996 1.1 scw
997 1.1 scw /*
998 1.1 scw * Set the MAC core registers.
999 1.1 scw */
1000 1.1 scw WR4(sc, NPE_MAC_INT_CLK_THRESH, 0x1); /* clock ratio: for ipx4xx */
1001 1.1 scw WR4(sc, NPE_MAC_TX_CNTRL2, 0xf); /* max retries */
1002 1.1 scw WR4(sc, NPE_MAC_RANDOM_SEED, 0x8); /* LFSR back-off seed */
1003 1.1 scw /* thresholds determined by NPE firmware FS */
1004 1.1 scw WR4(sc, NPE_MAC_THRESH_P_EMPTY, 0x12);
1005 1.1 scw WR4(sc, NPE_MAC_THRESH_P_FULL, 0x30);
1006 1.1 scw WR4(sc, NPE_MAC_BUF_SIZE_TX, 0x8); /* tx fifo threshold (bytes) */
1007 1.1 scw WR4(sc, NPE_MAC_TX_DEFER, 0x15); /* for single deferral */
1008 1.1 scw WR4(sc, NPE_MAC_RX_DEFER, 0x16); /* deferral on inter-frame gap*/
1009 1.1 scw WR4(sc, NPE_MAC_TX_TWO_DEFER_1, 0x8); /* for 2-part deferral */
1010 1.1 scw WR4(sc, NPE_MAC_TX_TWO_DEFER_2, 0x7); /* for 2-part deferral */
1011 1.1 scw WR4(sc, NPE_MAC_SLOT_TIME, 0x80); /* assumes MII mode */
1012 1.1 scw
1013 1.1 scw WR4(sc, NPE_MAC_TX_CNTRL1,
1014 1.1 scw NPE_TX_CNTRL1_RETRY /* retry failed xmits */
1015 1.1 scw | NPE_TX_CNTRL1_FCS_EN /* append FCS */
1016 1.1 scw | NPE_TX_CNTRL1_2DEFER /* 2-part deferal */
1017 1.1 scw | NPE_TX_CNTRL1_PAD_EN); /* pad runt frames */
1018 1.1 scw /* XXX pad strip? */
1019 1.1 scw WR4(sc, NPE_MAC_RX_CNTRL1,
1020 1.1 scw NPE_RX_CNTRL1_CRC_EN /* include CRC/FCS */
1021 1.1 scw | NPE_RX_CNTRL1_PAUSE_EN); /* ena pause frame handling */
1022 1.1 scw WR4(sc, NPE_MAC_RX_CNTRL2, 0);
1023 1.1 scw
1024 1.6 matt npe_setmac(sc, CLLADDR(ifp->if_sadl));
1025 1.1 scw npe_setmcast(sc);
1026 1.1 scw
1027 1.1 scw npe_startxmit(sc);
1028 1.1 scw npe_startrecv(sc);
1029 1.1 scw
1030 1.1 scw ifp->if_flags |= IFF_RUNNING;
1031 1.1 scw ifp->if_flags &= ~IFF_OACTIVE;
1032 1.1 scw ifp->if_timer = 0; /* just in case */
1033 1.1 scw
1034 1.1 scw /* enable transmitter and reciver in the MAC */
1035 1.1 scw WR4(sc, NPE_MAC_RX_CNTRL1,
1036 1.1 scw RD4(sc, NPE_MAC_RX_CNTRL1) | NPE_RX_CNTRL1_RX_EN);
1037 1.1 scw WR4(sc, NPE_MAC_TX_CNTRL1,
1038 1.1 scw RD4(sc, NPE_MAC_TX_CNTRL1) | NPE_TX_CNTRL1_TX_EN);
1039 1.1 scw
1040 1.1 scw callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
1041 1.1 scw }
1042 1.1 scw
1043 1.1 scw static int
1044 1.1 scw npeinit(struct ifnet *ifp)
1045 1.1 scw {
1046 1.1 scw struct npe_softc *sc = ifp->if_softc;
1047 1.1 scw int s;
1048 1.1 scw
1049 1.1 scw s = splnet();
1050 1.1 scw npeinit_locked(sc);
1051 1.1 scw splx(s);
1052 1.1 scw
1053 1.1 scw return (0);
1054 1.1 scw }
1055 1.1 scw
1056 1.1 scw /*
1057 1.1 scw * Defragment an mbuf chain, returning at most maxfrags separate
1058 1.1 scw * mbufs+clusters. If this is not possible NULL is returned and
1059 1.1 scw * the original mbuf chain is left in it's present (potentially
1060 1.1 scw * modified) state. We use two techniques: collapsing consecutive
1061 1.1 scw * mbufs and replacing consecutive mbufs by a cluster.
1062 1.1 scw */
1063 1.1 scw static __inline struct mbuf *
1064 1.1 scw npe_defrag(struct mbuf *m0)
1065 1.1 scw {
1066 1.1 scw struct mbuf *m;
1067 1.1 scw
1068 1.1 scw MGETHDR(m, M_DONTWAIT, MT_DATA);
1069 1.1 scw if (m == NULL)
1070 1.1 scw return (NULL);
1071 1.1 scw M_COPY_PKTHDR(m, m0);
1072 1.1 scw
1073 1.1 scw if ((m->m_len = m0->m_pkthdr.len) > MHLEN) {
1074 1.1 scw MCLGET(m, M_DONTWAIT);
1075 1.1 scw if ((m->m_flags & M_EXT) == 0) {
1076 1.1 scw m_freem(m);
1077 1.1 scw return (NULL);
1078 1.1 scw }
1079 1.1 scw }
1080 1.1 scw
1081 1.3 christos m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1082 1.1 scw m_freem(m0);
1083 1.1 scw
1084 1.1 scw return (m);
1085 1.1 scw }
1086 1.1 scw
1087 1.1 scw /*
1088 1.1 scw * Dequeue packets and place on the h/w transmit queue.
1089 1.1 scw */
1090 1.1 scw static void
1091 1.1 scw npestart(struct ifnet *ifp)
1092 1.1 scw {
1093 1.1 scw struct npe_softc *sc = ifp->if_softc;
1094 1.1 scw struct npebuf *npe;
1095 1.1 scw struct npehwbuf *hw;
1096 1.1 scw struct mbuf *m, *n;
1097 1.1 scw bus_dma_segment_t *segs;
1098 1.1 scw int nseg, len, error, i;
1099 1.1 scw uint32_t next;
1100 1.1 scw
1101 1.1 scw /* XXX can this happen? */
1102 1.1 scw if (ifp->if_flags & IFF_OACTIVE)
1103 1.1 scw return;
1104 1.1 scw
1105 1.1 scw while (sc->tx_free != NULL) {
1106 1.1 scw IFQ_DEQUEUE(&ifp->if_snd, m);
1107 1.1 scw if (m == NULL) {
1108 1.1 scw /* XXX? */
1109 1.1 scw ifp->if_flags &= ~IFF_OACTIVE;
1110 1.1 scw return;
1111 1.1 scw }
1112 1.1 scw npe = sc->tx_free;
1113 1.1 scw error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
1114 1.1 scw BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1115 1.1 scw if (error == EFBIG) {
1116 1.1 scw n = npe_defrag(m);
1117 1.1 scw if (n == NULL) {
1118 1.1 scw printf("%s: %s: too many fragments\n",
1119 1.1 scw sc->sc_dev.dv_xname, __func__);
1120 1.1 scw m_freem(m);
1121 1.1 scw return; /* XXX? */
1122 1.1 scw }
1123 1.1 scw m = n;
1124 1.1 scw error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map,
1125 1.1 scw m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1126 1.1 scw }
1127 1.1 scw if (error != 0) {
1128 1.1 scw printf("%s: %s: error %u\n",
1129 1.1 scw sc->sc_dev.dv_xname, __func__, error);
1130 1.1 scw m_freem(m);
1131 1.1 scw return; /* XXX? */
1132 1.1 scw }
1133 1.1 scw sc->tx_free = npe->ix_next;
1134 1.1 scw
1135 1.1 scw #if NBPFILTER > 0
1136 1.1 scw /*
1137 1.1 scw * Tap off here if there is a bpf listener.
1138 1.1 scw */
1139 1.1 scw if (__predict_false(ifp->if_bpf))
1140 1.1 scw bpf_mtap(ifp->if_bpf, m);
1141 1.1 scw #endif
1142 1.1 scw
1143 1.1 scw bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
1144 1.1 scw npe->ix_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1145 1.1 scw
1146 1.1 scw npe->ix_m = m;
1147 1.1 scw hw = npe->ix_hw;
1148 1.1 scw len = m->m_pkthdr.len;
1149 1.1 scw nseg = npe->ix_map->dm_nsegs;
1150 1.1 scw segs = npe->ix_map->dm_segs;
1151 1.1 scw next = npe->ix_neaddr + sizeof(hw->ix_ne[0]);
1152 1.1 scw for (i = 0; i < nseg; i++) {
1153 1.1 scw hw->ix_ne[i].data = htobe32(segs[i].ds_addr);
1154 1.1 scw hw->ix_ne[i].len = htobe32((segs[i].ds_len<<16) | len);
1155 1.1 scw hw->ix_ne[i].next = htobe32(next);
1156 1.1 scw
1157 1.1 scw len = 0; /* zero for segments > 1 */
1158 1.1 scw next += sizeof(hw->ix_ne[0]);
1159 1.1 scw }
1160 1.1 scw hw->ix_ne[i-1].next = 0; /* zero last in chain */
1161 1.1 scw /* XXX flush descriptor instead of using uncached memory */
1162 1.1 scw
1163 1.1 scw DPRINTF(sc, "%s: qwrite(%u, 0x%x) ne_data %x ne_len 0x%x\n",
1164 1.1 scw __func__, sc->tx_qid, npe->ix_neaddr,
1165 1.1 scw hw->ix_ne[0].data, hw->ix_ne[0].len);
1166 1.1 scw /* stick it on the tx q */
1167 1.1 scw /* XXX add vlan priority */
1168 1.1 scw ixpqmgr_qwrite(sc->tx_qid, npe->ix_neaddr);
1169 1.1 scw
1170 1.1 scw ifp->if_timer = 5;
1171 1.1 scw }
1172 1.1 scw if (sc->tx_free == NULL)
1173 1.1 scw ifp->if_flags |= IFF_OACTIVE;
1174 1.1 scw }
1175 1.1 scw
1176 1.1 scw static void
1177 1.1 scw npe_stopxmit(struct npe_softc *sc)
1178 1.1 scw {
1179 1.1 scw struct npedma *dma = &sc->txdma;
1180 1.1 scw int i;
1181 1.1 scw
1182 1.1 scw /* XXX qmgr */
1183 1.1 scw for (i = 0; i < dma->nbuf; i++) {
1184 1.1 scw struct npebuf *npe = &dma->buf[i];
1185 1.1 scw
1186 1.1 scw if (npe->ix_m != NULL) {
1187 1.1 scw bus_dmamap_unload(sc->sc_dt, npe->ix_map);
1188 1.1 scw m_freem(npe->ix_m);
1189 1.1 scw npe->ix_m = NULL;
1190 1.1 scw }
1191 1.1 scw }
1192 1.1 scw }
1193 1.1 scw
1194 1.1 scw static void
1195 1.1 scw npe_stoprecv(struct npe_softc *sc)
1196 1.1 scw {
1197 1.1 scw struct npedma *dma = &sc->rxdma;
1198 1.1 scw int i;
1199 1.1 scw
1200 1.1 scw /* XXX qmgr */
1201 1.1 scw for (i = 0; i < dma->nbuf; i++) {
1202 1.1 scw struct npebuf *npe = &dma->buf[i];
1203 1.1 scw
1204 1.1 scw if (npe->ix_m != NULL) {
1205 1.1 scw bus_dmamap_unload(sc->sc_dt, npe->ix_map);
1206 1.1 scw m_freem(npe->ix_m);
1207 1.1 scw npe->ix_m = NULL;
1208 1.1 scw }
1209 1.1 scw }
1210 1.1 scw }
1211 1.1 scw
1212 1.1 scw /*
1213 1.1 scw * Turn off interrupts, and stop the nic.
1214 1.1 scw */
1215 1.1 scw void
1216 1.1 scw npestop(struct ifnet *ifp, int disable)
1217 1.1 scw {
1218 1.1 scw struct npe_softc *sc = ifp->if_softc;
1219 1.1 scw
1220 1.1 scw /* disable transmitter and reciver in the MAC */
1221 1.1 scw WR4(sc, NPE_MAC_RX_CNTRL1,
1222 1.1 scw RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
1223 1.1 scw WR4(sc, NPE_MAC_TX_CNTRL1,
1224 1.1 scw RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
1225 1.1 scw
1226 1.1 scw ifp->if_timer = 0;
1227 1.1 scw ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1228 1.1 scw
1229 1.1 scw callout_stop(&sc->sc_tick_ch);
1230 1.1 scw
1231 1.1 scw npe_stopxmit(sc);
1232 1.1 scw npe_stoprecv(sc);
1233 1.1 scw /* XXX go into loopback & drain q's? */
1234 1.1 scw /* XXX but beware of disabling tx above */
1235 1.1 scw
1236 1.1 scw /*
1237 1.1 scw * The MAC core rx/tx disable may leave the MAC hardware in an
1238 1.1 scw * unpredictable state. A hw reset is executed before resetting
1239 1.1 scw * all the MAC parameters to a known value.
1240 1.1 scw */
1241 1.1 scw WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
1242 1.1 scw DELAY(NPE_MAC_RESET_DELAY);
1243 1.1 scw WR4(sc, NPE_MAC_INT_CLK_THRESH, NPE_MAC_INT_CLK_THRESH_DEFAULT);
1244 1.1 scw WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
1245 1.1 scw }
1246 1.1 scw
1247 1.1 scw void
1248 1.1 scw npewatchdog(struct ifnet *ifp)
1249 1.1 scw {
1250 1.1 scw struct npe_softc *sc = ifp->if_softc;
1251 1.1 scw int s;
1252 1.1 scw
1253 1.1 scw printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1254 1.1 scw s = splnet();
1255 1.1 scw ifp->if_oerrors++;
1256 1.1 scw npeinit_locked(sc);
1257 1.1 scw splx(s);
1258 1.1 scw }
1259 1.1 scw
1260 1.1 scw static int
1261 1.3 christos npeioctl(struct ifnet *ifp, u_long cmd, void *data)
1262 1.1 scw {
1263 1.1 scw struct npe_softc *sc = ifp->if_softc;
1264 1.1 scw struct ifreq *ifr = (struct ifreq *)data;
1265 1.1 scw int s, error = 0;
1266 1.1 scw
1267 1.1 scw s = splnet();
1268 1.1 scw
1269 1.1 scw switch (cmd) {
1270 1.1 scw case SIOCSIFMEDIA:
1271 1.1 scw case SIOCGIFMEDIA:
1272 1.1 scw error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1273 1.1 scw break;
1274 1.1 scw
1275 1.1 scw default:
1276 1.1 scw error = ether_ioctl(ifp, cmd, data);
1277 1.1 scw if (error == ENETRESET) {
1278 1.1 scw if ((ifp->if_flags & IFF_UP) == 0 &&
1279 1.1 scw ifp->if_flags & IFF_RUNNING) {
1280 1.1 scw ifp->if_flags &= ~IFF_RUNNING;
1281 1.1 scw npestop(&sc->sc_ethercom.ec_if, 0);
1282 1.1 scw } else {
1283 1.1 scw /* reinitialize card on any parameter change */
1284 1.1 scw npeinit_locked(sc);
1285 1.1 scw }
1286 1.1 scw error = 0;
1287 1.1 scw }
1288 1.1 scw break;
1289 1.1 scw }
1290 1.1 scw
1291 1.1 scw npestart(ifp);
1292 1.1 scw
1293 1.1 scw splx(s);
1294 1.1 scw return error;
1295 1.1 scw }
1296 1.1 scw
1297 1.1 scw /*
1298 1.1 scw * Setup a traffic class -> rx queue mapping.
1299 1.1 scw */
1300 1.1 scw static int
1301 1.1 scw npe_setrxqosentry(struct npe_softc *sc, int classix, int trafclass, int qid)
1302 1.1 scw {
1303 1.1 scw int npeid = npeconfig[sc->sc_unit].npeid;
1304 1.1 scw uint32_t msg[2];
1305 1.1 scw
1306 1.1 scw msg[0] = (NPE_SETRXQOSENTRY << 24) | (npeid << 20) | classix;
1307 1.1 scw msg[1] = (trafclass << 24) | (1 << 23) | (qid << 16) | (qid << 4);
1308 1.1 scw return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1309 1.1 scw }
1310 1.1 scw
1311 1.1 scw /*
1312 1.1 scw * Update and reset the statistics in the NPE.
1313 1.1 scw */
1314 1.1 scw static int
1315 1.1 scw npe_updatestats(struct npe_softc *sc)
1316 1.1 scw {
1317 1.1 scw uint32_t msg[2];
1318 1.1 scw
1319 1.1 scw msg[0] = NPE_RESETSTATS << NPE_MAC_MSGID_SHL;
1320 1.1 scw msg[1] = sc->sc_stats_phys; /* physical address of stat block */
1321 1.1 scw return ixpnpe_sendmsg(sc->sc_npe, msg); /* NB: no recv */
1322 1.1 scw }
1323 1.1 scw
1324 1.1 scw #if 0
1325 1.1 scw /*
1326 1.1 scw * Get the current statistics block.
1327 1.1 scw */
1328 1.1 scw static int
1329 1.1 scw npe_getstats(struct npe_softc *sc)
1330 1.1 scw {
1331 1.1 scw uint32_t msg[2];
1332 1.1 scw
1333 1.1 scw msg[0] = NPE_GETSTATS << NPE_MAC_MSGID_SHL;
1334 1.1 scw msg[1] = sc->sc_stats_phys; /* physical address of stat block */
1335 1.1 scw return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1336 1.1 scw }
1337 1.1 scw
1338 1.1 scw /*
1339 1.1 scw * Query the image id of the loaded firmware.
1340 1.1 scw */
1341 1.1 scw static uint32_t
1342 1.1 scw npe_getimageid(struct npe_softc *sc)
1343 1.1 scw {
1344 1.1 scw uint32_t msg[2];
1345 1.1 scw
1346 1.1 scw msg[0] = NPE_GETSTATUS << NPE_MAC_MSGID_SHL;
1347 1.1 scw msg[1] = 0;
1348 1.1 scw return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg) == 0 ? msg[1] : 0;
1349 1.1 scw }
1350 1.1 scw
1351 1.1 scw /*
1352 1.1 scw * Enable/disable loopback.
1353 1.1 scw */
1354 1.1 scw static int
1355 1.1 scw npe_setloopback(struct npe_softc *sc, int ena)
1356 1.1 scw {
1357 1.1 scw uint32_t msg[2];
1358 1.1 scw
1359 1.1 scw msg[0] = (NPE_SETLOOPBACK << NPE_MAC_MSGID_SHL) | (ena != 0);
1360 1.1 scw msg[1] = 0;
1361 1.1 scw return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1362 1.1 scw }
1363 1.1 scw #endif
1364 1.1 scw
1365 1.1 scw /*
1366 1.1 scw * MII bus support routines.
1367 1.1 scw *
1368 1.1 scw * NB: ixp425 has one PHY per NPE
1369 1.1 scw */
1370 1.1 scw static uint32_t
1371 1.1 scw npe_mii_mdio_read(struct npe_softc *sc, int reg)
1372 1.1 scw {
1373 1.1 scw #define MII_RD4(sc, reg) bus_space_read_4(sc->sc_iot, sc->sc_miih, reg)
1374 1.1 scw uint32_t v;
1375 1.1 scw
1376 1.1 scw /* NB: registers are known to be sequential */
1377 1.1 scw v = (MII_RD4(sc, reg+0) & 0xff) << 0;
1378 1.1 scw v |= (MII_RD4(sc, reg+4) & 0xff) << 8;
1379 1.1 scw v |= (MII_RD4(sc, reg+8) & 0xff) << 16;
1380 1.1 scw v |= (MII_RD4(sc, reg+12) & 0xff) << 24;
1381 1.1 scw return v;
1382 1.1 scw #undef MII_RD4
1383 1.1 scw }
1384 1.1 scw
1385 1.1 scw static void
1386 1.1 scw npe_mii_mdio_write(struct npe_softc *sc, int reg, uint32_t cmd)
1387 1.1 scw {
1388 1.1 scw #define MII_WR4(sc, reg, v) \
1389 1.1 scw bus_space_write_4(sc->sc_iot, sc->sc_miih, reg, v)
1390 1.1 scw
1391 1.1 scw /* NB: registers are known to be sequential */
1392 1.1 scw MII_WR4(sc, reg+0, cmd & 0xff);
1393 1.1 scw MII_WR4(sc, reg+4, (cmd >> 8) & 0xff);
1394 1.1 scw MII_WR4(sc, reg+8, (cmd >> 16) & 0xff);
1395 1.1 scw MII_WR4(sc, reg+12, (cmd >> 24) & 0xff);
1396 1.1 scw #undef MII_WR4
1397 1.1 scw }
1398 1.1 scw
1399 1.1 scw static int
1400 1.1 scw npe_mii_mdio_wait(struct npe_softc *sc)
1401 1.1 scw {
1402 1.1 scw #define MAXTRIES 100 /* XXX */
1403 1.1 scw uint32_t v;
1404 1.1 scw int i;
1405 1.1 scw
1406 1.1 scw for (i = 0; i < MAXTRIES; i++) {
1407 1.1 scw v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_CMD);
1408 1.1 scw if ((v & NPE_MII_GO) == 0)
1409 1.1 scw return 1;
1410 1.1 scw }
1411 1.1 scw return 0; /* NB: timeout */
1412 1.1 scw #undef MAXTRIES
1413 1.1 scw }
1414 1.1 scw
1415 1.1 scw static int
1416 1.1 scw npe_miibus_readreg(struct device *self, int phy, int reg)
1417 1.1 scw {
1418 1.1 scw struct npe_softc *sc = (void *)self;
1419 1.1 scw uint32_t v;
1420 1.1 scw
1421 1.1 scw if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
1422 1.1 scw return 0xffff;
1423 1.1 scw v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
1424 1.1 scw | NPE_MII_GO;
1425 1.1 scw npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
1426 1.2 scw if (npe_mii_mdio_wait(sc))
1427 1.1 scw v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_STS);
1428 1.1 scw else
1429 1.1 scw v = 0xffff | NPE_MII_READ_FAIL;
1430 1.1 scw return (v & NPE_MII_READ_FAIL) ? 0xffff : (v & 0xffff);
1431 1.1 scw #undef MAXTRIES
1432 1.1 scw }
1433 1.1 scw
1434 1.1 scw static void
1435 1.1 scw npe_miibus_writereg(struct device *self, int phy, int reg, int data)
1436 1.1 scw {
1437 1.1 scw struct npe_softc *sc = (void *)self;
1438 1.1 scw uint32_t v;
1439 1.1 scw
1440 1.1 scw if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
1441 1.1 scw return;
1442 1.1 scw v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
1443 1.1 scw | data | NPE_MII_WRITE
1444 1.1 scw | NPE_MII_GO;
1445 1.1 scw npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
1446 1.1 scw /* XXX complain about timeout */
1447 1.1 scw (void) npe_mii_mdio_wait(sc);
1448 1.1 scw }
1449 1.1 scw
1450 1.1 scw static void
1451 1.1 scw npe_miibus_statchg(struct device *self)
1452 1.1 scw {
1453 1.1 scw struct npe_softc *sc = (void *)self;
1454 1.1 scw uint32_t tx1, rx1;
1455 1.1 scw
1456 1.1 scw /* sync MAC duplex state */
1457 1.1 scw tx1 = RD4(sc, NPE_MAC_TX_CNTRL1);
1458 1.1 scw rx1 = RD4(sc, NPE_MAC_RX_CNTRL1);
1459 1.1 scw if (sc->sc_mii.mii_media_active & IFM_FDX) {
1460 1.1 scw tx1 &= ~NPE_TX_CNTRL1_DUPLEX;
1461 1.1 scw rx1 |= NPE_RX_CNTRL1_PAUSE_EN;
1462 1.1 scw } else {
1463 1.1 scw tx1 |= NPE_TX_CNTRL1_DUPLEX;
1464 1.1 scw rx1 &= ~NPE_RX_CNTRL1_PAUSE_EN;
1465 1.1 scw }
1466 1.1 scw WR4(sc, NPE_MAC_RX_CNTRL1, rx1);
1467 1.1 scw WR4(sc, NPE_MAC_TX_CNTRL1, tx1);
1468 1.1 scw }
1469