ixp425_if_npe.c revision 1.1 1 /* $NetBSD: ixp425_if_npe.c,v 1.1 2006/12/10 10:01:49 scw Exp $ */
2
3 /*-
4 * Copyright (c) 2006 Sam Leffler. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #include <sys/cdefs.h>
28 #if 0
29 __FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/if_npe.c,v 1.1 2006/11/19 23:55:23 sam Exp $");
30 #endif
31 __KERNEL_RCSID(0, "$NetBSD: ixp425_if_npe.c,v 1.1 2006/12/10 10:01:49 scw Exp $");
32
33 /*
34 * Intel XScale NPE Ethernet driver.
35 *
36 * This driver handles the two ports present on the IXP425.
37 * Packet processing is done by the Network Processing Engines
38 * (NPE's) that work together with a MAC and PHY. The MAC
39 * is also mapped to the XScale cpu; the PHY is accessed via
40 * the MAC. NPE-XScale communication happens through h/w
41 * queues managed by the Q Manager block.
42 *
43 * The code here replaces the ethAcc, ethMii, and ethDB classes
44 * in the Intel Access Library (IAL) and the OS-specific driver.
45 *
46 * XXX add vlan support
47 * XXX NPE-C port doesn't work yet
48 */
49
50 #include "bpfilter.h"
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/device.h>
56 #include <sys/callout.h>
57 #include <sys/mbuf.h>
58 #include <sys/malloc.h>
59 #include <sys/socket.h>
60 #include <sys/endian.h>
61 #include <sys/ioctl.h>
62
63 #include <machine/bus.h>
64
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_media.h>
68 #include <net/if_ether.h>
69
70 #if NBPFILTER > 0
71 #include <net/bpf.h>
72 #endif
73
74 #include <arm/xscale/ixp425reg.h>
75 #include <arm/xscale/ixp425var.h>
76 #include <arm/xscale/ixp425_qmgr.h>
77 #include <arm/xscale/ixp425_npevar.h>
78 #include <arm/xscale/ixp425_if_npereg.h>
79
80 #include <dev/mii/miivar.h>
81
82 #include "locators.h"
83
84 struct npebuf {
85 struct npebuf *ix_next; /* chain to next buffer */
86 void *ix_m; /* backpointer to mbuf */
87 bus_dmamap_t ix_map; /* bus dma map for associated data */
88 struct npehwbuf *ix_hw; /* associated h/w block */
89 uint32_t ix_neaddr; /* phys address of ix_hw */
90 };
91
92 struct npedma {
93 const char* name;
94 int nbuf; /* # npebuf's allocated */
95 bus_dmamap_t m_map;
96 struct npehwbuf *hwbuf; /* NPE h/w buffers */
97 bus_dmamap_t buf_map;
98 bus_addr_t buf_phys; /* phys addr of buffers */
99 struct npebuf *buf; /* s/w buffers (1-1 w/ h/w) */
100 };
101
102 struct npe_softc {
103 struct device sc_dev;
104 struct ethercom sc_ethercom;
105 struct mii_data sc_mii;
106 bus_space_tag_t sc_iot;
107 bus_dma_tag_t sc_dt;
108 bus_space_handle_t sc_ioh; /* MAC register window */
109 bus_space_handle_t sc_miih; /* MII register window */
110 struct ixpnpe_softc *sc_npe; /* NPE support */
111 int sc_unit;
112 int sc_phy;
113 struct callout sc_tick_ch; /* Tick callout */
114 struct npedma txdma;
115 struct npebuf *tx_free; /* list of free tx buffers */
116 struct npedma rxdma;
117 int rx_qid; /* rx qid */
118 int rx_freeqid; /* rx free buffers qid */
119 int tx_qid; /* tx qid */
120 int tx_doneqid; /* tx completed qid */
121 struct npestats *sc_stats;
122 bus_dmamap_t sc_stats_map;
123 bus_addr_t sc_stats_phys; /* phys addr of sc_stats */
124 };
125
126 /*
127 * Per-unit static configuration for IXP425. The tx and
128 * rx free Q id's are fixed by the NPE microcode. The
129 * rx Q id's are programmed to be separate to simplify
130 * multi-port processing. It may be better to handle
131 * all traffic through one Q (as done by the Intel drivers).
132 *
133 * Note that the PHY's are accessible only from MAC A
134 * on the IXP425. This and other platform-specific
135 * assumptions probably need to be handled through hints.
136 */
137 static const struct {
138 const char *desc; /* device description */
139 int npeid; /* NPE assignment */
140 uint32_t imageid; /* NPE firmware image id */
141 uint32_t regbase;
142 int regsize;
143 uint32_t miibase;
144 int miisize;
145 uint8_t rx_qid;
146 uint8_t rx_freeqid;
147 uint8_t tx_qid;
148 uint8_t tx_doneqid;
149 } npeconfig[NPE_PORTS_MAX] = {
150 { .desc = "IXP NPE-B",
151 .npeid = NPE_B,
152 .imageid = IXP425_NPE_B_IMAGEID,
153 .regbase = IXP425_MAC_A_HWBASE,
154 .regsize = IXP425_MAC_A_SIZE,
155 .miibase = IXP425_MAC_A_HWBASE,
156 .miisize = IXP425_MAC_A_SIZE,
157 .rx_qid = 4,
158 .rx_freeqid = 27,
159 .tx_qid = 24,
160 .tx_doneqid = 31
161 },
162 { .desc = "IXP NPE-C",
163 .npeid = NPE_C,
164 .imageid = IXP425_NPE_C_IMAGEID,
165 .regbase = IXP425_MAC_B_HWBASE,
166 .regsize = IXP425_MAC_B_SIZE,
167 .miibase = IXP425_MAC_A_HWBASE,
168 .miisize = IXP425_MAC_A_SIZE,
169 .rx_qid = 12,
170 .rx_freeqid = 28,
171 .tx_qid = 25,
172 .tx_doneqid = 31
173 },
174 };
175 static struct npe_softc *npes[NPE_MAX]; /* NB: indexed by npeid */
176
177 static __inline uint32_t
178 RD4(struct npe_softc *sc, bus_size_t off)
179 {
180 return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
181 }
182
183 static __inline void
184 WR4(struct npe_softc *sc, bus_size_t off, uint32_t val)
185 {
186 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
187 }
188
189 static int npe_activate(struct npe_softc *);
190 #if 0
191 static void npe_deactivate(struct npe_softc *);
192 #endif
193 static int npe_ifmedia_change(struct ifnet *ifp);
194 static void npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr);
195 static void npe_setmac(struct npe_softc *sc, u_char *eaddr);
196 static void npe_getmac(struct npe_softc *sc, u_char *eaddr);
197 static void npe_txdone(int qid, void *arg);
198 static int npe_rxbuf_init(struct npe_softc *, struct npebuf *,
199 struct mbuf *);
200 static void npe_rxdone(int qid, void *arg);
201 static int npeinit(struct ifnet *);
202 static void npestart(struct ifnet *);
203 static void npestop(struct ifnet *, int);
204 static void npewatchdog(struct ifnet *);
205 static int npeioctl(struct ifnet * ifp, u_long, caddr_t);
206
207 static int npe_setrxqosentry(struct npe_softc *, int classix,
208 int trafclass, int qid);
209 static int npe_updatestats(struct npe_softc *);
210 #if 0
211 static int npe_getstats(struct npe_softc *);
212 static uint32_t npe_getimageid(struct npe_softc *);
213 static int npe_setloopback(struct npe_softc *, int ena);
214 #endif
215
216 static int npe_miibus_readreg(struct device *, int, int);
217 static void npe_miibus_writereg(struct device *, int, int, int);
218 static void npe_miibus_statchg(struct device *);
219
220 static int npe_debug;
221 #define DPRINTF(sc, fmt, ...) do { \
222 if (npe_debug) printf(fmt, __VA_ARGS__); \
223 } while (0)
224 #define DPRINTFn(n, sc, fmt, ...) do { \
225 if (npe_debug >= n) printf(fmt, __VA_ARGS__); \
226 } while (0)
227
228 #define NPE_TXBUF 128
229 #define NPE_RXBUF 64
230
231 #ifndef ETHER_ALIGN
232 #define ETHER_ALIGN 2 /* XXX: Ditch this */
233 #endif
234
235 /* NB: all tx done processing goes through one queue */
236 static int tx_doneqid = -1;
237
238 static int npe_match(struct device *, struct cfdata *, void *);
239 static void npe_attach(struct device *, struct device *, void *);
240
241 CFATTACH_DECL(npe, sizeof(struct npe_softc),
242 npe_match, npe_attach, NULL, NULL);
243
244 static int
245 npe_match(struct device *parent, struct cfdata *cf, void *arg)
246 {
247 struct ixpnpe_attach_args *na = arg;
248
249 return (na->na_unit == NPE_B || na->na_unit == NPE_C);
250 }
251
252 static void
253 npe_attach(struct device *parent, struct device *self, void *arg)
254 {
255 struct npe_softc *sc = (void *)self;
256 struct ixpnpe_attach_args *na = arg;
257 struct ifnet *ifp;
258 u_char eaddr[6];
259
260 aprint_naive("\n");
261 aprint_normal(": Ethernet co-processor\n");
262
263 sc->sc_iot = na->na_iot;
264 sc->sc_dt = na->na_dt;
265 sc->sc_npe = na->na_npe;
266 sc->sc_unit = (na->na_unit == NPE_B) ? 0 : 1;
267 sc->sc_phy = na->na_phy;
268
269 memset(&sc->sc_ethercom, 0, sizeof(sc->sc_ethercom));
270 memset(&sc->sc_mii, 0, sizeof(sc->sc_mii));
271
272 callout_init(&sc->sc_tick_ch);
273
274 if (npe_activate(sc)) {
275 aprint_error("%s: Failed to activate NPE (missing "
276 "microcode?)\n", sc->sc_dev.dv_xname);
277 return;
278 }
279
280 /*
281 * XXXSCW: This is bogus - the NPE may not have been configured for
282 * XXXSCW: Ethernet yet. We must check for a property set by
283 * XXXSCW: board-specific code.
284 */
285 npe_getmac(sc, eaddr);
286
287 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
288 ether_sprintf(eaddr));
289
290 ifp = &sc->sc_ethercom.ec_if;
291 ifmedia_init(&sc->sc_mii.mii_media, 0, npe_ifmedia_change,
292 npe_ifmedia_status);
293
294 if (sc->sc_phy != IXPNPECF_PHY_DEFAULT) {
295 sc->sc_mii.mii_ifp = ifp;
296 sc->sc_mii.mii_readreg = npe_miibus_readreg;
297 sc->sc_mii.mii_writereg = npe_miibus_writereg;
298 sc->sc_mii.mii_statchg = npe_miibus_statchg;
299
300 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
301 (sc->sc_phy > IXPNPECF_PHY_DEFAULT) ?
302 sc->sc_phy : MII_PHY_ANY,
303 MII_OFFSET_ANY, MIIF_NOISOLATE);
304 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
305 } else {
306 /* Assume direct connection to a 100mbit switch */
307 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_100_TX, 0,0);
308 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_100_TX);
309 }
310
311 ifp->if_softc = sc;
312 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
313 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
314 ifp->if_start = npestart;
315 ifp->if_ioctl = npeioctl;
316 ifp->if_watchdog = npewatchdog;
317 ifp->if_init = npeinit;
318 ifp->if_stop = npestop;
319 IFQ_SET_READY(&ifp->if_snd);
320
321 if_attach(ifp);
322 ether_ifattach(ifp, eaddr);
323 }
324
325 /*
326 * Compute and install the multicast filter.
327 */
328 static void
329 npe_setmcast(struct npe_softc *sc)
330 {
331 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
332 uint8_t mask[ETHER_ADDR_LEN], addr[ETHER_ADDR_LEN];
333 int i;
334
335 if (ifp->if_flags & IFF_PROMISC) {
336 memset(mask, 0, ETHER_ADDR_LEN);
337 memset(addr, 0, ETHER_ADDR_LEN);
338 } else if (ifp->if_flags & IFF_ALLMULTI) {
339 static const uint8_t allmulti[ETHER_ADDR_LEN] =
340 { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
341 all_multi:
342 memcpy(mask, allmulti, ETHER_ADDR_LEN);
343 memcpy(addr, allmulti, ETHER_ADDR_LEN);
344 } else {
345 uint8_t clr[ETHER_ADDR_LEN], set[ETHER_ADDR_LEN];
346 struct ether_multistep step;
347 struct ether_multi *enm;
348
349 memset(clr, 0, ETHER_ADDR_LEN);
350 memset(set, 0xff, ETHER_ADDR_LEN);
351
352 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
353 while (enm != NULL) {
354 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
355 ifp->if_flags |= IFF_ALLMULTI;
356 goto all_multi;
357 }
358
359 for (i = 0; i < ETHER_ADDR_LEN; i++) {
360 clr[i] |= enm->enm_addrlo[i];
361 set[i] &= enm->enm_addrlo[i];
362 }
363
364 ETHER_NEXT_MULTI(step, enm);
365 }
366
367 for (i = 0; i < ETHER_ADDR_LEN; i++) {
368 mask[i] = set[i] | ~clr[i];
369 addr[i] = set[i];
370 }
371 }
372
373 /*
374 * Write the mask and address registers.
375 */
376 for (i = 0; i < ETHER_ADDR_LEN; i++) {
377 WR4(sc, NPE_MAC_ADDR_MASK(i), mask[i]);
378 WR4(sc, NPE_MAC_ADDR(i), addr[i]);
379 }
380 }
381
382 static int
383 npe_dma_setup(struct npe_softc *sc, struct npedma *dma,
384 const char *name, int nbuf, int maxseg)
385 {
386 bus_dma_segment_t seg;
387 int rseg, error, i;
388 caddr_t hwbuf;
389 size_t size;
390
391 memset(dma, 0, sizeof(dma));
392
393 dma->name = name;
394 dma->nbuf = nbuf;
395
396 size = nbuf * sizeof(struct npehwbuf);
397
398 /* XXX COHERENT for now */
399 error = bus_dmamem_alloc(sc->sc_dt, size, sizeof(uint32_t), 0, &seg,
400 1, &rseg, BUS_DMA_NOWAIT);
401 if (error) {
402 printf("%s: unable to allocate memory for %s h/w buffers, "
403 "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
404 }
405
406 error = bus_dmamem_map(sc->sc_dt, &seg, 1, size, &hwbuf,
407 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_NOCACHE);
408 if (error) {
409 printf("%s: unable to map memory for %s h/w buffers, "
410 "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
411 free_dmamem:
412 bus_dmamem_free(sc->sc_dt, &seg, rseg);
413 return error;
414 }
415 dma->hwbuf = (void *)hwbuf;
416
417 error = bus_dmamap_create(sc->sc_dt, size, 1, size, 0,
418 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &dma->buf_map);
419 if (error) {
420 printf("%s: unable to create map for %s h/w buffers, "
421 "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
422 unmap_dmamem:
423 dma->hwbuf = NULL;
424 bus_dmamem_unmap(sc->sc_dt, hwbuf, size);
425 goto free_dmamem;
426 }
427
428 error = bus_dmamap_load(sc->sc_dt, dma->buf_map, hwbuf, size, NULL,
429 BUS_DMA_NOWAIT);
430 if (error) {
431 printf("%s: unable to load map for %s h/w buffers, "
432 "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
433 destroy_dmamap:
434 bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
435 goto unmap_dmamem;
436 }
437
438 /* XXX M_TEMP */
439 dma->buf = malloc(nbuf * sizeof(struct npebuf), M_TEMP, M_NOWAIT | M_ZERO);
440 if (dma->buf == NULL) {
441 printf("%s: unable to allocate memory for %s s/w buffers\n",
442 sc->sc_dev.dv_xname, dma->name);
443 bus_dmamap_unload(sc->sc_dt, dma->buf_map);
444 error = ENOMEM;
445 goto destroy_dmamap;
446 }
447
448 dma->buf_phys = dma->buf_map->dm_segs[0].ds_addr;
449 for (i = 0; i < dma->nbuf; i++) {
450 struct npebuf *npe = &dma->buf[i];
451 struct npehwbuf *hw = &dma->hwbuf[i];
452
453 /* calculate offset to shared area */
454 npe->ix_neaddr = dma->buf_phys +
455 ((uintptr_t)hw - (uintptr_t)dma->hwbuf);
456 KASSERT((npe->ix_neaddr & 0x1f) == 0);
457 error = bus_dmamap_create(sc->sc_dt, MCLBYTES, 1,
458 MCLBYTES, 0, 0, &npe->ix_map);
459 if (error != 0) {
460 printf("%s: unable to create dmamap for %s buffer %u, "
461 "error %u\n", sc->sc_dev.dv_xname, dma->name, i,
462 error);
463 /* XXXSCW: Free up maps... */
464 return error;
465 }
466 npe->ix_hw = hw;
467 }
468 bus_dmamap_sync(sc->sc_dt, dma->buf_map, 0, dma->buf_map->dm_mapsize,
469 BUS_DMASYNC_PREWRITE);
470 return 0;
471 }
472
473 #if 0
474 static void
475 npe_dma_destroy(struct npe_softc *sc, struct npedma *dma)
476 {
477 int i;
478
479 /* XXXSCW: Clean this up */
480
481 if (dma->hwbuf != NULL) {
482 for (i = 0; i < dma->nbuf; i++) {
483 struct npebuf *npe = &dma->buf[i];
484 bus_dmamap_destroy(sc->sc_dt, npe->ix_map);
485 }
486 bus_dmamap_unload(sc->sc_dt, dma->buf_map);
487 bus_dmamem_free(sc->sc_dt, (caddr_t)dma->hwbuf, dma->buf_map);
488 bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
489 }
490 if (dma->buf != NULL)
491 free(dma->buf, M_TEMP);
492 memset(dma, 0, sizeof(*dma));
493 }
494 #endif
495
496 static int
497 npe_activate(struct npe_softc *sc)
498 {
499 bus_dma_segment_t seg;
500 int unit = sc->sc_unit;
501 int error, i, rseg;
502 caddr_t statbuf;
503
504 /* load NPE firmware and start it running */
505 error = ixpnpe_init(sc->sc_npe, "npe_fw", npeconfig[unit].imageid);
506 if (error != 0)
507 return error;
508
509 if (bus_space_map(sc->sc_iot, npeconfig[unit].regbase,
510 npeconfig[unit].regsize, 0, &sc->sc_ioh)) {
511 printf("%s: Cannot map registers 0x%x:0x%x\n",
512 sc->sc_dev.dv_xname, npeconfig[unit].regbase,
513 npeconfig[unit].regsize);
514 return ENOMEM;
515 }
516
517 if (npeconfig[unit].miibase != npeconfig[unit].regbase) {
518 /*
519 * The PHY's are only accessible from one MAC (it appears)
520 * so for other MAC's setup an additional mapping for
521 * frobbing the PHY registers.
522 */
523 if (bus_space_map(sc->sc_iot, npeconfig[unit].miibase,
524 npeconfig[unit].miisize, 0, &sc->sc_miih)) {
525 printf("%s: Cannot map MII registers 0x%x:0x%x\n",
526 sc->sc_dev.dv_xname, npeconfig[unit].miibase,
527 npeconfig[unit].miisize);
528 return ENOMEM;
529 }
530 } else
531 sc->sc_miih = sc->sc_ioh;
532 error = npe_dma_setup(sc, &sc->txdma, "tx", NPE_TXBUF, NPE_MAXSEG);
533 if (error != 0)
534 return error;
535 error = npe_dma_setup(sc, &sc->rxdma, "rx", NPE_RXBUF, 1);
536 if (error != 0)
537 return error;
538
539 /* setup statistics block */
540 error = bus_dmamem_alloc(sc->sc_dt, sizeof(struct npestats),
541 sizeof(uint32_t), 0, &seg, 1, &rseg, BUS_DMA_NOWAIT);
542 if (error) {
543 printf("%s: unable to allocate memory for stats block, "
544 "error %u\n", sc->sc_dev.dv_xname, error);
545 return error;
546 }
547
548 error = bus_dmamem_map(sc->sc_dt, &seg, 1, sizeof(struct npestats),
549 &statbuf, BUS_DMA_NOWAIT);
550 if (error) {
551 printf("%s: unable to map memory for stats block, "
552 "error %u\n", sc->sc_dev.dv_xname, error);
553 return error;
554 }
555 sc->sc_stats = (void *)statbuf;
556
557 error = bus_dmamap_create(sc->sc_dt, sizeof(struct npestats), 1,
558 sizeof(struct npestats), 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
559 &sc->sc_stats_map);
560 if (error) {
561 printf("%s: unable to create map for stats block, "
562 "error %u\n", sc->sc_dev.dv_xname, error);
563 return error;
564 }
565
566 if (bus_dmamap_load(sc->sc_dt, sc->sc_stats_map, sc->sc_stats,
567 sizeof(struct npestats), NULL, BUS_DMA_NOWAIT) != 0) {
568 printf("%s: unable to load memory for stats block, error %u\n",
569 sc->sc_dev.dv_xname, error);
570 return error;
571 }
572 sc->sc_stats_phys = sc->sc_stats_map->dm_segs[0].ds_addr;
573
574 /* XXX disable half-bridge LEARNING+FILTERING feature */
575
576 /*
577 * Setup h/w rx/tx queues. There are four q's:
578 * rx inbound q of rx'd frames
579 * rx_free pool of ixpbuf's for receiving frames
580 * tx outbound q of frames to send
581 * tx_done q of tx frames that have been processed
582 *
583 * The NPE handles the actual tx/rx process and the q manager
584 * handles the queues. The driver just writes entries to the
585 * q manager mailbox's and gets callbacks when there are rx'd
586 * frames to process or tx'd frames to reap. These callbacks
587 * are controlled by the q configurations; e.g. we get a
588 * callback when tx_done has 2 or more frames to process and
589 * when the rx q has at least one frame. These setings can
590 * changed at the time the q is configured.
591 */
592 sc->rx_qid = npeconfig[unit].rx_qid;
593 ixpqmgr_qconfig(sc->rx_qid, NPE_RXBUF, 0, 1,
594 IX_QMGR_Q_SOURCE_ID_NOT_E, npe_rxdone, sc);
595 sc->rx_freeqid = npeconfig[unit].rx_freeqid;
596 ixpqmgr_qconfig(sc->rx_freeqid, NPE_RXBUF, 0, NPE_RXBUF/2, 0, NULL, sc);
597 /* tell the NPE to direct all traffic to rx_qid */
598 #if 0
599 for (i = 0; i < 8; i++)
600 #else
601 printf("%s: remember to fix rx q setup\n", sc->sc_dev.dv_xname);
602 for (i = 0; i < 4; i++)
603 #endif
604 npe_setrxqosentry(sc, i, 0, sc->rx_qid);
605
606 sc->tx_qid = npeconfig[unit].tx_qid;
607 sc->tx_doneqid = npeconfig[unit].tx_doneqid;
608 ixpqmgr_qconfig(sc->tx_qid, NPE_TXBUF, 0, NPE_TXBUF, 0, NULL, sc);
609 if (tx_doneqid == -1) {
610 ixpqmgr_qconfig(sc->tx_doneqid, NPE_TXBUF, 0, 2,
611 IX_QMGR_Q_SOURCE_ID_NOT_E, npe_txdone, sc);
612 tx_doneqid = sc->tx_doneqid;
613 }
614
615 KASSERT(npes[npeconfig[unit].npeid] == NULL);
616 npes[npeconfig[unit].npeid] = sc;
617
618 return 0;
619 }
620
621 #if 0
622 static void
623 npe_deactivate(struct npe_softc *sc);
624 {
625 int unit = sc->sc_unit;
626
627 npes[npeconfig[unit].npeid] = NULL;
628
629 /* XXX disable q's */
630 if (sc->sc_npe != NULL)
631 ixpnpe_stop(sc->sc_npe);
632 if (sc->sc_stats != NULL) {
633 bus_dmamap_unload(sc->sc_stats_tag, sc->sc_stats_map);
634 bus_dmamem_free(sc->sc_stats_tag, sc->sc_stats,
635 sc->sc_stats_map);
636 bus_dmamap_destroy(sc->sc_stats_tag, sc->sc_stats_map);
637 }
638 if (sc->sc_stats_tag != NULL)
639 bus_dma_tag_destroy(sc->sc_stats_tag);
640 npe_dma_destroy(sc, &sc->txdma);
641 npe_dma_destroy(sc, &sc->rxdma);
642 bus_generic_detach(sc->sc_dev);
643 if (sc->sc_mii)
644 device_delete_child(sc->sc_dev, sc->sc_mii);
645 #if 0
646 /* XXX sc_ioh and sc_miih */
647 if (sc->mem_res)
648 bus_release_resource(dev, SYS_RES_IOPORT,
649 rman_get_rid(sc->mem_res), sc->mem_res);
650 sc->mem_res = 0;
651 #endif
652 }
653 #endif
654
655 /*
656 * Change media according to request.
657 */
658 static int
659 npe_ifmedia_change(struct ifnet *ifp)
660 {
661 struct npe_softc *sc = ifp->if_softc;
662
663 if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && ifp->if_flags & IFF_UP)
664 mii_mediachg(&sc->sc_mii);
665 return (0);
666 }
667
668 /*
669 * Notify the world which media we're using.
670 */
671 static void
672 npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
673 {
674 struct npe_softc *sc = ifp->if_softc;
675
676 if (sc->sc_phy > IXPNPECF_PHY_DEFAULT)
677 mii_pollstat(&sc->sc_mii);
678
679 ifmr->ifm_active = sc->sc_mii.mii_media_active;
680 ifmr->ifm_status = sc->sc_mii.mii_media_status;
681 }
682
683 static void
684 npe_addstats(struct npe_softc *sc)
685 {
686 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
687 struct npestats *ns = sc->sc_stats;
688
689 ifp->if_oerrors +=
690 be32toh(ns->dot3StatsInternalMacTransmitErrors)
691 + be32toh(ns->dot3StatsCarrierSenseErrors)
692 + be32toh(ns->TxVLANIdFilterDiscards)
693 ;
694 ifp->if_ierrors += be32toh(ns->dot3StatsFCSErrors)
695 + be32toh(ns->dot3StatsInternalMacReceiveErrors)
696 + be32toh(ns->RxOverrunDiscards)
697 + be32toh(ns->RxUnderflowEntryDiscards)
698 ;
699 ifp->if_collisions +=
700 be32toh(ns->dot3StatsSingleCollisionFrames)
701 + be32toh(ns->dot3StatsMultipleCollisionFrames)
702 ;
703 }
704
705 static void
706 npe_tick(void *xsc)
707 {
708 #define ACK (NPE_RESETSTATS << NPE_MAC_MSGID_SHL)
709 struct npe_softc *sc = xsc;
710 uint32_t msg[2];
711
712 /*
713 * NB: to avoid sleeping with the softc lock held we
714 * split the NPE msg processing into two parts. The
715 * request for statistics is sent w/o waiting for a
716 * reply and then on the next tick we retrieve the
717 * results. This works because npe_tick is the only
718 * code that talks via the mailbox's (except at setup).
719 * This likely can be handled better.
720 */
721 if (ixpnpe_recvmsg(sc->sc_npe, msg) == 0 && msg[0] == ACK) {
722 bus_dmamap_sync(sc->sc_dt, sc->sc_stats_map, 0,
723 sizeof(struct npestats), BUS_DMASYNC_POSTREAD);
724 npe_addstats(sc);
725 }
726 npe_updatestats(sc);
727 mii_tick(&sc->sc_mii);
728
729 /* schedule next poll */
730 callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
731 #undef ACK
732 }
733
734 static void
735 npe_setmac(struct npe_softc *sc, u_char *eaddr)
736 {
737 WR4(sc, NPE_MAC_UNI_ADDR_1, eaddr[0]);
738 WR4(sc, NPE_MAC_UNI_ADDR_2, eaddr[1]);
739 WR4(sc, NPE_MAC_UNI_ADDR_3, eaddr[2]);
740 WR4(sc, NPE_MAC_UNI_ADDR_4, eaddr[3]);
741 WR4(sc, NPE_MAC_UNI_ADDR_5, eaddr[4]);
742 WR4(sc, NPE_MAC_UNI_ADDR_6, eaddr[5]);
743
744 }
745
746 static void
747 npe_getmac(struct npe_softc *sc, u_char *eaddr)
748 {
749 /* NB: the unicast address appears to be loaded from EEPROM on reset */
750 eaddr[0] = RD4(sc, NPE_MAC_UNI_ADDR_1) & 0xff;
751 eaddr[1] = RD4(sc, NPE_MAC_UNI_ADDR_2) & 0xff;
752 eaddr[2] = RD4(sc, NPE_MAC_UNI_ADDR_3) & 0xff;
753 eaddr[3] = RD4(sc, NPE_MAC_UNI_ADDR_4) & 0xff;
754 eaddr[4] = RD4(sc, NPE_MAC_UNI_ADDR_5) & 0xff;
755 eaddr[5] = RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff;
756 }
757
758 struct txdone {
759 struct npebuf *head;
760 struct npebuf **tail;
761 int count;
762 };
763
764 static __inline void
765 npe_txdone_finish(struct npe_softc *sc, const struct txdone *td)
766 {
767 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
768
769 *td->tail = sc->tx_free;
770 sc->tx_free = td->head;
771 /*
772 * We're no longer busy, so clear the busy flag and call the
773 * start routine to xmit more packets.
774 */
775 ifp->if_opackets += td->count;
776 ifp->if_flags &= ~IFF_OACTIVE;
777 ifp->if_timer = 0;
778 npestart(ifp);
779 }
780
781 /*
782 * Q manager callback on tx done queue. Reap mbufs
783 * and return tx buffers to the free list. Finally
784 * restart output. Note the microcode has only one
785 * txdone q wired into it so we must use the NPE ID
786 * returned with each npehwbuf to decide where to
787 * send buffers.
788 */
789 static void
790 npe_txdone(int qid, void *arg)
791 {
792 #define P2V(a, dma) \
793 &(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
794 struct npe_softc *sc;
795 struct npebuf *npe;
796 struct txdone *td, q[NPE_MAX];
797 uint32_t entry;
798
799 /* XXX no NPE-A support */
800 q[NPE_B].tail = &q[NPE_B].head; q[NPE_B].count = 0;
801 q[NPE_C].tail = &q[NPE_C].head; q[NPE_C].count = 0;
802 /* XXX max # at a time? */
803 while (ixpqmgr_qread(qid, &entry) == 0) {
804 sc = npes[NPE_QM_Q_NPE(entry)];
805 DPRINTF(sc, "%s: entry 0x%x NPE %u port %u\n",
806 __func__, entry, NPE_QM_Q_NPE(entry), NPE_QM_Q_PORT(entry));
807
808 npe = P2V(NPE_QM_Q_ADDR(entry), &sc->txdma);
809 m_freem(npe->ix_m);
810 npe->ix_m = NULL;
811
812 td = &q[NPE_QM_Q_NPE(entry)];
813 *td->tail = npe;
814 td->tail = &npe->ix_next;
815 td->count++;
816 }
817
818 if (q[NPE_B].count)
819 npe_txdone_finish(npes[NPE_B], &q[NPE_B]);
820 if (q[NPE_C].count)
821 npe_txdone_finish(npes[NPE_C], &q[NPE_C]);
822 #undef P2V
823 }
824
825 static __inline struct mbuf *
826 npe_getcl(void)
827 {
828 struct mbuf *m;
829
830 MGETHDR(m, M_DONTWAIT, MT_DATA);
831 if (m != NULL) {
832 MCLGET(m, M_DONTWAIT);
833 if ((m->m_flags & M_EXT) == 0) {
834 m_freem(m);
835 m = NULL;
836 }
837 }
838 return (m);
839 }
840
841 static int
842 npe_rxbuf_init(struct npe_softc *sc, struct npebuf *npe, struct mbuf *m)
843 {
844 struct npehwbuf *hw;
845 int error;
846
847 if (m == NULL) {
848 m = npe_getcl();
849 if (m == NULL)
850 return ENOBUFS;
851 }
852 KASSERT(m->m_ext.ext_size >= (1536 + ETHER_ALIGN));
853 m->m_pkthdr.len = m->m_len = 1536;
854 /* backload payload and align ip hdr */
855 m->m_data = m->m_ext.ext_buf + (m->m_ext.ext_size - (1536+ETHER_ALIGN));
856 error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
857 BUS_DMA_READ|BUS_DMA_NOWAIT);
858 if (error != 0) {
859 m_freem(m);
860 return error;
861 }
862 hw = npe->ix_hw;
863 hw->ix_ne[0].data = htobe32(npe->ix_map->dm_segs[0].ds_addr);
864 /* NB: NPE requires length be a multiple of 64 */
865 /* NB: buffer length is shifted in word */
866 hw->ix_ne[0].len = htobe32(npe->ix_map->dm_segs[0].ds_len << 16);
867 hw->ix_ne[0].next = 0;
868 npe->ix_m = m;
869 /* Flush the memory in the mbuf */
870 bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0, npe->ix_map->dm_mapsize,
871 BUS_DMASYNC_PREREAD);
872 return 0;
873 }
874
875 /*
876 * RX q processing for a specific NPE. Claim entries
877 * from the hardware queue and pass the frames up the
878 * stack. Pass the rx buffers to the free list.
879 */
880 static void
881 npe_rxdone(int qid, void *arg)
882 {
883 #define P2V(a, dma) \
884 &(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
885 struct npe_softc *sc = arg;
886 struct npedma *dma = &sc->rxdma;
887 uint32_t entry;
888
889 while (ixpqmgr_qread(qid, &entry) == 0) {
890 struct npebuf *npe = P2V(NPE_QM_Q_ADDR(entry), dma);
891 struct mbuf *m;
892
893 DPRINTF(sc, "%s: entry 0x%x neaddr 0x%x ne_len 0x%x\n",
894 __func__, entry, npe->ix_neaddr, npe->ix_hw->ix_ne[0].len);
895 /*
896 * Allocate a new mbuf to replenish the rx buffer.
897 * If doing so fails we drop the rx'd frame so we
898 * can reuse the previous mbuf. When we're able to
899 * allocate a new mbuf dispatch the mbuf w/ rx'd
900 * data up the stack and replace it with the newly
901 * allocated one.
902 */
903 m = npe_getcl();
904 if (m != NULL) {
905 struct mbuf *mrx = npe->ix_m;
906 struct npehwbuf *hw = npe->ix_hw;
907 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
908
909 /* Flush mbuf memory for rx'd data */
910 bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
911 npe->ix_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
912
913 /* XXX flush hw buffer; works now 'cuz coherent */
914 /* set m_len etc. per rx frame size */
915 mrx->m_len = be32toh(hw->ix_ne[0].len) & 0xffff;
916 mrx->m_pkthdr.len = mrx->m_len;
917 mrx->m_pkthdr.rcvif = ifp;
918 mrx->m_flags |= M_HASFCS;
919
920 ifp->if_ipackets++;
921 ifp->if_input(ifp, mrx);
922 } else {
923 /* discard frame and re-use mbuf */
924 m = npe->ix_m;
925 }
926 if (npe_rxbuf_init(sc, npe, m) == 0) {
927 /* return npe buf to rx free list */
928 ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
929 } else {
930 /* XXX should not happen */
931 }
932 }
933 #undef P2V
934 }
935
936 static void
937 npe_startxmit(struct npe_softc *sc)
938 {
939 struct npedma *dma = &sc->txdma;
940 int i;
941
942 sc->tx_free = NULL;
943 for (i = 0; i < dma->nbuf; i++) {
944 struct npebuf *npe = &dma->buf[i];
945 if (npe->ix_m != NULL) {
946 /* NB: should not happen */
947 printf("%s: %s: free mbuf at entry %u\n",
948 sc->sc_dev.dv_xname, __func__, i);
949 m_freem(npe->ix_m);
950 }
951 npe->ix_m = NULL;
952 npe->ix_next = sc->tx_free;
953 sc->tx_free = npe;
954 }
955 }
956
957 static void
958 npe_startrecv(struct npe_softc *sc)
959 {
960 struct npedma *dma = &sc->rxdma;
961 struct npebuf *npe;
962 int i;
963
964 for (i = 0; i < dma->nbuf; i++) {
965 npe = &dma->buf[i];
966 npe_rxbuf_init(sc, npe, npe->ix_m);
967 /* set npe buf on rx free list */
968 ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
969 }
970 }
971
972 /*
973 * Reset and initialize the chip
974 */
975 static void
976 npeinit_locked(void *xsc)
977 {
978 struct npe_softc *sc = xsc;
979 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
980
981 if (ifp->if_flags & IFF_RUNNING) return;/*XXX*/
982
983 /*
984 * Reset MAC core.
985 */
986 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
987 DELAY(NPE_MAC_RESET_DELAY);
988 /* configure MAC to generate MDC clock */
989 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
990
991 /* disable transmitter and reciver in the MAC */
992 WR4(sc, NPE_MAC_RX_CNTRL1,
993 RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
994 WR4(sc, NPE_MAC_TX_CNTRL1,
995 RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
996
997 /*
998 * Set the MAC core registers.
999 */
1000 WR4(sc, NPE_MAC_INT_CLK_THRESH, 0x1); /* clock ratio: for ipx4xx */
1001 WR4(sc, NPE_MAC_TX_CNTRL2, 0xf); /* max retries */
1002 WR4(sc, NPE_MAC_RANDOM_SEED, 0x8); /* LFSR back-off seed */
1003 /* thresholds determined by NPE firmware FS */
1004 WR4(sc, NPE_MAC_THRESH_P_EMPTY, 0x12);
1005 WR4(sc, NPE_MAC_THRESH_P_FULL, 0x30);
1006 WR4(sc, NPE_MAC_BUF_SIZE_TX, 0x8); /* tx fifo threshold (bytes) */
1007 WR4(sc, NPE_MAC_TX_DEFER, 0x15); /* for single deferral */
1008 WR4(sc, NPE_MAC_RX_DEFER, 0x16); /* deferral on inter-frame gap*/
1009 WR4(sc, NPE_MAC_TX_TWO_DEFER_1, 0x8); /* for 2-part deferral */
1010 WR4(sc, NPE_MAC_TX_TWO_DEFER_2, 0x7); /* for 2-part deferral */
1011 WR4(sc, NPE_MAC_SLOT_TIME, 0x80); /* assumes MII mode */
1012
1013 WR4(sc, NPE_MAC_TX_CNTRL1,
1014 NPE_TX_CNTRL1_RETRY /* retry failed xmits */
1015 | NPE_TX_CNTRL1_FCS_EN /* append FCS */
1016 | NPE_TX_CNTRL1_2DEFER /* 2-part deferal */
1017 | NPE_TX_CNTRL1_PAD_EN); /* pad runt frames */
1018 /* XXX pad strip? */
1019 WR4(sc, NPE_MAC_RX_CNTRL1,
1020 NPE_RX_CNTRL1_CRC_EN /* include CRC/FCS */
1021 | NPE_RX_CNTRL1_PAUSE_EN); /* ena pause frame handling */
1022 WR4(sc, NPE_MAC_RX_CNTRL2, 0);
1023
1024 npe_setmac(sc, LLADDR(ifp->if_sadl));
1025 npe_setmcast(sc);
1026
1027 npe_startxmit(sc);
1028 npe_startrecv(sc);
1029
1030 ifp->if_flags |= IFF_RUNNING;
1031 ifp->if_flags &= ~IFF_OACTIVE;
1032 ifp->if_timer = 0; /* just in case */
1033
1034 /* enable transmitter and reciver in the MAC */
1035 WR4(sc, NPE_MAC_RX_CNTRL1,
1036 RD4(sc, NPE_MAC_RX_CNTRL1) | NPE_RX_CNTRL1_RX_EN);
1037 WR4(sc, NPE_MAC_TX_CNTRL1,
1038 RD4(sc, NPE_MAC_TX_CNTRL1) | NPE_TX_CNTRL1_TX_EN);
1039
1040 callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
1041 }
1042
1043 static int
1044 npeinit(struct ifnet *ifp)
1045 {
1046 struct npe_softc *sc = ifp->if_softc;
1047 int s;
1048
1049 s = splnet();
1050 npeinit_locked(sc);
1051 splx(s);
1052
1053 return (0);
1054 }
1055
1056 /*
1057 * Defragment an mbuf chain, returning at most maxfrags separate
1058 * mbufs+clusters. If this is not possible NULL is returned and
1059 * the original mbuf chain is left in it's present (potentially
1060 * modified) state. We use two techniques: collapsing consecutive
1061 * mbufs and replacing consecutive mbufs by a cluster.
1062 */
1063 static __inline struct mbuf *
1064 npe_defrag(struct mbuf *m0)
1065 {
1066 struct mbuf *m;
1067
1068 MGETHDR(m, M_DONTWAIT, MT_DATA);
1069 if (m == NULL)
1070 return (NULL);
1071 M_COPY_PKTHDR(m, m0);
1072
1073 if ((m->m_len = m0->m_pkthdr.len) > MHLEN) {
1074 MCLGET(m, M_DONTWAIT);
1075 if ((m->m_flags & M_EXT) == 0) {
1076 m_freem(m);
1077 return (NULL);
1078 }
1079 }
1080
1081 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1082 m_freem(m0);
1083
1084 return (m);
1085 }
1086
1087 /*
1088 * Dequeue packets and place on the h/w transmit queue.
1089 */
1090 static void
1091 npestart(struct ifnet *ifp)
1092 {
1093 struct npe_softc *sc = ifp->if_softc;
1094 struct npebuf *npe;
1095 struct npehwbuf *hw;
1096 struct mbuf *m, *n;
1097 bus_dma_segment_t *segs;
1098 int nseg, len, error, i;
1099 uint32_t next;
1100
1101 /* XXX can this happen? */
1102 if (ifp->if_flags & IFF_OACTIVE)
1103 return;
1104
1105 while (sc->tx_free != NULL) {
1106 IFQ_DEQUEUE(&ifp->if_snd, m);
1107 if (m == NULL) {
1108 /* XXX? */
1109 ifp->if_flags &= ~IFF_OACTIVE;
1110 return;
1111 }
1112 npe = sc->tx_free;
1113 error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
1114 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1115 if (error == EFBIG) {
1116 n = npe_defrag(m);
1117 if (n == NULL) {
1118 printf("%s: %s: too many fragments\n",
1119 sc->sc_dev.dv_xname, __func__);
1120 m_freem(m);
1121 return; /* XXX? */
1122 }
1123 m = n;
1124 error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map,
1125 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1126 }
1127 if (error != 0) {
1128 printf("%s: %s: error %u\n",
1129 sc->sc_dev.dv_xname, __func__, error);
1130 m_freem(m);
1131 return; /* XXX? */
1132 }
1133 sc->tx_free = npe->ix_next;
1134
1135 #if NBPFILTER > 0
1136 /*
1137 * Tap off here if there is a bpf listener.
1138 */
1139 if (__predict_false(ifp->if_bpf))
1140 bpf_mtap(ifp->if_bpf, m);
1141 #endif
1142
1143 bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
1144 npe->ix_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1145
1146 npe->ix_m = m;
1147 hw = npe->ix_hw;
1148 len = m->m_pkthdr.len;
1149 nseg = npe->ix_map->dm_nsegs;
1150 segs = npe->ix_map->dm_segs;
1151 next = npe->ix_neaddr + sizeof(hw->ix_ne[0]);
1152 for (i = 0; i < nseg; i++) {
1153 hw->ix_ne[i].data = htobe32(segs[i].ds_addr);
1154 hw->ix_ne[i].len = htobe32((segs[i].ds_len<<16) | len);
1155 hw->ix_ne[i].next = htobe32(next);
1156
1157 len = 0; /* zero for segments > 1 */
1158 next += sizeof(hw->ix_ne[0]);
1159 }
1160 hw->ix_ne[i-1].next = 0; /* zero last in chain */
1161 /* XXX flush descriptor instead of using uncached memory */
1162
1163 DPRINTF(sc, "%s: qwrite(%u, 0x%x) ne_data %x ne_len 0x%x\n",
1164 __func__, sc->tx_qid, npe->ix_neaddr,
1165 hw->ix_ne[0].data, hw->ix_ne[0].len);
1166 /* stick it on the tx q */
1167 /* XXX add vlan priority */
1168 ixpqmgr_qwrite(sc->tx_qid, npe->ix_neaddr);
1169
1170 ifp->if_timer = 5;
1171 }
1172 if (sc->tx_free == NULL)
1173 ifp->if_flags |= IFF_OACTIVE;
1174 }
1175
1176 static void
1177 npe_stopxmit(struct npe_softc *sc)
1178 {
1179 struct npedma *dma = &sc->txdma;
1180 int i;
1181
1182 /* XXX qmgr */
1183 for (i = 0; i < dma->nbuf; i++) {
1184 struct npebuf *npe = &dma->buf[i];
1185
1186 if (npe->ix_m != NULL) {
1187 bus_dmamap_unload(sc->sc_dt, npe->ix_map);
1188 m_freem(npe->ix_m);
1189 npe->ix_m = NULL;
1190 }
1191 }
1192 }
1193
1194 static void
1195 npe_stoprecv(struct npe_softc *sc)
1196 {
1197 struct npedma *dma = &sc->rxdma;
1198 int i;
1199
1200 /* XXX qmgr */
1201 for (i = 0; i < dma->nbuf; i++) {
1202 struct npebuf *npe = &dma->buf[i];
1203
1204 if (npe->ix_m != NULL) {
1205 bus_dmamap_unload(sc->sc_dt, npe->ix_map);
1206 m_freem(npe->ix_m);
1207 npe->ix_m = NULL;
1208 }
1209 }
1210 }
1211
1212 /*
1213 * Turn off interrupts, and stop the nic.
1214 */
1215 void
1216 npestop(struct ifnet *ifp, int disable)
1217 {
1218 struct npe_softc *sc = ifp->if_softc;
1219
1220 /* disable transmitter and reciver in the MAC */
1221 WR4(sc, NPE_MAC_RX_CNTRL1,
1222 RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
1223 WR4(sc, NPE_MAC_TX_CNTRL1,
1224 RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
1225
1226 ifp->if_timer = 0;
1227 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1228
1229 callout_stop(&sc->sc_tick_ch);
1230
1231 npe_stopxmit(sc);
1232 npe_stoprecv(sc);
1233 /* XXX go into loopback & drain q's? */
1234 /* XXX but beware of disabling tx above */
1235
1236 /*
1237 * The MAC core rx/tx disable may leave the MAC hardware in an
1238 * unpredictable state. A hw reset is executed before resetting
1239 * all the MAC parameters to a known value.
1240 */
1241 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
1242 DELAY(NPE_MAC_RESET_DELAY);
1243 WR4(sc, NPE_MAC_INT_CLK_THRESH, NPE_MAC_INT_CLK_THRESH_DEFAULT);
1244 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
1245 }
1246
1247 void
1248 npewatchdog(struct ifnet *ifp)
1249 {
1250 struct npe_softc *sc = ifp->if_softc;
1251 int s;
1252
1253 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1254 s = splnet();
1255 ifp->if_oerrors++;
1256 npeinit_locked(sc);
1257 splx(s);
1258 }
1259
1260 static int
1261 npeioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1262 {
1263 struct npe_softc *sc = ifp->if_softc;
1264 struct ifreq *ifr = (struct ifreq *)data;
1265 int s, error = 0;
1266
1267 s = splnet();
1268
1269 switch (cmd) {
1270 case SIOCSIFMEDIA:
1271 case SIOCGIFMEDIA:
1272 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1273 break;
1274
1275 default:
1276 error = ether_ioctl(ifp, cmd, data);
1277 if (error == ENETRESET) {
1278 if ((ifp->if_flags & IFF_UP) == 0 &&
1279 ifp->if_flags & IFF_RUNNING) {
1280 ifp->if_flags &= ~IFF_RUNNING;
1281 npestop(&sc->sc_ethercom.ec_if, 0);
1282 } else {
1283 /* reinitialize card on any parameter change */
1284 npeinit_locked(sc);
1285 }
1286 error = 0;
1287 }
1288 break;
1289 }
1290
1291 npestart(ifp);
1292
1293 splx(s);
1294 return error;
1295 }
1296
1297 /*
1298 * Setup a traffic class -> rx queue mapping.
1299 */
1300 static int
1301 npe_setrxqosentry(struct npe_softc *sc, int classix, int trafclass, int qid)
1302 {
1303 int npeid = npeconfig[sc->sc_unit].npeid;
1304 uint32_t msg[2];
1305
1306 msg[0] = (NPE_SETRXQOSENTRY << 24) | (npeid << 20) | classix;
1307 msg[1] = (trafclass << 24) | (1 << 23) | (qid << 16) | (qid << 4);
1308 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1309 }
1310
1311 /*
1312 * Update and reset the statistics in the NPE.
1313 */
1314 static int
1315 npe_updatestats(struct npe_softc *sc)
1316 {
1317 uint32_t msg[2];
1318
1319 msg[0] = NPE_RESETSTATS << NPE_MAC_MSGID_SHL;
1320 msg[1] = sc->sc_stats_phys; /* physical address of stat block */
1321 return ixpnpe_sendmsg(sc->sc_npe, msg); /* NB: no recv */
1322 }
1323
1324 #if 0
1325 /*
1326 * Get the current statistics block.
1327 */
1328 static int
1329 npe_getstats(struct npe_softc *sc)
1330 {
1331 uint32_t msg[2];
1332
1333 msg[0] = NPE_GETSTATS << NPE_MAC_MSGID_SHL;
1334 msg[1] = sc->sc_stats_phys; /* physical address of stat block */
1335 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1336 }
1337
1338 /*
1339 * Query the image id of the loaded firmware.
1340 */
1341 static uint32_t
1342 npe_getimageid(struct npe_softc *sc)
1343 {
1344 uint32_t msg[2];
1345
1346 msg[0] = NPE_GETSTATUS << NPE_MAC_MSGID_SHL;
1347 msg[1] = 0;
1348 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg) == 0 ? msg[1] : 0;
1349 }
1350
1351 /*
1352 * Enable/disable loopback.
1353 */
1354 static int
1355 npe_setloopback(struct npe_softc *sc, int ena)
1356 {
1357 uint32_t msg[2];
1358
1359 msg[0] = (NPE_SETLOOPBACK << NPE_MAC_MSGID_SHL) | (ena != 0);
1360 msg[1] = 0;
1361 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1362 }
1363 #endif
1364
1365 /*
1366 * MII bus support routines.
1367 *
1368 * NB: ixp425 has one PHY per NPE
1369 */
1370 static uint32_t
1371 npe_mii_mdio_read(struct npe_softc *sc, int reg)
1372 {
1373 #define MII_RD4(sc, reg) bus_space_read_4(sc->sc_iot, sc->sc_miih, reg)
1374 uint32_t v;
1375
1376 /* NB: registers are known to be sequential */
1377 v = (MII_RD4(sc, reg+0) & 0xff) << 0;
1378 v |= (MII_RD4(sc, reg+4) & 0xff) << 8;
1379 v |= (MII_RD4(sc, reg+8) & 0xff) << 16;
1380 v |= (MII_RD4(sc, reg+12) & 0xff) << 24;
1381 return v;
1382 #undef MII_RD4
1383 }
1384
1385 static void
1386 npe_mii_mdio_write(struct npe_softc *sc, int reg, uint32_t cmd)
1387 {
1388 #define MII_WR4(sc, reg, v) \
1389 bus_space_write_4(sc->sc_iot, sc->sc_miih, reg, v)
1390
1391 /* NB: registers are known to be sequential */
1392 MII_WR4(sc, reg+0, cmd & 0xff);
1393 MII_WR4(sc, reg+4, (cmd >> 8) & 0xff);
1394 MII_WR4(sc, reg+8, (cmd >> 16) & 0xff);
1395 MII_WR4(sc, reg+12, (cmd >> 24) & 0xff);
1396 #undef MII_WR4
1397 }
1398
1399 static int
1400 npe_mii_mdio_wait(struct npe_softc *sc)
1401 {
1402 #define MAXTRIES 100 /* XXX */
1403 uint32_t v;
1404 int i;
1405
1406 for (i = 0; i < MAXTRIES; i++) {
1407 v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_CMD);
1408 if ((v & NPE_MII_GO) == 0)
1409 return 1;
1410 }
1411 return 0; /* NB: timeout */
1412 #undef MAXTRIES
1413 }
1414
1415 static int
1416 npe_miibus_readreg(struct device *self, int phy, int reg)
1417 {
1418 struct npe_softc *sc = (void *)self;
1419 uint32_t v;
1420
1421 if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
1422 return 0xffff;
1423 v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
1424 | NPE_MII_GO;
1425 npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
1426 if (npe_mii_mdio_wait(sc)) {
1427 v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_STS);
1428 else
1429 v = 0xffff | NPE_MII_READ_FAIL;
1430 return (v & NPE_MII_READ_FAIL) ? 0xffff : (v & 0xffff);
1431 #undef MAXTRIES
1432 }
1433
1434 static void
1435 npe_miibus_writereg(struct device *self, int phy, int reg, int data)
1436 {
1437 struct npe_softc *sc = (void *)self;
1438 uint32_t v;
1439
1440 if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
1441 return;
1442 v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
1443 | data | NPE_MII_WRITE
1444 | NPE_MII_GO;
1445 npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
1446 /* XXX complain about timeout */
1447 (void) npe_mii_mdio_wait(sc);
1448 }
1449
1450 static void
1451 npe_miibus_statchg(struct device *self)
1452 {
1453 struct npe_softc *sc = (void *)self;
1454 uint32_t tx1, rx1;
1455
1456 /* sync MAC duplex state */
1457 tx1 = RD4(sc, NPE_MAC_TX_CNTRL1);
1458 rx1 = RD4(sc, NPE_MAC_RX_CNTRL1);
1459 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1460 tx1 &= ~NPE_TX_CNTRL1_DUPLEX;
1461 rx1 |= NPE_RX_CNTRL1_PAUSE_EN;
1462 } else {
1463 tx1 |= NPE_TX_CNTRL1_DUPLEX;
1464 rx1 &= ~NPE_RX_CNTRL1_PAUSE_EN;
1465 }
1466 WR4(sc, NPE_MAC_RX_CNTRL1, rx1);
1467 WR4(sc, NPE_MAC_TX_CNTRL1, tx1);
1468 }
1469