Home | History | Annotate | Line # | Download | only in xscale
ixp425_if_npe.c revision 1.13
      1 /*	$NetBSD: ixp425_if_npe.c,v 1.13 2009/03/11 12:16:12 msaitoh Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2006 Sam Leffler.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     25  */
     26 
     27 #include <sys/cdefs.h>
     28 #if 0
     29 __FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/if_npe.c,v 1.1 2006/11/19 23:55:23 sam Exp $");
     30 #endif
     31 __KERNEL_RCSID(0, "$NetBSD: ixp425_if_npe.c,v 1.13 2009/03/11 12:16:12 msaitoh Exp $");
     32 
     33 /*
     34  * Intel XScale NPE Ethernet driver.
     35  *
     36  * This driver handles the two ports present on the IXP425.
     37  * Packet processing is done by the Network Processing Engines
     38  * (NPE's) that work together with a MAC and PHY. The MAC
     39  * is also mapped to the XScale cpu; the PHY is accessed via
     40  * the MAC. NPE-XScale communication happens through h/w
     41  * queues managed by the Q Manager block.
     42  *
     43  * The code here replaces the ethAcc, ethMii, and ethDB classes
     44  * in the Intel Access Library (IAL) and the OS-specific driver.
     45  *
     46  * XXX add vlan support
     47  * XXX NPE-C port doesn't work yet
     48  */
     49 
     50 #include "bpfilter.h"
     51 
     52 #include <sys/param.h>
     53 #include <sys/systm.h>
     54 #include <sys/kernel.h>
     55 #include <sys/device.h>
     56 #include <sys/callout.h>
     57 #include <sys/mbuf.h>
     58 #include <sys/malloc.h>
     59 #include <sys/socket.h>
     60 #include <sys/endian.h>
     61 #include <sys/ioctl.h>
     62 #include <sys/syslog.h>
     63 
     64 #include <machine/bus.h>
     65 
     66 #include <net/if.h>
     67 #include <net/if_dl.h>
     68 #include <net/if_media.h>
     69 #include <net/if_ether.h>
     70 
     71 #if NBPFILTER > 0
     72 #include <net/bpf.h>
     73 #endif
     74 
     75 #include <arm/xscale/ixp425reg.h>
     76 #include <arm/xscale/ixp425var.h>
     77 #include <arm/xscale/ixp425_qmgr.h>
     78 #include <arm/xscale/ixp425_npevar.h>
     79 #include <arm/xscale/ixp425_if_npereg.h>
     80 
     81 #include <dev/mii/miivar.h>
     82 
     83 #include "locators.h"
     84 
     85 struct npebuf {
     86 	struct npebuf	*ix_next;	/* chain to next buffer */
     87 	void		*ix_m;		/* backpointer to mbuf */
     88 	bus_dmamap_t	ix_map;		/* bus dma map for associated data */
     89 	struct npehwbuf	*ix_hw;		/* associated h/w block */
     90 	uint32_t	ix_neaddr;	/* phys address of ix_hw */
     91 };
     92 
     93 struct npedma {
     94 	const char*	name;
     95 	int		nbuf;		/* # npebuf's allocated */
     96 	bus_dmamap_t	m_map;
     97 	struct npehwbuf	*hwbuf;		/* NPE h/w buffers */
     98 	bus_dmamap_t	buf_map;
     99 	bus_addr_t	buf_phys;	/* phys addr of buffers */
    100 	struct npebuf	*buf;		/* s/w buffers (1-1 w/ h/w) */
    101 };
    102 
    103 struct npe_softc {
    104 	struct device	sc_dev;
    105 	struct ethercom	sc_ethercom;
    106 	uint8_t		sc_enaddr[ETHER_ADDR_LEN];
    107 	struct mii_data	sc_mii;
    108 	bus_space_tag_t	sc_iot;
    109 	bus_dma_tag_t	sc_dt;
    110 	bus_space_handle_t sc_ioh;	/* MAC register window */
    111 	bus_space_handle_t sc_miih;	/* MII register window */
    112 	struct ixpnpe_softc *sc_npe;	/* NPE support */
    113 	int		sc_unit;
    114 	int		sc_phy;
    115 	struct callout	sc_tick_ch;	/* Tick callout */
    116 	struct npedma	txdma;
    117 	struct npebuf	*tx_free;	/* list of free tx buffers */
    118 	struct npedma	rxdma;
    119 	int		rx_qid;		/* rx qid */
    120 	int		rx_freeqid;	/* rx free buffers qid */
    121 	int		tx_qid;		/* tx qid */
    122 	int		tx_doneqid;	/* tx completed qid */
    123 	struct npestats	*sc_stats;
    124 	bus_dmamap_t	sc_stats_map;
    125 	bus_addr_t	sc_stats_phys;	/* phys addr of sc_stats */
    126 	int		sc_if_flags;	/* keep last if_flags */
    127 };
    128 
    129 /*
    130  * Per-unit static configuration for IXP425.  The tx and
    131  * rx free Q id's are fixed by the NPE microcode.  The
    132  * rx Q id's are programmed to be separate to simplify
    133  * multi-port processing.  It may be better to handle
    134  * all traffic through one Q (as done by the Intel drivers).
    135  *
    136  * Note that the PHY's are accessible only from MAC A
    137  * on the IXP425.  This and other platform-specific
    138  * assumptions probably need to be handled through hints.
    139  */
    140 static const struct {
    141 	const char	*desc;		/* device description */
    142 	int		npeid;		/* NPE assignment */
    143 	uint32_t	imageid;	/* NPE firmware image id */
    144 	uint32_t	regbase;
    145 	int		regsize;
    146 	uint32_t	miibase;
    147 	int		miisize;
    148 	uint8_t		rx_qid;
    149 	uint8_t		rx_freeqid;
    150 	uint8_t		tx_qid;
    151 	uint8_t		tx_doneqid;
    152 } npeconfig[NPE_PORTS_MAX] = {
    153 	{ .desc		= "IXP NPE-B",
    154 	  .npeid	= NPE_B,
    155 	  .imageid	= IXP425_NPE_B_IMAGEID,
    156 	  .regbase	= IXP425_MAC_A_HWBASE,
    157 	  .regsize	= IXP425_MAC_A_SIZE,
    158 	  .miibase	= IXP425_MAC_A_HWBASE,
    159 	  .miisize	= IXP425_MAC_A_SIZE,
    160 	  .rx_qid	= 4,
    161 	  .rx_freeqid	= 27,
    162 	  .tx_qid	= 24,
    163 	  .tx_doneqid	= 31
    164 	},
    165 	{ .desc		= "IXP NPE-C",
    166 	  .npeid	= NPE_C,
    167 	  .imageid	= IXP425_NPE_C_IMAGEID,
    168 	  .regbase	= IXP425_MAC_B_HWBASE,
    169 	  .regsize	= IXP425_MAC_B_SIZE,
    170 	  .miibase	= IXP425_MAC_A_HWBASE,
    171 	  .miisize	= IXP425_MAC_A_SIZE,
    172 	  .rx_qid	= 12,
    173 	  .rx_freeqid	= 28,
    174 	  .tx_qid	= 25,
    175 	  .tx_doneqid	= 31
    176 	},
    177 };
    178 static struct npe_softc *npes[NPE_MAX];	/* NB: indexed by npeid */
    179 
    180 static __inline uint32_t
    181 RD4(struct npe_softc *sc, bus_size_t off)
    182 {
    183 	return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
    184 }
    185 
    186 static __inline void
    187 WR4(struct npe_softc *sc, bus_size_t off, uint32_t val)
    188 {
    189 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
    190 }
    191 
    192 static int	npe_activate(struct npe_softc *);
    193 #if 0
    194 static void	npe_deactivate(struct npe_softc *);
    195 #endif
    196 static int	npe_ifmedia_change(struct ifnet *ifp);
    197 static void	npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr);
    198 static void	npe_setmac(struct npe_softc *sc, const u_char *eaddr);
    199 static void	npe_getmac(struct npe_softc *sc);
    200 static void	npe_txdone(int qid, void *arg);
    201 static int	npe_rxbuf_init(struct npe_softc *, struct npebuf *,
    202 			struct mbuf *);
    203 static void	npe_rxdone(int qid, void *arg);
    204 static void	npeinit_macreg(struct npe_softc *);
    205 static int	npeinit(struct ifnet *);
    206 static void	npeinit_locked(void *);
    207 static void	npestart(struct ifnet *);
    208 static void	npestop(struct ifnet *, int);
    209 static void	npewatchdog(struct ifnet *);
    210 static int	npeioctl(struct ifnet * ifp, u_long, void *);
    211 
    212 static int	npe_setrxqosentry(struct npe_softc *, int classix,
    213 			int trafclass, int qid);
    214 static int	npe_updatestats(struct npe_softc *);
    215 #if 0
    216 static int	npe_getstats(struct npe_softc *);
    217 static uint32_t	npe_getimageid(struct npe_softc *);
    218 static int	npe_setloopback(struct npe_softc *, int ena);
    219 #endif
    220 
    221 static int	npe_miibus_readreg(struct device *, int, int);
    222 static void	npe_miibus_writereg(struct device *, int, int, int);
    223 static void	npe_miibus_statchg(struct device *);
    224 
    225 static int	npe_debug;
    226 #define DPRINTF(sc, fmt, ...) do {			\
    227 	if (npe_debug) printf(fmt, __VA_ARGS__);	\
    228 } while (0)
    229 #define DPRINTFn(n, sc, fmt, ...) do {			\
    230 	if (npe_debug >= n) printf(fmt, __VA_ARGS__);	\
    231 } while (0)
    232 
    233 #define	NPE_TXBUF	128
    234 #define	NPE_RXBUF	64
    235 
    236 #ifndef ETHER_ALIGN
    237 #define	ETHER_ALIGN	2	/* XXX: Ditch this */
    238 #endif
    239 
    240 #define MAC2UINT64(addr)	(((uint64_t)addr[0] << 40)	\
    241 				    + ((uint64_t)addr[1] << 32)	\
    242 				    + ((uint64_t)addr[2] << 24)	\
    243 				    + ((uint64_t)addr[3] << 16)	\
    244 				    + ((uint64_t)addr[4] << 8)	\
    245 				    + (uint64_t)addr[5])
    246 
    247 /* NB: all tx done processing goes through one queue */
    248 static int tx_doneqid = -1;
    249 
    250 void (*npe_getmac_md)(int, uint8_t *);
    251 
    252 static int npe_match(struct device *, struct cfdata *, void *);
    253 static void npe_attach(struct device *, struct device *, void *);
    254 
    255 CFATTACH_DECL(npe, sizeof(struct npe_softc),
    256     npe_match, npe_attach, NULL, NULL);
    257 
    258 static int
    259 npe_match(struct device *parent, struct cfdata *cf, void *arg)
    260 {
    261 	struct ixpnpe_attach_args *na = arg;
    262 
    263 	return (na->na_unit == NPE_B || na->na_unit == NPE_C);
    264 }
    265 
    266 static void
    267 npe_attach(struct device *parent, struct device *self, void *arg)
    268 {
    269 	struct npe_softc *sc = (void *)self;
    270 	struct ixpnpe_attach_args *na = arg;
    271 	struct ifnet *ifp;
    272 
    273 	aprint_naive("\n");
    274 	aprint_normal(": Ethernet co-processor\n");
    275 
    276 	sc->sc_iot = na->na_iot;
    277 	sc->sc_dt = na->na_dt;
    278 	sc->sc_npe = na->na_npe;
    279 	sc->sc_unit = (na->na_unit == NPE_B) ? 0 : 1;
    280 	sc->sc_phy = na->na_phy;
    281 
    282 	memset(&sc->sc_ethercom, 0, sizeof(sc->sc_ethercom));
    283 	memset(&sc->sc_mii, 0, sizeof(sc->sc_mii));
    284 
    285 	callout_init(&sc->sc_tick_ch, 0);
    286 
    287 	if (npe_activate(sc)) {
    288 		aprint_error("%s: Failed to activate NPE (missing "
    289 		    "microcode?)\n", sc->sc_dev.dv_xname);
    290 		return;
    291 	}
    292 
    293 	npeinit_macreg(sc);
    294 	/*
    295 	 * XXXSCW: This is bogus - the NPE may not have been configured for
    296 	 * XXXSCW: Ethernet yet. We must check for a property set by
    297 	 * XXXSCW: board-specific code.
    298 	 */
    299 	npe_getmac(sc);
    300 
    301 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    302 	    ether_sprintf(sc->sc_enaddr));
    303 
    304 	ifp = &sc->sc_ethercom.ec_if;
    305 	ifmedia_init(&sc->sc_mii.mii_media, 0, npe_ifmedia_change,
    306 	    npe_ifmedia_status);
    307 
    308 	if (sc->sc_phy != IXPNPECF_PHY_DEFAULT) {
    309 		sc->sc_mii.mii_ifp = ifp;
    310 		sc->sc_mii.mii_readreg = npe_miibus_readreg;
    311 		sc->sc_mii.mii_writereg = npe_miibus_writereg;
    312 		sc->sc_mii.mii_statchg = npe_miibus_statchg;
    313 		sc->sc_ethercom.ec_mii = &sc->sc_mii;
    314 
    315 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
    316 		    (sc->sc_phy > IXPNPECF_PHY_DEFAULT) ?
    317 		      sc->sc_phy : MII_PHY_ANY,
    318 		    MII_OFFSET_ANY, MIIF_NOISOLATE);
    319 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
    320 	} else {
    321 		/* Assume direct connection to a 100mbit switch */
    322 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_100_TX, 0,0);
    323 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_100_TX);
    324 	}
    325 
    326 	ifp->if_softc = sc;
    327 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    328 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    329 	ifp->if_start = npestart;
    330 	ifp->if_ioctl = npeioctl;
    331 	ifp->if_watchdog = npewatchdog;
    332 	ifp->if_init = npeinit;
    333 	ifp->if_stop = npestop;
    334 	IFQ_SET_READY(&ifp->if_snd);
    335 
    336 	/* VLAN capable */
    337 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    338 
    339 	if_attach(ifp);
    340 	ether_ifattach(ifp, sc->sc_enaddr);
    341 }
    342 
    343 /*
    344  * Compute and install the multicast filter.
    345  */
    346 static void
    347 npe_setmcast(struct npe_softc *sc)
    348 {
    349 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    350 	uint8_t mask[ETHER_ADDR_LEN], addr[ETHER_ADDR_LEN];
    351 	uint32_t reg;
    352 	int i;
    353 
    354 	/* Always use filter. Is here a correct position? */
    355 	reg = RD4(sc, NPE_MAC_RX_CNTRL1);
    356 	WR4(sc, NPE_MAC_RX_CNTRL1, reg | NPE_RX_CNTRL1_ADDR_FLTR_EN);
    357 
    358 	if (ifp->if_flags & IFF_PROMISC) {
    359 		memset(mask, 0, ETHER_ADDR_LEN);
    360 		memset(addr, 0, ETHER_ADDR_LEN);
    361 	} else if (ifp->if_flags & IFF_ALLMULTI) {
    362 		static const uint8_t allmulti[ETHER_ADDR_LEN] =
    363 		    { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
    364  all_multi:
    365 		memcpy(mask, allmulti, ETHER_ADDR_LEN);
    366 		memcpy(addr, allmulti, ETHER_ADDR_LEN);
    367 	} else {
    368 		uint8_t clr[ETHER_ADDR_LEN], set[ETHER_ADDR_LEN];
    369 		struct ether_multistep step;
    370 		struct ether_multi *enm;
    371 
    372 		memset(clr, 0, ETHER_ADDR_LEN);
    373 		memset(set, 0xff, ETHER_ADDR_LEN);
    374 
    375 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    376 		while (enm != NULL) {
    377 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
    378 				ifp->if_flags |= IFF_ALLMULTI;
    379 				goto all_multi;
    380 			}
    381 
    382 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
    383 				clr[i] |= enm->enm_addrlo[i];
    384 				set[i] &= enm->enm_addrlo[i];
    385 			}
    386 
    387 			ETHER_NEXT_MULTI(step, enm);
    388 		}
    389 
    390 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
    391 			mask[i] = set[i] | ~clr[i];
    392 			addr[i] = set[i];
    393 		}
    394 	}
    395 
    396 	/*
    397 	 * Write the mask and address registers.
    398 	 */
    399 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
    400 		WR4(sc, NPE_MAC_ADDR_MASK(i), mask[i]);
    401 		WR4(sc, NPE_MAC_ADDR(i), addr[i]);
    402 	}
    403 }
    404 
    405 static int
    406 npe_dma_setup(struct npe_softc *sc, struct npedma *dma,
    407 	const char *name, int nbuf, int maxseg)
    408 {
    409 	bus_dma_segment_t seg;
    410 	int rseg, error, i;
    411 	void *hwbuf;
    412 	size_t size;
    413 
    414 	memset(dma, 0, sizeof(*dma));
    415 
    416 	dma->name = name;
    417 	dma->nbuf = nbuf;
    418 
    419 	size = nbuf * sizeof(struct npehwbuf);
    420 
    421 	/* XXX COHERENT for now */
    422 	error = bus_dmamem_alloc(sc->sc_dt, size, sizeof(uint32_t), 0, &seg,
    423 	    1, &rseg, BUS_DMA_NOWAIT);
    424 	if (error) {
    425 		printf("%s: unable to allocate memory for %s h/w buffers, "
    426 		    "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
    427 	}
    428 
    429 	error = bus_dmamem_map(sc->sc_dt, &seg, 1, size, &hwbuf,
    430 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_NOCACHE);
    431 	if (error) {
    432 		printf("%s: unable to map memory for %s h/w buffers, "
    433 		    "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
    434  free_dmamem:
    435 		bus_dmamem_free(sc->sc_dt, &seg, rseg);
    436 		return error;
    437 	}
    438 	dma->hwbuf = (void *)hwbuf;
    439 
    440 	error = bus_dmamap_create(sc->sc_dt, size, 1, size, 0,
    441 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &dma->buf_map);
    442 	if (error) {
    443 		printf("%s: unable to create map for %s h/w buffers, "
    444 		    "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
    445  unmap_dmamem:
    446 		dma->hwbuf = NULL;
    447 		bus_dmamem_unmap(sc->sc_dt, hwbuf, size);
    448 		goto free_dmamem;
    449 	}
    450 
    451 	error = bus_dmamap_load(sc->sc_dt, dma->buf_map, hwbuf, size, NULL,
    452 	    BUS_DMA_NOWAIT);
    453 	if (error) {
    454 		printf("%s: unable to load map for %s h/w buffers, "
    455 		    "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
    456  destroy_dmamap:
    457 		bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
    458 		goto unmap_dmamem;
    459 	}
    460 
    461 	/* XXX M_TEMP */
    462 	dma->buf = malloc(nbuf * sizeof(struct npebuf), M_TEMP, M_NOWAIT | M_ZERO);
    463 	if (dma->buf == NULL) {
    464 		printf("%s: unable to allocate memory for %s s/w buffers\n",
    465 		    sc->sc_dev.dv_xname, dma->name);
    466 		bus_dmamap_unload(sc->sc_dt, dma->buf_map);
    467 		error = ENOMEM;
    468 		goto destroy_dmamap;
    469 	}
    470 
    471 	dma->buf_phys = dma->buf_map->dm_segs[0].ds_addr;
    472 	for (i = 0; i < dma->nbuf; i++) {
    473 		struct npebuf *npe = &dma->buf[i];
    474 		struct npehwbuf *hw = &dma->hwbuf[i];
    475 
    476 		/* calculate offset to shared area */
    477 		npe->ix_neaddr = dma->buf_phys +
    478 			((uintptr_t)hw - (uintptr_t)dma->hwbuf);
    479 		KASSERT((npe->ix_neaddr & 0x1f) == 0);
    480 		error = bus_dmamap_create(sc->sc_dt, MCLBYTES, maxseg,
    481 		    MCLBYTES, 0, 0, &npe->ix_map);
    482 		if (error != 0) {
    483 			printf("%s: unable to create dmamap for %s buffer %u, "
    484 			    "error %u\n", sc->sc_dev.dv_xname, dma->name, i,
    485 			    error);
    486 			/* XXXSCW: Free up maps... */
    487 			return error;
    488 		}
    489 		npe->ix_hw = hw;
    490 	}
    491 	bus_dmamap_sync(sc->sc_dt, dma->buf_map, 0, dma->buf_map->dm_mapsize,
    492 	    BUS_DMASYNC_PREWRITE);
    493 	return 0;
    494 }
    495 
    496 #if 0
    497 static void
    498 npe_dma_destroy(struct npe_softc *sc, struct npedma *dma)
    499 {
    500 	int i;
    501 
    502 /* XXXSCW: Clean this up */
    503 
    504 	if (dma->hwbuf != NULL) {
    505 		for (i = 0; i < dma->nbuf; i++) {
    506 			struct npebuf *npe = &dma->buf[i];
    507 			bus_dmamap_destroy(sc->sc_dt, npe->ix_map);
    508 		}
    509 		bus_dmamap_unload(sc->sc_dt, dma->buf_map);
    510 		bus_dmamem_free(sc->sc_dt, (void *)dma->hwbuf, dma->buf_map);
    511 		bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
    512 	}
    513 	if (dma->buf != NULL)
    514 		free(dma->buf, M_TEMP);
    515 	memset(dma, 0, sizeof(*dma));
    516 }
    517 #endif
    518 
    519 static int
    520 npe_activate(struct npe_softc *sc)
    521 {
    522 	bus_dma_segment_t seg;
    523 	int unit = sc->sc_unit;
    524 	int error, i, rseg;
    525 	void *statbuf;
    526 
    527 	/* load NPE firmware and start it running */
    528 	error = ixpnpe_init(sc->sc_npe, "npe_fw", npeconfig[unit].imageid);
    529 	if (error != 0)
    530 		return error;
    531 
    532 	if (bus_space_map(sc->sc_iot, npeconfig[unit].regbase,
    533 	    npeconfig[unit].regsize, 0, &sc->sc_ioh)) {
    534 		printf("%s: Cannot map registers 0x%x:0x%x\n",
    535 		    sc->sc_dev.dv_xname, npeconfig[unit].regbase,
    536 		    npeconfig[unit].regsize);
    537 		return ENOMEM;
    538 	}
    539 
    540 	if (npeconfig[unit].miibase != npeconfig[unit].regbase) {
    541 		/*
    542 		 * The PHY's are only accessible from one MAC (it appears)
    543 		 * so for other MAC's setup an additional mapping for
    544 		 * frobbing the PHY registers.
    545 		 */
    546 		if (bus_space_map(sc->sc_iot, npeconfig[unit].miibase,
    547 		    npeconfig[unit].miisize, 0, &sc->sc_miih)) {
    548 			printf("%s: Cannot map MII registers 0x%x:0x%x\n",
    549 			    sc->sc_dev.dv_xname, npeconfig[unit].miibase,
    550 			    npeconfig[unit].miisize);
    551 			return ENOMEM;
    552 		}
    553 	} else
    554 		sc->sc_miih = sc->sc_ioh;
    555 	error = npe_dma_setup(sc, &sc->txdma, "tx", NPE_TXBUF, NPE_MAXSEG);
    556 	if (error != 0)
    557 		return error;
    558 	error = npe_dma_setup(sc, &sc->rxdma, "rx", NPE_RXBUF, 1);
    559 	if (error != 0)
    560 		return error;
    561 
    562 	/* setup statistics block */
    563 	error = bus_dmamem_alloc(sc->sc_dt, sizeof(struct npestats),
    564 	    sizeof(uint32_t), 0, &seg, 1, &rseg, BUS_DMA_NOWAIT);
    565 	if (error) {
    566 		printf("%s: unable to allocate memory for stats block, "
    567 		    "error %u\n", sc->sc_dev.dv_xname, error);
    568 		return error;
    569 	}
    570 
    571 	error = bus_dmamem_map(sc->sc_dt, &seg, 1, sizeof(struct npestats),
    572 	    &statbuf, BUS_DMA_NOWAIT);
    573 	if (error) {
    574 		printf("%s: unable to map memory for stats block, "
    575 		    "error %u\n", sc->sc_dev.dv_xname, error);
    576 		return error;
    577 	}
    578 	sc->sc_stats = (void *)statbuf;
    579 
    580 	error = bus_dmamap_create(sc->sc_dt, sizeof(struct npestats), 1,
    581 	    sizeof(struct npestats), 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    582 	    &sc->sc_stats_map);
    583 	if (error) {
    584 		printf("%s: unable to create map for stats block, "
    585 		    "error %u\n", sc->sc_dev.dv_xname, error);
    586 		return error;
    587 	}
    588 
    589 	if (bus_dmamap_load(sc->sc_dt, sc->sc_stats_map, sc->sc_stats,
    590 	    sizeof(struct npestats), NULL, BUS_DMA_NOWAIT) != 0) {
    591 		printf("%s: unable to load memory for stats block, error %u\n",
    592 		    sc->sc_dev.dv_xname, error);
    593 		return error;
    594 	}
    595 	sc->sc_stats_phys = sc->sc_stats_map->dm_segs[0].ds_addr;
    596 
    597 	/* XXX disable half-bridge LEARNING+FILTERING feature */
    598 
    599 	/*
    600 	 * Setup h/w rx/tx queues.  There are four q's:
    601 	 *   rx		inbound q of rx'd frames
    602 	 *   rx_free	pool of ixpbuf's for receiving frames
    603 	 *   tx		outbound q of frames to send
    604 	 *   tx_done	q of tx frames that have been processed
    605 	 *
    606 	 * The NPE handles the actual tx/rx process and the q manager
    607 	 * handles the queues.  The driver just writes entries to the
    608 	 * q manager mailbox's and gets callbacks when there are rx'd
    609 	 * frames to process or tx'd frames to reap.  These callbacks
    610 	 * are controlled by the q configurations; e.g. we get a
    611 	 * callback when tx_done has 2 or more frames to process and
    612 	 * when the rx q has at least one frame.  These setings can
    613 	 * changed at the time the q is configured.
    614 	 */
    615 	sc->rx_qid = npeconfig[unit].rx_qid;
    616 	ixpqmgr_qconfig(sc->rx_qid, NPE_RXBUF, 0,  1,
    617 		IX_QMGR_Q_SOURCE_ID_NOT_E, npe_rxdone, sc);
    618 	sc->rx_freeqid = npeconfig[unit].rx_freeqid;
    619 	ixpqmgr_qconfig(sc->rx_freeqid,	NPE_RXBUF, 0, NPE_RXBUF/2, 0, NULL, sc);
    620 	/* tell the NPE to direct all traffic to rx_qid */
    621 #if 0
    622 	for (i = 0; i < 8; i++)
    623 #else
    624 printf("%s: remember to fix rx q setup\n", sc->sc_dev.dv_xname);
    625 	for (i = 0; i < 4; i++)
    626 #endif
    627 		npe_setrxqosentry(sc, i, 0, sc->rx_qid);
    628 
    629 	sc->tx_qid = npeconfig[unit].tx_qid;
    630 	sc->tx_doneqid = npeconfig[unit].tx_doneqid;
    631 	ixpqmgr_qconfig(sc->tx_qid, NPE_TXBUF, 0, NPE_TXBUF, 0, NULL, sc);
    632 	if (tx_doneqid == -1) {
    633 		ixpqmgr_qconfig(sc->tx_doneqid,	NPE_TXBUF, 0,  2,
    634 			IX_QMGR_Q_SOURCE_ID_NOT_E, npe_txdone, sc);
    635 		tx_doneqid = sc->tx_doneqid;
    636 	}
    637 
    638 	KASSERT(npes[npeconfig[unit].npeid] == NULL);
    639 	npes[npeconfig[unit].npeid] = sc;
    640 
    641 	return 0;
    642 }
    643 
    644 #if 0
    645 static void
    646 npe_deactivate(struct npe_softc *sc);
    647 {
    648 	int unit = sc->sc_unit;
    649 
    650 	npes[npeconfig[unit].npeid] = NULL;
    651 
    652 	/* XXX disable q's */
    653 	if (sc->sc_npe != NULL)
    654 		ixpnpe_stop(sc->sc_npe);
    655 	if (sc->sc_stats != NULL) {
    656 		bus_dmamap_unload(sc->sc_stats_tag, sc->sc_stats_map);
    657 		bus_dmamem_free(sc->sc_stats_tag, sc->sc_stats,
    658 			sc->sc_stats_map);
    659 		bus_dmamap_destroy(sc->sc_stats_tag, sc->sc_stats_map);
    660 	}
    661 	if (sc->sc_stats_tag != NULL)
    662 		bus_dma_tag_destroy(sc->sc_stats_tag);
    663 	npe_dma_destroy(sc, &sc->txdma);
    664 	npe_dma_destroy(sc, &sc->rxdma);
    665 	bus_generic_detach(sc->sc_dev);
    666 	if (sc->sc_mii)
    667 		device_delete_child(sc->sc_dev, sc->sc_mii);
    668 #if 0
    669 	/* XXX sc_ioh and sc_miih */
    670 	if (sc->mem_res)
    671 		bus_release_resource(dev, SYS_RES_IOPORT,
    672 		    rman_get_rid(sc->mem_res), sc->mem_res);
    673 	sc->mem_res = 0;
    674 #endif
    675 }
    676 #endif
    677 
    678 /*
    679  * Change media according to request.
    680  */
    681 static int
    682 npe_ifmedia_change(struct ifnet *ifp)
    683 {
    684 	struct npe_softc *sc = ifp->if_softc;
    685 
    686 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT)
    687 		return ether_mediachange(ifp);
    688 	return 0;
    689 }
    690 
    691 /*
    692  * Notify the world which media we're using.
    693  */
    694 static void
    695 npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
    696 {
    697 	struct npe_softc *sc = ifp->if_softc;
    698 
    699 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT)
    700 		mii_pollstat(&sc->sc_mii);
    701 
    702 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
    703 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
    704 }
    705 
    706 static void
    707 npe_addstats(struct npe_softc *sc)
    708 {
    709 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    710 	struct npestats *ns = sc->sc_stats;
    711 
    712 	ifp->if_oerrors +=
    713 		  be32toh(ns->dot3StatsInternalMacTransmitErrors)
    714 		+ be32toh(ns->dot3StatsCarrierSenseErrors)
    715 		+ be32toh(ns->TxVLANIdFilterDiscards)
    716 		;
    717 	ifp->if_ierrors += be32toh(ns->dot3StatsFCSErrors)
    718 		+ be32toh(ns->dot3StatsInternalMacReceiveErrors)
    719 		+ be32toh(ns->RxOverrunDiscards)
    720 		+ be32toh(ns->RxUnderflowEntryDiscards)
    721 		;
    722 	ifp->if_collisions +=
    723 		  be32toh(ns->dot3StatsSingleCollisionFrames)
    724 		+ be32toh(ns->dot3StatsMultipleCollisionFrames)
    725 		;
    726 }
    727 
    728 static void
    729 npe_tick(void *xsc)
    730 {
    731 #define	ACK	(NPE_RESETSTATS << NPE_MAC_MSGID_SHL)
    732 	struct npe_softc *sc = xsc;
    733 	uint32_t msg[2];
    734 
    735 	/*
    736 	 * NB: to avoid sleeping with the softc lock held we
    737 	 * split the NPE msg processing into two parts.  The
    738 	 * request for statistics is sent w/o waiting for a
    739 	 * reply and then on the next tick we retrieve the
    740 	 * results.  This works because npe_tick is the only
    741 	 * code that talks via the mailbox's (except at setup).
    742 	 * This likely can be handled better.
    743 	 */
    744 	if (ixpnpe_recvmsg(sc->sc_npe, msg) == 0 && msg[0] == ACK) {
    745 		bus_dmamap_sync(sc->sc_dt, sc->sc_stats_map, 0,
    746 		    sizeof(struct npestats), BUS_DMASYNC_POSTREAD);
    747 		npe_addstats(sc);
    748 	}
    749 	npe_updatestats(sc);
    750 	mii_tick(&sc->sc_mii);
    751 
    752 	/* schedule next poll */
    753 	callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
    754 #undef ACK
    755 }
    756 
    757 static void
    758 npe_setmac(struct npe_softc *sc, const u_char *eaddr)
    759 {
    760 
    761 	WR4(sc, NPE_MAC_UNI_ADDR_1, eaddr[0]);
    762 	WR4(sc, NPE_MAC_UNI_ADDR_2, eaddr[1]);
    763 	WR4(sc, NPE_MAC_UNI_ADDR_3, eaddr[2]);
    764 	WR4(sc, NPE_MAC_UNI_ADDR_4, eaddr[3]);
    765 	WR4(sc, NPE_MAC_UNI_ADDR_5, eaddr[4]);
    766 	WR4(sc, NPE_MAC_UNI_ADDR_6, eaddr[5]);
    767 }
    768 
    769 static void
    770 npe_getmac(struct npe_softc *sc)
    771 {
    772 	uint8_t *eaddr = sc->sc_enaddr;
    773 
    774 	if (npe_getmac_md != NULL) {
    775 		(*npe_getmac_md)(sc->sc_dev.dv_unit, eaddr);
    776 	} else {
    777 		/*
    778 		 * Some system's unicast address appears to be loaded from
    779 		 * EEPROM on reset
    780 		 */
    781 		eaddr[0] = RD4(sc, NPE_MAC_UNI_ADDR_1) & 0xff;
    782 		eaddr[1] = RD4(sc, NPE_MAC_UNI_ADDR_2) & 0xff;
    783 		eaddr[2] = RD4(sc, NPE_MAC_UNI_ADDR_3) & 0xff;
    784 		eaddr[3] = RD4(sc, NPE_MAC_UNI_ADDR_4) & 0xff;
    785 		eaddr[4] = RD4(sc, NPE_MAC_UNI_ADDR_5) & 0xff;
    786 		eaddr[5] = RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff;
    787 	}
    788 }
    789 
    790 struct txdone {
    791 	struct npebuf *head;
    792 	struct npebuf **tail;
    793 	int count;
    794 };
    795 
    796 static __inline void
    797 npe_txdone_finish(struct npe_softc *sc, const struct txdone *td)
    798 {
    799 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    800 
    801 	*td->tail = sc->tx_free;
    802 	sc->tx_free = td->head;
    803 	/*
    804 	 * We're no longer busy, so clear the busy flag and call the
    805 	 * start routine to xmit more packets.
    806 	 */
    807 	ifp->if_opackets += td->count;
    808 	ifp->if_flags &= ~IFF_OACTIVE;
    809 	ifp->if_timer = 0;
    810 	npestart(ifp);
    811 }
    812 
    813 /*
    814  * Q manager callback on tx done queue.  Reap mbufs
    815  * and return tx buffers to the free list.  Finally
    816  * restart output.  Note the microcode has only one
    817  * txdone q wired into it so we must use the NPE ID
    818  * returned with each npehwbuf to decide where to
    819  * send buffers.
    820  */
    821 static void
    822 npe_txdone(int qid, void *arg)
    823 {
    824 #define	P2V(a, dma) \
    825 	&(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
    826 	struct npe_softc *sc;
    827 	struct npebuf *npe;
    828 	struct txdone *td, q[NPE_MAX];
    829 	uint32_t entry;
    830 
    831 	/* XXX no NPE-A support */
    832 	q[NPE_B].tail = &q[NPE_B].head; q[NPE_B].count = 0;
    833 	q[NPE_C].tail = &q[NPE_C].head; q[NPE_C].count = 0;
    834 	/* XXX max # at a time? */
    835 	while (ixpqmgr_qread(qid, &entry) == 0) {
    836 		sc = npes[NPE_QM_Q_NPE(entry)];
    837 		DPRINTF(sc, "%s: entry 0x%x NPE %u port %u\n",
    838 		    __func__, entry, NPE_QM_Q_NPE(entry), NPE_QM_Q_PORT(entry));
    839 
    840 		npe = P2V(NPE_QM_Q_ADDR(entry), &sc->txdma);
    841 		m_freem(npe->ix_m);
    842 		npe->ix_m = NULL;
    843 
    844 		td = &q[NPE_QM_Q_NPE(entry)];
    845 		*td->tail = npe;
    846 		td->tail = &npe->ix_next;
    847 		td->count++;
    848 	}
    849 
    850 	if (q[NPE_B].count)
    851 		npe_txdone_finish(npes[NPE_B], &q[NPE_B]);
    852 	if (q[NPE_C].count)
    853 		npe_txdone_finish(npes[NPE_C], &q[NPE_C]);
    854 #undef P2V
    855 }
    856 
    857 static __inline struct mbuf *
    858 npe_getcl(void)
    859 {
    860 	struct mbuf *m;
    861 
    862 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    863 	if (m != NULL) {
    864 		MCLGET(m, M_DONTWAIT);
    865 		if ((m->m_flags & M_EXT) == 0) {
    866 			m_freem(m);
    867 			m = NULL;
    868 		}
    869 	}
    870 	return (m);
    871 }
    872 
    873 static int
    874 npe_rxbuf_init(struct npe_softc *sc, struct npebuf *npe, struct mbuf *m)
    875 {
    876 	struct npehwbuf *hw;
    877 	int error;
    878 
    879 	if (m == NULL) {
    880 		m = npe_getcl();
    881 		if (m == NULL)
    882 			return ENOBUFS;
    883 	}
    884 	KASSERT(m->m_ext.ext_size >= (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
    885 	m->m_pkthdr.len = m->m_len = NPE_FRAME_SIZE_DEFAULT;
    886 	/* backload payload and align ip hdr */
    887 	m->m_data = m->m_ext.ext_buf + (m->m_ext.ext_size
    888 	    - (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
    889 	error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
    890 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
    891 	if (error != 0) {
    892 		m_freem(m);
    893 		return error;
    894 	}
    895 	hw = npe->ix_hw;
    896 	hw->ix_ne[0].data = htobe32(npe->ix_map->dm_segs[0].ds_addr);
    897 	/* NB: NPE requires length be a multiple of 64 */
    898 	/* NB: buffer length is shifted in word */
    899 	hw->ix_ne[0].len = htobe32(npe->ix_map->dm_segs[0].ds_len << 16);
    900 	hw->ix_ne[0].next = 0;
    901 	npe->ix_m = m;
    902 	/* Flush the memory in the mbuf */
    903 	bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0, npe->ix_map->dm_mapsize,
    904 	    BUS_DMASYNC_PREREAD);
    905 	return 0;
    906 }
    907 
    908 /*
    909  * RX q processing for a specific NPE.  Claim entries
    910  * from the hardware queue and pass the frames up the
    911  * stack. Pass the rx buffers to the free list.
    912  */
    913 static void
    914 npe_rxdone(int qid, void *arg)
    915 {
    916 #define	P2V(a, dma) \
    917 	&(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
    918 	struct npe_softc *sc = arg;
    919 	struct npedma *dma = &sc->rxdma;
    920 	uint32_t entry;
    921 
    922 	while (ixpqmgr_qread(qid, &entry) == 0) {
    923 		struct npebuf *npe = P2V(NPE_QM_Q_ADDR(entry), dma);
    924 		struct mbuf *m;
    925 
    926 		DPRINTF(sc, "%s: entry 0x%x neaddr 0x%x ne_len 0x%x\n",
    927 		    __func__, entry, npe->ix_neaddr, npe->ix_hw->ix_ne[0].len);
    928 		/*
    929 		 * Allocate a new mbuf to replenish the rx buffer.
    930 		 * If doing so fails we drop the rx'd frame so we
    931 		 * can reuse the previous mbuf.  When we're able to
    932 		 * allocate a new mbuf dispatch the mbuf w/ rx'd
    933 		 * data up the stack and replace it with the newly
    934 		 * allocated one.
    935 		 */
    936 		m = npe_getcl();
    937 		if (m != NULL) {
    938 			struct mbuf *mrx = npe->ix_m;
    939 			struct npehwbuf *hw = npe->ix_hw;
    940 			struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    941 
    942 			/* Flush mbuf memory for rx'd data */
    943 			bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
    944 			    npe->ix_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
    945 
    946 			/* XXX flush hw buffer; works now 'cuz coherent */
    947 			/* set m_len etc. per rx frame size */
    948 			mrx->m_len = be32toh(hw->ix_ne[0].len) & 0xffff;
    949 			mrx->m_pkthdr.len = mrx->m_len;
    950 			mrx->m_pkthdr.rcvif = ifp;
    951 			/* Don't add M_HASFCS. See below */
    952 
    953 #if 1
    954 			if (mrx->m_pkthdr.len < sizeof(struct ether_header)) {
    955 				log(LOG_INFO, "%s: too short frame (len=%d)\n",
    956 				    sc->sc_dev.dv_xname, mrx->m_pkthdr.len);
    957 				/* Back out "newly allocated" mbuf. */
    958 				m_freem(m);
    959 				ifp->if_ierrors++;
    960 				goto fail;
    961 			}
    962 			if ((ifp->if_flags & IFF_PROMISC) == 0) {
    963 				struct ether_header *eh;
    964 
    965 				/*
    966 				 * Workaround for "Non-Intel XScale Technology
    967 				 * Eratta" No. 29. AA:BB:CC:DD:EE:xF's packet
    968 				 * matches the filter (both unicast and
    969 				 * multicast).
    970 				 */
    971 				eh = mtod(mrx, struct ether_header *);
    972 				if (ETHER_IS_MULTICAST(eh->ether_dhost) == 0) {
    973 					/* unicast */
    974 
    975 					if (sc->sc_enaddr[5] != eh->ether_dhost[5]) {
    976 						/* discard it */
    977 #if 0
    978 						printf("discard it\n");
    979 #endif
    980 						/*
    981 						 * Back out "newly allocated"
    982 						 * mbuf.
    983 						 */
    984 						m_freem(m);
    985 						goto fail;
    986 					}
    987 				} else if (memcmp(eh->ether_dhost,
    988 					etherbroadcastaddr, 6) == 0) {
    989 					/* Always accept broadcast packet*/
    990 				} else {
    991 					struct ethercom *ec = &sc->sc_ethercom;
    992 					struct ether_multi *enm;
    993 					struct ether_multistep step;
    994 					int match = 0;
    995 
    996 					/* multicast */
    997 
    998 					ETHER_FIRST_MULTI(step, ec, enm);
    999 					while (enm != NULL) {
   1000 						uint64_t lowint, highint, dest;
   1001 
   1002 						lowint = MAC2UINT64(enm->enm_addrlo);
   1003 						highint = MAC2UINT64(enm->enm_addrhi);
   1004 						dest = MAC2UINT64(eh->ether_dhost);
   1005 #if 0
   1006 						printf("%llx\n", lowint);
   1007 						printf("%llx\n", dest);
   1008 						printf("%llx\n", highint);
   1009 #endif
   1010 						if ((lowint <= dest) && (dest <= highint)) {
   1011 							match = 1;
   1012 							break;
   1013 						}
   1014 						ETHER_NEXT_MULTI(step, enm);
   1015 					}
   1016 					if (match == 0) {
   1017 						/* discard it */
   1018 #if 0
   1019 						printf("discard it(M)\n");
   1020 #endif
   1021 						/*
   1022 						 * Back out "newly allocated"
   1023 						 * mbuf.
   1024 						 */
   1025 						m_freem(m);
   1026 						goto fail;
   1027 					}
   1028 				}
   1029 			}
   1030 			if (mrx->m_pkthdr.len > NPE_FRAME_SIZE_DEFAULT) {
   1031 				log(LOG_INFO, "%s: oversized frame (len=%d)\n",
   1032 				    sc->sc_dev.dv_xname, mrx->m_pkthdr.len);
   1033 				/* Back out "newly allocated" mbuf. */
   1034 				m_freem(m);
   1035 				ifp->if_ierrors++;
   1036 				goto fail;
   1037 			}
   1038 #endif
   1039 
   1040 			/*
   1041 			 * Trim FCS!
   1042 			 * NPE always adds the FCS by this driver's setting,
   1043 			 * so we always trim it here and not add M_HASFCS.
   1044 			 */
   1045 			m_adj(mrx, -ETHER_CRC_LEN);
   1046 
   1047 			ifp->if_ipackets++;
   1048 #if NBPFILTER > 0
   1049 			/*
   1050 			 * Tap off here if there is a bpf listener.
   1051 			 */
   1052 			if (__predict_false(ifp->if_bpf))
   1053 				bpf_mtap(ifp->if_bpf, mrx);
   1054 #endif
   1055 			ifp->if_input(ifp, mrx);
   1056 		} else {
   1057 fail:
   1058 			/* discard frame and re-use mbuf */
   1059 			m = npe->ix_m;
   1060 		}
   1061 		if (npe_rxbuf_init(sc, npe, m) == 0) {
   1062 			/* return npe buf to rx free list */
   1063 			ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
   1064 		} else {
   1065 			/* XXX should not happen */
   1066 		}
   1067 	}
   1068 #undef P2V
   1069 }
   1070 
   1071 static void
   1072 npe_startxmit(struct npe_softc *sc)
   1073 {
   1074 	struct npedma *dma = &sc->txdma;
   1075 	int i;
   1076 
   1077 	sc->tx_free = NULL;
   1078 	for (i = 0; i < dma->nbuf; i++) {
   1079 		struct npebuf *npe = &dma->buf[i];
   1080 		if (npe->ix_m != NULL) {
   1081 			/* NB: should not happen */
   1082 			printf("%s: %s: free mbuf at entry %u\n",
   1083 			    sc->sc_dev.dv_xname, __func__, i);
   1084 			m_freem(npe->ix_m);
   1085 		}
   1086 		npe->ix_m = NULL;
   1087 		npe->ix_next = sc->tx_free;
   1088 		sc->tx_free = npe;
   1089 	}
   1090 }
   1091 
   1092 static void
   1093 npe_startrecv(struct npe_softc *sc)
   1094 {
   1095 	struct npedma *dma = &sc->rxdma;
   1096 	struct npebuf *npe;
   1097 	int i;
   1098 
   1099 	for (i = 0; i < dma->nbuf; i++) {
   1100 		npe = &dma->buf[i];
   1101 		npe_rxbuf_init(sc, npe, npe->ix_m);
   1102 		/* set npe buf on rx free list */
   1103 		ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
   1104 	}
   1105 }
   1106 
   1107 static void
   1108 npeinit_macreg(struct npe_softc *sc)
   1109 {
   1110 
   1111 	/*
   1112 	 * Reset MAC core.
   1113 	 */
   1114 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
   1115 	DELAY(NPE_MAC_RESET_DELAY);
   1116 	/* configure MAC to generate MDC clock */
   1117 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
   1118 
   1119 	/* disable transmitter and reciver in the MAC */
   1120  	WR4(sc, NPE_MAC_RX_CNTRL1,
   1121 	    RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
   1122  	WR4(sc, NPE_MAC_TX_CNTRL1,
   1123 	    RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
   1124 
   1125 	/*
   1126 	 * Set the MAC core registers.
   1127 	 */
   1128 	WR4(sc, NPE_MAC_INT_CLK_THRESH, 0x1);	/* clock ratio: for ipx4xx */
   1129 	WR4(sc, NPE_MAC_TX_CNTRL2,	0xf);	/* max retries */
   1130 	WR4(sc, NPE_MAC_RANDOM_SEED,	0x8);	/* LFSR back-off seed */
   1131 	/* thresholds determined by NPE firmware FS */
   1132 	WR4(sc, NPE_MAC_THRESH_P_EMPTY,	0x12);
   1133 	WR4(sc, NPE_MAC_THRESH_P_FULL,	0x30);
   1134 	WR4(sc, NPE_MAC_BUF_SIZE_TX, NPE_MAC_BUF_SIZE_TX_DEFAULT);
   1135 						/* tx fifo threshold (bytes) */
   1136 	WR4(sc, NPE_MAC_TX_DEFER,	0x15);	/* for single deferral */
   1137 	WR4(sc, NPE_MAC_RX_DEFER,	0x16);	/* deferral on inter-frame gap*/
   1138 	WR4(sc, NPE_MAC_TX_TWO_DEFER_1,	0x8);	/* for 2-part deferral */
   1139 	WR4(sc, NPE_MAC_TX_TWO_DEFER_2,	0x7);	/* for 2-part deferral */
   1140 	WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
   1141 						/* assumes MII mode */
   1142 	WR4(sc, NPE_MAC_TX_CNTRL1,
   1143 		  NPE_TX_CNTRL1_RETRY		/* retry failed xmits */
   1144 		| NPE_TX_CNTRL1_FCS_EN		/* append FCS */
   1145 		| NPE_TX_CNTRL1_2DEFER		/* 2-part deferal */
   1146 		| NPE_TX_CNTRL1_PAD_EN);	/* pad runt frames */
   1147 	/* XXX pad strip? */
   1148 	WR4(sc, NPE_MAC_RX_CNTRL1,
   1149 		  NPE_RX_CNTRL1_CRC_EN		/* include CRC/FCS */
   1150 		| NPE_RX_CNTRL1_PAUSE_EN);	/* ena pause frame handling */
   1151 	WR4(sc, NPE_MAC_RX_CNTRL2, 0);
   1152 }
   1153 
   1154 /*
   1155  * Reset and initialize the chip
   1156  */
   1157 static void
   1158 npeinit_locked(void *xsc)
   1159 {
   1160 	struct npe_softc *sc = xsc;
   1161 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1162 
   1163 	/* Cancel any pending I/O. */
   1164 	npestop(ifp, 0);
   1165 
   1166 	/* Reset the chip to a known state. */
   1167 	npeinit_macreg(sc);
   1168 	npe_setmac(sc, CLLADDR(ifp->if_sadl));
   1169 	npe_ifmedia_change(ifp);
   1170 	npe_setmcast(sc);
   1171 
   1172 	npe_startxmit(sc);
   1173 	npe_startrecv(sc);
   1174 
   1175 	ifp->if_flags |= IFF_RUNNING;
   1176 	ifp->if_flags &= ~IFF_OACTIVE;
   1177 	ifp->if_timer = 0;		/* just in case */
   1178 
   1179 	/* enable transmitter and reciver in the MAC */
   1180  	WR4(sc, NPE_MAC_RX_CNTRL1,
   1181 	    RD4(sc, NPE_MAC_RX_CNTRL1) | NPE_RX_CNTRL1_RX_EN);
   1182  	WR4(sc, NPE_MAC_TX_CNTRL1,
   1183 	    RD4(sc, NPE_MAC_TX_CNTRL1) | NPE_TX_CNTRL1_TX_EN);
   1184 
   1185 	callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
   1186 }
   1187 
   1188 static int
   1189 npeinit(struct ifnet *ifp)
   1190 {
   1191 	struct npe_softc *sc = ifp->if_softc;
   1192 	int s;
   1193 
   1194 	s = splnet();
   1195 	npeinit_locked(sc);
   1196 	splx(s);
   1197 
   1198 	return (0);
   1199 }
   1200 
   1201 /*
   1202  * Defragment an mbuf chain, returning at most maxfrags separate
   1203  * mbufs+clusters.  If this is not possible NULL is returned and
   1204  * the original mbuf chain is left in it's present (potentially
   1205  * modified) state.  We use two techniques: collapsing consecutive
   1206  * mbufs and replacing consecutive mbufs by a cluster.
   1207  */
   1208 static __inline struct mbuf *
   1209 npe_defrag(struct mbuf *m0)
   1210 {
   1211 	struct mbuf *m;
   1212 
   1213 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1214 	if (m == NULL)
   1215 		return (NULL);
   1216 	M_COPY_PKTHDR(m, m0);
   1217 
   1218 	if ((m->m_len = m0->m_pkthdr.len) > MHLEN) {
   1219 		MCLGET(m, M_DONTWAIT);
   1220 		if ((m->m_flags & M_EXT) == 0) {
   1221 			m_freem(m);
   1222 			return (NULL);
   1223 		}
   1224 	}
   1225 
   1226 	m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1227 	m_freem(m0);
   1228 
   1229 	return (m);
   1230 }
   1231 
   1232 /*
   1233  * Dequeue packets and place on the h/w transmit queue.
   1234  */
   1235 static void
   1236 npestart(struct ifnet *ifp)
   1237 {
   1238 	struct npe_softc *sc = ifp->if_softc;
   1239 	struct npebuf *npe;
   1240 	struct npehwbuf *hw;
   1241 	struct mbuf *m, *n;
   1242 	bus_dma_segment_t *segs;
   1243 	int nseg, len, error, i;
   1244 	uint32_t next;
   1245 
   1246 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1247 		return;
   1248 
   1249 	while (sc->tx_free != NULL) {
   1250 		IFQ_DEQUEUE(&ifp->if_snd, m);
   1251 		if (m == NULL)
   1252 			break;
   1253 		npe = sc->tx_free;
   1254 		error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
   1255 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1256 		if (error == EFBIG) {
   1257 			n = npe_defrag(m);
   1258 			if (n == NULL) {
   1259 				printf("%s: %s: too many fragments\n",
   1260 				    sc->sc_dev.dv_xname, __func__);
   1261 				m_freem(m);
   1262 				return;	/* XXX? */
   1263 			}
   1264 			m = n;
   1265 			error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map,
   1266 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1267 		}
   1268 		if (error != 0) {
   1269 			printf("%s: %s: error %u\n",
   1270 			    sc->sc_dev.dv_xname, __func__, error);
   1271 			m_freem(m);
   1272 			return;	/* XXX? */
   1273 		}
   1274 		sc->tx_free = npe->ix_next;
   1275 
   1276 #if NBPFILTER > 0
   1277 		/*
   1278 		 * Tap off here if there is a bpf listener.
   1279 		 */
   1280 		if (__predict_false(ifp->if_bpf))
   1281 			bpf_mtap(ifp->if_bpf, m);
   1282 #endif
   1283 
   1284 		bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
   1285 		    npe->ix_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1286 
   1287 		npe->ix_m = m;
   1288 		hw = npe->ix_hw;
   1289 		len = m->m_pkthdr.len;
   1290 		nseg = npe->ix_map->dm_nsegs;
   1291 		segs = npe->ix_map->dm_segs;
   1292 		next = npe->ix_neaddr + sizeof(hw->ix_ne[0]);
   1293 		for (i = 0; i < nseg; i++) {
   1294 			hw->ix_ne[i].data = htobe32(segs[i].ds_addr);
   1295 			hw->ix_ne[i].len = htobe32((segs[i].ds_len<<16) | len);
   1296 			hw->ix_ne[i].next = htobe32(next);
   1297 
   1298 			len = 0;		/* zero for segments > 1 */
   1299 			next += sizeof(hw->ix_ne[0]);
   1300 		}
   1301 		hw->ix_ne[i-1].next = 0;	/* zero last in chain */
   1302 		/* XXX flush descriptor instead of using uncached memory */
   1303 
   1304 		DPRINTF(sc, "%s: qwrite(%u, 0x%x) ne_data %x ne_len 0x%x\n",
   1305 		    __func__, sc->tx_qid, npe->ix_neaddr,
   1306 		    hw->ix_ne[0].data, hw->ix_ne[0].len);
   1307 		/* stick it on the tx q */
   1308 		/* XXX add vlan priority */
   1309 		ixpqmgr_qwrite(sc->tx_qid, npe->ix_neaddr);
   1310 
   1311 		ifp->if_timer = 5;
   1312 	}
   1313 	if (sc->tx_free == NULL)
   1314 		ifp->if_flags |= IFF_OACTIVE;
   1315 }
   1316 
   1317 static void
   1318 npe_stopxmit(struct npe_softc *sc)
   1319 {
   1320 	struct npedma *dma = &sc->txdma;
   1321 	int i;
   1322 
   1323 	/* XXX qmgr */
   1324 	for (i = 0; i < dma->nbuf; i++) {
   1325 		struct npebuf *npe = &dma->buf[i];
   1326 
   1327 		if (npe->ix_m != NULL) {
   1328 			bus_dmamap_unload(sc->sc_dt, npe->ix_map);
   1329 			m_freem(npe->ix_m);
   1330 			npe->ix_m = NULL;
   1331 		}
   1332 	}
   1333 }
   1334 
   1335 static void
   1336 npe_stoprecv(struct npe_softc *sc)
   1337 {
   1338 	struct npedma *dma = &sc->rxdma;
   1339 	int i;
   1340 
   1341 	/* XXX qmgr */
   1342 	for (i = 0; i < dma->nbuf; i++) {
   1343 		struct npebuf *npe = &dma->buf[i];
   1344 
   1345 		if (npe->ix_m != NULL) {
   1346 			bus_dmamap_unload(sc->sc_dt, npe->ix_map);
   1347 			m_freem(npe->ix_m);
   1348 			npe->ix_m = NULL;
   1349 		}
   1350 	}
   1351 }
   1352 
   1353 /*
   1354  * Turn off interrupts, and stop the nic.
   1355  */
   1356 void
   1357 npestop(struct ifnet *ifp, int disable)
   1358 {
   1359 	struct npe_softc *sc = ifp->if_softc;
   1360 
   1361 	/*  disable transmitter and reciver in the MAC  */
   1362  	WR4(sc, NPE_MAC_RX_CNTRL1,
   1363 	    RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
   1364  	WR4(sc, NPE_MAC_TX_CNTRL1,
   1365 	    RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
   1366 
   1367 	callout_stop(&sc->sc_tick_ch);
   1368 
   1369 	npe_stopxmit(sc);
   1370 	npe_stoprecv(sc);
   1371 	/* XXX go into loopback & drain q's? */
   1372 	/* XXX but beware of disabling tx above */
   1373 
   1374 	/*
   1375 	 * The MAC core rx/tx disable may leave the MAC hardware in an
   1376 	 * unpredictable state. A hw reset is executed before resetting
   1377 	 * all the MAC parameters to a known value.
   1378 	 */
   1379 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
   1380 	DELAY(NPE_MAC_RESET_DELAY);
   1381 	WR4(sc, NPE_MAC_INT_CLK_THRESH, NPE_MAC_INT_CLK_THRESH_DEFAULT);
   1382 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
   1383 
   1384 	ifp->if_timer = 0;
   1385 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1386 }
   1387 
   1388 void
   1389 npewatchdog(struct ifnet *ifp)
   1390 {
   1391 	struct npe_softc *sc = ifp->if_softc;
   1392 	int s;
   1393 
   1394 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1395 	s = splnet();
   1396 	ifp->if_oerrors++;
   1397 	npeinit_locked(sc);
   1398 	splx(s);
   1399 }
   1400 
   1401 static int
   1402 npeioctl(struct ifnet *ifp, u_long cmd, void *data)
   1403 {
   1404 	struct npe_softc *sc = ifp->if_softc;
   1405 	struct ifreq *ifr = (struct ifreq *) data;
   1406 	int s, error = 0;
   1407 
   1408 	s = splnet();
   1409 
   1410 	switch (cmd) {
   1411 	case SIOCSIFMEDIA:
   1412 	case SIOCGIFMEDIA:
   1413 #if 0 /* not yet */
   1414 		/* Flow control requires full-duplex mode. */
   1415 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1416 		    (ifr->ifr_media & IFM_FDX) == 0)
   1417 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1418 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1419 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1420 				/* We can do both TXPAUSE and RXPAUSE. */
   1421 				ifr->ifr_media |=
   1422 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1423 			}
   1424 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1425 		}
   1426 #endif
   1427 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1428 		break;
   1429 	case SIOCSIFFLAGS:
   1430 		if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == IFF_RUNNING) {
   1431 			/*
   1432 			 * If interface is marked down and it is running,
   1433 			 * then stop and disable it.
   1434 			 */
   1435 			(*ifp->if_stop)(ifp, 1);
   1436 		} else if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == IFF_UP) {
   1437 			/*
   1438 			 * If interface is marked up and it is stopped, then
   1439 			 * start it.
   1440 			 */
   1441 			error = (*ifp->if_init)(ifp);
   1442 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1443 			int diff;
   1444 
   1445 			/* Up (AND RUNNING). */
   1446 
   1447 			diff = (ifp->if_flags ^ sc->sc_if_flags)
   1448 			    & (IFF_PROMISC|IFF_ALLMULTI);
   1449 			if ((diff & (IFF_PROMISC|IFF_ALLMULTI)) != 0) {
   1450 				/*
   1451 				 * If the difference bettween last flag and
   1452 				 * new flag only IFF_PROMISC or IFF_ALLMULTI,
   1453 				 * set multicast filter only (don't reset to
   1454 				 * prevent link down).
   1455 				 */
   1456 				npe_setmcast(sc);
   1457 			} else {
   1458 				/*
   1459 				 * Reset the interface to pick up changes in
   1460 				 * any other flags that affect the hardware
   1461 				 * state.
   1462 				 */
   1463 				error = (*ifp->if_init)(ifp);
   1464 			}
   1465 		}
   1466 		sc->sc_if_flags = ifp->if_flags;
   1467 		break;
   1468 	default:
   1469 		error = ether_ioctl(ifp, cmd, data);
   1470 		if (error == ENETRESET) {
   1471 			/*
   1472 			 * Multicast list has changed; set the hardware filter
   1473 			 * accordingly.
   1474 			 */
   1475 			npe_setmcast(sc);
   1476 			error = 0;
   1477 		}
   1478 	}
   1479 
   1480 	npestart(ifp);
   1481 
   1482 	splx(s);
   1483 	return error;
   1484 }
   1485 
   1486 /*
   1487  * Setup a traffic class -> rx queue mapping.
   1488  */
   1489 static int
   1490 npe_setrxqosentry(struct npe_softc *sc, int classix, int trafclass, int qid)
   1491 {
   1492 	int npeid = npeconfig[sc->sc_unit].npeid;
   1493 	uint32_t msg[2];
   1494 
   1495 	msg[0] = (NPE_SETRXQOSENTRY << 24) | (npeid << 20) | classix;
   1496 	msg[1] = (trafclass << 24) | (1 << 23) | (qid << 16) | (qid << 4);
   1497 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
   1498 }
   1499 
   1500 /*
   1501  * Update and reset the statistics in the NPE.
   1502  */
   1503 static int
   1504 npe_updatestats(struct npe_softc *sc)
   1505 {
   1506 	uint32_t msg[2];
   1507 
   1508 	msg[0] = NPE_RESETSTATS << NPE_MAC_MSGID_SHL;
   1509 	msg[1] = sc->sc_stats_phys;	/* physical address of stat block */
   1510 	return ixpnpe_sendmsg(sc->sc_npe, msg);		/* NB: no recv */
   1511 }
   1512 
   1513 #if 0
   1514 /*
   1515  * Get the current statistics block.
   1516  */
   1517 static int
   1518 npe_getstats(struct npe_softc *sc)
   1519 {
   1520 	uint32_t msg[2];
   1521 
   1522 	msg[0] = NPE_GETSTATS << NPE_MAC_MSGID_SHL;
   1523 	msg[1] = sc->sc_stats_phys;	/* physical address of stat block */
   1524 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
   1525 }
   1526 
   1527 /*
   1528  * Query the image id of the loaded firmware.
   1529  */
   1530 static uint32_t
   1531 npe_getimageid(struct npe_softc *sc)
   1532 {
   1533 	uint32_t msg[2];
   1534 
   1535 	msg[0] = NPE_GETSTATUS << NPE_MAC_MSGID_SHL;
   1536 	msg[1] = 0;
   1537 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg) == 0 ? msg[1] : 0;
   1538 }
   1539 
   1540 /*
   1541  * Enable/disable loopback.
   1542  */
   1543 static int
   1544 npe_setloopback(struct npe_softc *sc, int ena)
   1545 {
   1546 	uint32_t msg[2];
   1547 
   1548 	msg[0] = (NPE_SETLOOPBACK << NPE_MAC_MSGID_SHL) | (ena != 0);
   1549 	msg[1] = 0;
   1550 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
   1551 }
   1552 #endif
   1553 
   1554 /*
   1555  * MII bus support routines.
   1556  *
   1557  * NB: ixp425 has one PHY per NPE
   1558  */
   1559 static uint32_t
   1560 npe_mii_mdio_read(struct npe_softc *sc, int reg)
   1561 {
   1562 #define	MII_RD4(sc, reg)	bus_space_read_4(sc->sc_iot, sc->sc_miih, reg)
   1563 	uint32_t v;
   1564 
   1565 	/* NB: registers are known to be sequential */
   1566 	v =  (MII_RD4(sc, reg+0) & 0xff) << 0;
   1567 	v |= (MII_RD4(sc, reg+4) & 0xff) << 8;
   1568 	v |= (MII_RD4(sc, reg+8) & 0xff) << 16;
   1569 	v |= (MII_RD4(sc, reg+12) & 0xff) << 24;
   1570 	return v;
   1571 #undef MII_RD4
   1572 }
   1573 
   1574 static void
   1575 npe_mii_mdio_write(struct npe_softc *sc, int reg, uint32_t cmd)
   1576 {
   1577 #define	MII_WR4(sc, reg, v) \
   1578 	bus_space_write_4(sc->sc_iot, sc->sc_miih, reg, v)
   1579 
   1580 	/* NB: registers are known to be sequential */
   1581 	MII_WR4(sc, reg+0, cmd & 0xff);
   1582 	MII_WR4(sc, reg+4, (cmd >> 8) & 0xff);
   1583 	MII_WR4(sc, reg+8, (cmd >> 16) & 0xff);
   1584 	MII_WR4(sc, reg+12, (cmd >> 24) & 0xff);
   1585 #undef MII_WR4
   1586 }
   1587 
   1588 static int
   1589 npe_mii_mdio_wait(struct npe_softc *sc)
   1590 {
   1591 #define	MAXTRIES	100	/* XXX */
   1592 	uint32_t v;
   1593 	int i;
   1594 
   1595 	for (i = 0; i < MAXTRIES; i++) {
   1596 		v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_CMD);
   1597 		if ((v & NPE_MII_GO) == 0)
   1598 			return 1;
   1599 	}
   1600 	return 0;		/* NB: timeout */
   1601 #undef MAXTRIES
   1602 }
   1603 
   1604 static int
   1605 npe_miibus_readreg(struct device *self, int phy, int reg)
   1606 {
   1607 	struct npe_softc *sc = (void *)self;
   1608 	uint32_t v;
   1609 
   1610 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
   1611 		return 0xffff;
   1612 	v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
   1613 	  | NPE_MII_GO;
   1614 	npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
   1615 	if (npe_mii_mdio_wait(sc))
   1616 		v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_STS);
   1617 	else
   1618 		v = 0xffff | NPE_MII_READ_FAIL;
   1619 	return (v & NPE_MII_READ_FAIL) ? 0xffff : (v & 0xffff);
   1620 #undef MAXTRIES
   1621 }
   1622 
   1623 static void
   1624 npe_miibus_writereg(struct device *self, int phy, int reg, int data)
   1625 {
   1626 	struct npe_softc *sc = (void *)self;
   1627 	uint32_t v;
   1628 
   1629 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
   1630 		return;
   1631 	v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
   1632 	  | data | NPE_MII_WRITE
   1633 	  | NPE_MII_GO;
   1634 	npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
   1635 	/* XXX complain about timeout */
   1636 	(void) npe_mii_mdio_wait(sc);
   1637 }
   1638 
   1639 static void
   1640 npe_miibus_statchg(struct device *self)
   1641 {
   1642 	struct npe_softc *sc = (void *)self;
   1643 	uint32_t tx1, rx1;
   1644 
   1645 	/* sync MAC duplex state */
   1646 	tx1 = RD4(sc, NPE_MAC_TX_CNTRL1);
   1647 	rx1 = RD4(sc, NPE_MAC_RX_CNTRL1);
   1648 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1649 		tx1 &= ~NPE_TX_CNTRL1_DUPLEX;
   1650 		rx1 |= NPE_RX_CNTRL1_PAUSE_EN;
   1651 	} else {
   1652 		tx1 |= NPE_TX_CNTRL1_DUPLEX;
   1653 		rx1 &= ~NPE_RX_CNTRL1_PAUSE_EN;
   1654 	}
   1655 	WR4(sc, NPE_MAC_RX_CNTRL1, rx1);
   1656 	WR4(sc, NPE_MAC_TX_CNTRL1, tx1);
   1657 }
   1658