Home | History | Annotate | Line # | Download | only in xscale
ixp425_if_npe.c revision 1.14
      1 /*	$NetBSD: ixp425_if_npe.c,v 1.14 2009/03/11 13:20:30 msaitoh Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2006 Sam Leffler.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     25  */
     26 
     27 #include <sys/cdefs.h>
     28 #if 0
     29 __FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/if_npe.c,v 1.1 2006/11/19 23:55:23 sam Exp $");
     30 #endif
     31 __KERNEL_RCSID(0, "$NetBSD: ixp425_if_npe.c,v 1.14 2009/03/11 13:20:30 msaitoh Exp $");
     32 
     33 /*
     34  * Intel XScale NPE Ethernet driver.
     35  *
     36  * This driver handles the two ports present on the IXP425.
     37  * Packet processing is done by the Network Processing Engines
     38  * (NPE's) that work together with a MAC and PHY. The MAC
     39  * is also mapped to the XScale cpu; the PHY is accessed via
     40  * the MAC. NPE-XScale communication happens through h/w
     41  * queues managed by the Q Manager block.
     42  *
     43  * The code here replaces the ethAcc, ethMii, and ethDB classes
     44  * in the Intel Access Library (IAL) and the OS-specific driver.
     45  *
     46  * XXX add vlan support
     47  * XXX NPE-C port doesn't work yet
     48  */
     49 
     50 #include "bpfilter.h"
     51 
     52 #include <sys/param.h>
     53 #include <sys/systm.h>
     54 #include <sys/kernel.h>
     55 #include <sys/device.h>
     56 #include <sys/callout.h>
     57 #include <sys/mbuf.h>
     58 #include <sys/malloc.h>
     59 #include <sys/socket.h>
     60 #include <sys/endian.h>
     61 #include <sys/ioctl.h>
     62 #include <sys/syslog.h>
     63 
     64 #include <machine/bus.h>
     65 
     66 #include <net/if.h>
     67 #include <net/if_dl.h>
     68 #include <net/if_media.h>
     69 #include <net/if_ether.h>
     70 
     71 #if NBPFILTER > 0
     72 #include <net/bpf.h>
     73 #endif
     74 
     75 #include <arm/xscale/ixp425reg.h>
     76 #include <arm/xscale/ixp425var.h>
     77 #include <arm/xscale/ixp425_qmgr.h>
     78 #include <arm/xscale/ixp425_npevar.h>
     79 #include <arm/xscale/ixp425_if_npereg.h>
     80 
     81 #include <dev/mii/miivar.h>
     82 
     83 #include "locators.h"
     84 
     85 struct npebuf {
     86 	struct npebuf	*ix_next;	/* chain to next buffer */
     87 	void		*ix_m;		/* backpointer to mbuf */
     88 	bus_dmamap_t	ix_map;		/* bus dma map for associated data */
     89 	struct npehwbuf	*ix_hw;		/* associated h/w block */
     90 	uint32_t	ix_neaddr;	/* phys address of ix_hw */
     91 };
     92 
     93 struct npedma {
     94 	const char*	name;
     95 	int		nbuf;		/* # npebuf's allocated */
     96 	bus_dmamap_t	m_map;
     97 	struct npehwbuf	*hwbuf;		/* NPE h/w buffers */
     98 	bus_dmamap_t	buf_map;
     99 	bus_addr_t	buf_phys;	/* phys addr of buffers */
    100 	struct npebuf	*buf;		/* s/w buffers (1-1 w/ h/w) */
    101 };
    102 
    103 struct npe_softc {
    104 	struct device	sc_dev;
    105 	struct ethercom	sc_ethercom;
    106 	uint8_t		sc_enaddr[ETHER_ADDR_LEN];
    107 	struct mii_data	sc_mii;
    108 	bus_space_tag_t	sc_iot;
    109 	bus_dma_tag_t	sc_dt;
    110 	bus_space_handle_t sc_ioh;	/* MAC register window */
    111 	bus_space_handle_t sc_miih;	/* MII register window */
    112 	struct ixpnpe_softc *sc_npe;	/* NPE support */
    113 	int		sc_unit;
    114 	int		sc_phy;
    115 	struct callout	sc_tick_ch;	/* Tick callout */
    116 	struct npedma	txdma;
    117 	struct npebuf	*tx_free;	/* list of free tx buffers */
    118 	struct npedma	rxdma;
    119 	int		rx_qid;		/* rx qid */
    120 	int		rx_freeqid;	/* rx free buffers qid */
    121 	int		tx_qid;		/* tx qid */
    122 	int		tx_doneqid;	/* tx completed qid */
    123 	struct npestats	*sc_stats;
    124 	bus_dmamap_t	sc_stats_map;
    125 	bus_addr_t	sc_stats_phys;	/* phys addr of sc_stats */
    126 	int		sc_if_flags;	/* keep last if_flags */
    127 };
    128 
    129 /*
    130  * Per-unit static configuration for IXP425.  The tx and
    131  * rx free Q id's are fixed by the NPE microcode.  The
    132  * rx Q id's are programmed to be separate to simplify
    133  * multi-port processing.  It may be better to handle
    134  * all traffic through one Q (as done by the Intel drivers).
    135  *
    136  * Note that the PHY's are accessible only from MAC A
    137  * on the IXP425.  This and other platform-specific
    138  * assumptions probably need to be handled through hints.
    139  */
    140 static const struct {
    141 	const char	*desc;		/* device description */
    142 	int		npeid;		/* NPE assignment */
    143 	uint32_t	imageid;	/* NPE firmware image id */
    144 	uint32_t	regbase;
    145 	int		regsize;
    146 	uint32_t	miibase;
    147 	int		miisize;
    148 	uint8_t		rx_qid;
    149 	uint8_t		rx_freeqid;
    150 	uint8_t		tx_qid;
    151 	uint8_t		tx_doneqid;
    152 } npeconfig[NPE_PORTS_MAX] = {
    153 	{ .desc		= "IXP NPE-B",
    154 	  .npeid	= NPE_B,
    155 	  .imageid	= IXP425_NPE_B_IMAGEID,
    156 	  .regbase	= IXP425_MAC_A_HWBASE,
    157 	  .regsize	= IXP425_MAC_A_SIZE,
    158 	  .miibase	= IXP425_MAC_A_HWBASE,
    159 	  .miisize	= IXP425_MAC_A_SIZE,
    160 	  .rx_qid	= 4,
    161 	  .rx_freeqid	= 27,
    162 	  .tx_qid	= 24,
    163 	  .tx_doneqid	= 31
    164 	},
    165 	{ .desc		= "IXP NPE-C",
    166 	  .npeid	= NPE_C,
    167 	  .imageid	= IXP425_NPE_C_IMAGEID,
    168 	  .regbase	= IXP425_MAC_B_HWBASE,
    169 	  .regsize	= IXP425_MAC_B_SIZE,
    170 	  .miibase	= IXP425_MAC_A_HWBASE,
    171 	  .miisize	= IXP425_MAC_A_SIZE,
    172 	  .rx_qid	= 12,
    173 	  .rx_freeqid	= 28,
    174 	  .tx_qid	= 25,
    175 	  .tx_doneqid	= 31
    176 	},
    177 };
    178 static struct npe_softc *npes[NPE_MAX];	/* NB: indexed by npeid */
    179 
    180 static __inline uint32_t
    181 RD4(struct npe_softc *sc, bus_size_t off)
    182 {
    183 	return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
    184 }
    185 
    186 static __inline void
    187 WR4(struct npe_softc *sc, bus_size_t off, uint32_t val)
    188 {
    189 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
    190 }
    191 
    192 static int	npe_activate(struct npe_softc *);
    193 #if 0
    194 static void	npe_deactivate(struct npe_softc *);
    195 #endif
    196 static int	npe_ifmedia_change(struct ifnet *ifp);
    197 static void	npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr);
    198 static void	npe_setmac(struct npe_softc *sc, const u_char *eaddr);
    199 static void	npe_getmac(struct npe_softc *sc);
    200 static void	npe_txdone(int qid, void *arg);
    201 static int	npe_rxbuf_init(struct npe_softc *, struct npebuf *,
    202 			struct mbuf *);
    203 static void	npe_rxdone(int qid, void *arg);
    204 static void	npeinit_macreg(struct npe_softc *);
    205 static int	npeinit(struct ifnet *);
    206 static void	npeinit_locked(void *);
    207 static void	npestart(struct ifnet *);
    208 static void	npestop(struct ifnet *, int);
    209 static void	npewatchdog(struct ifnet *);
    210 static int	npeioctl(struct ifnet * ifp, u_long, void *);
    211 
    212 static int	npe_setrxqosentry(struct npe_softc *, int classix,
    213 			int trafclass, int qid);
    214 static int	npe_updatestats(struct npe_softc *);
    215 #if 0
    216 static int	npe_getstats(struct npe_softc *);
    217 static uint32_t	npe_getimageid(struct npe_softc *);
    218 static int	npe_setloopback(struct npe_softc *, int ena);
    219 #endif
    220 
    221 static int	npe_miibus_readreg(struct device *, int, int);
    222 static void	npe_miibus_writereg(struct device *, int, int, int);
    223 static void	npe_miibus_statchg(struct device *);
    224 
    225 static int	npe_debug;
    226 #define DPRINTF(sc, fmt, ...) do {			\
    227 	if (npe_debug) printf(fmt, __VA_ARGS__);	\
    228 } while (0)
    229 #define DPRINTFn(n, sc, fmt, ...) do {			\
    230 	if (npe_debug >= n) printf(fmt, __VA_ARGS__);	\
    231 } while (0)
    232 
    233 #define	NPE_TXBUF	128
    234 #define	NPE_RXBUF	64
    235 
    236 #ifndef ETHER_ALIGN
    237 #define	ETHER_ALIGN	2	/* XXX: Ditch this */
    238 #endif
    239 
    240 #define MAC2UINT64(addr)	(((uint64_t)addr[0] << 40)	\
    241 				    + ((uint64_t)addr[1] << 32)	\
    242 				    + ((uint64_t)addr[2] << 24)	\
    243 				    + ((uint64_t)addr[3] << 16)	\
    244 				    + ((uint64_t)addr[4] << 8)	\
    245 				    + (uint64_t)addr[5])
    246 
    247 /* NB: all tx done processing goes through one queue */
    248 static int tx_doneqid = -1;
    249 
    250 void (*npe_getmac_md)(int, uint8_t *);
    251 
    252 static int npe_match(struct device *, struct cfdata *, void *);
    253 static void npe_attach(struct device *, struct device *, void *);
    254 
    255 CFATTACH_DECL(npe, sizeof(struct npe_softc),
    256     npe_match, npe_attach, NULL, NULL);
    257 
    258 static int
    259 npe_match(struct device *parent, struct cfdata *cf, void *arg)
    260 {
    261 	struct ixpnpe_attach_args *na = arg;
    262 
    263 	return (na->na_unit == NPE_B || na->na_unit == NPE_C);
    264 }
    265 
    266 static void
    267 npe_attach(struct device *parent, struct device *self, void *arg)
    268 {
    269 	struct npe_softc *sc = (void *)self;
    270 	struct ixpnpe_attach_args *na = arg;
    271 	struct ifnet *ifp;
    272 
    273 	aprint_naive("\n");
    274 	aprint_normal(": Ethernet co-processor\n");
    275 
    276 	sc->sc_iot = na->na_iot;
    277 	sc->sc_dt = na->na_dt;
    278 	sc->sc_npe = na->na_npe;
    279 	sc->sc_unit = (na->na_unit == NPE_B) ? 0 : 1;
    280 	sc->sc_phy = na->na_phy;
    281 
    282 	memset(&sc->sc_ethercom, 0, sizeof(sc->sc_ethercom));
    283 	memset(&sc->sc_mii, 0, sizeof(sc->sc_mii));
    284 
    285 	callout_init(&sc->sc_tick_ch, 0);
    286 
    287 	if (npe_activate(sc)) {
    288 		aprint_error("%s: Failed to activate NPE (missing "
    289 		    "microcode?)\n", sc->sc_dev.dv_xname);
    290 		return;
    291 	}
    292 
    293 	npe_getmac(sc);
    294 	npeinit_macreg(sc);
    295 
    296 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    297 	    ether_sprintf(sc->sc_enaddr));
    298 
    299 	ifp = &sc->sc_ethercom.ec_if;
    300 	ifmedia_init(&sc->sc_mii.mii_media, 0, npe_ifmedia_change,
    301 	    npe_ifmedia_status);
    302 
    303 	if (sc->sc_phy != IXPNPECF_PHY_DEFAULT) {
    304 		sc->sc_mii.mii_ifp = ifp;
    305 		sc->sc_mii.mii_readreg = npe_miibus_readreg;
    306 		sc->sc_mii.mii_writereg = npe_miibus_writereg;
    307 		sc->sc_mii.mii_statchg = npe_miibus_statchg;
    308 		sc->sc_ethercom.ec_mii = &sc->sc_mii;
    309 
    310 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
    311 		    (sc->sc_phy > IXPNPECF_PHY_DEFAULT) ?
    312 		      sc->sc_phy : MII_PHY_ANY,
    313 		    MII_OFFSET_ANY, MIIF_NOISOLATE);
    314 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
    315 	} else {
    316 		/* Assume direct connection to a 100mbit switch */
    317 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_100_TX, 0,0);
    318 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_100_TX);
    319 	}
    320 
    321 	ifp->if_softc = sc;
    322 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    323 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    324 	ifp->if_start = npestart;
    325 	ifp->if_ioctl = npeioctl;
    326 	ifp->if_watchdog = npewatchdog;
    327 	ifp->if_init = npeinit;
    328 	ifp->if_stop = npestop;
    329 	IFQ_SET_READY(&ifp->if_snd);
    330 
    331 	/* VLAN capable */
    332 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    333 
    334 	if_attach(ifp);
    335 	ether_ifattach(ifp, sc->sc_enaddr);
    336 }
    337 
    338 /*
    339  * Compute and install the multicast filter.
    340  */
    341 static void
    342 npe_setmcast(struct npe_softc *sc)
    343 {
    344 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    345 	uint8_t mask[ETHER_ADDR_LEN], addr[ETHER_ADDR_LEN];
    346 	uint32_t reg;
    347 	int i;
    348 
    349 	/* Always use filter. Is here a correct position? */
    350 	reg = RD4(sc, NPE_MAC_RX_CNTRL1);
    351 	WR4(sc, NPE_MAC_RX_CNTRL1, reg | NPE_RX_CNTRL1_ADDR_FLTR_EN);
    352 
    353 	if (ifp->if_flags & IFF_PROMISC) {
    354 		memset(mask, 0, ETHER_ADDR_LEN);
    355 		memset(addr, 0, ETHER_ADDR_LEN);
    356 	} else if (ifp->if_flags & IFF_ALLMULTI) {
    357 		static const uint8_t allmulti[ETHER_ADDR_LEN] =
    358 		    { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
    359  all_multi:
    360 		memcpy(mask, allmulti, ETHER_ADDR_LEN);
    361 		memcpy(addr, allmulti, ETHER_ADDR_LEN);
    362 	} else {
    363 		uint8_t clr[ETHER_ADDR_LEN], set[ETHER_ADDR_LEN];
    364 		struct ether_multistep step;
    365 		struct ether_multi *enm;
    366 
    367 		memset(clr, 0, ETHER_ADDR_LEN);
    368 		memset(set, 0xff, ETHER_ADDR_LEN);
    369 
    370 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    371 		while (enm != NULL) {
    372 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
    373 				ifp->if_flags |= IFF_ALLMULTI;
    374 				goto all_multi;
    375 			}
    376 
    377 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
    378 				clr[i] |= enm->enm_addrlo[i];
    379 				set[i] &= enm->enm_addrlo[i];
    380 			}
    381 
    382 			ETHER_NEXT_MULTI(step, enm);
    383 		}
    384 
    385 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
    386 			mask[i] = set[i] | ~clr[i];
    387 			addr[i] = set[i];
    388 		}
    389 	}
    390 
    391 	/*
    392 	 * Write the mask and address registers.
    393 	 */
    394 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
    395 		WR4(sc, NPE_MAC_ADDR_MASK(i), mask[i]);
    396 		WR4(sc, NPE_MAC_ADDR(i), addr[i]);
    397 	}
    398 }
    399 
    400 static int
    401 npe_dma_setup(struct npe_softc *sc, struct npedma *dma,
    402 	const char *name, int nbuf, int maxseg)
    403 {
    404 	bus_dma_segment_t seg;
    405 	int rseg, error, i;
    406 	void *hwbuf;
    407 	size_t size;
    408 
    409 	memset(dma, 0, sizeof(*dma));
    410 
    411 	dma->name = name;
    412 	dma->nbuf = nbuf;
    413 
    414 	size = nbuf * sizeof(struct npehwbuf);
    415 
    416 	/* XXX COHERENT for now */
    417 	error = bus_dmamem_alloc(sc->sc_dt, size, sizeof(uint32_t), 0, &seg,
    418 	    1, &rseg, BUS_DMA_NOWAIT);
    419 	if (error) {
    420 		printf("%s: unable to allocate memory for %s h/w buffers, "
    421 		    "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
    422 	}
    423 
    424 	error = bus_dmamem_map(sc->sc_dt, &seg, 1, size, &hwbuf,
    425 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_NOCACHE);
    426 	if (error) {
    427 		printf("%s: unable to map memory for %s h/w buffers, "
    428 		    "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
    429  free_dmamem:
    430 		bus_dmamem_free(sc->sc_dt, &seg, rseg);
    431 		return error;
    432 	}
    433 	dma->hwbuf = (void *)hwbuf;
    434 
    435 	error = bus_dmamap_create(sc->sc_dt, size, 1, size, 0,
    436 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &dma->buf_map);
    437 	if (error) {
    438 		printf("%s: unable to create map for %s h/w buffers, "
    439 		    "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
    440  unmap_dmamem:
    441 		dma->hwbuf = NULL;
    442 		bus_dmamem_unmap(sc->sc_dt, hwbuf, size);
    443 		goto free_dmamem;
    444 	}
    445 
    446 	error = bus_dmamap_load(sc->sc_dt, dma->buf_map, hwbuf, size, NULL,
    447 	    BUS_DMA_NOWAIT);
    448 	if (error) {
    449 		printf("%s: unable to load map for %s h/w buffers, "
    450 		    "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
    451  destroy_dmamap:
    452 		bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
    453 		goto unmap_dmamem;
    454 	}
    455 
    456 	/* XXX M_TEMP */
    457 	dma->buf = malloc(nbuf * sizeof(struct npebuf), M_TEMP, M_NOWAIT | M_ZERO);
    458 	if (dma->buf == NULL) {
    459 		printf("%s: unable to allocate memory for %s s/w buffers\n",
    460 		    sc->sc_dev.dv_xname, dma->name);
    461 		bus_dmamap_unload(sc->sc_dt, dma->buf_map);
    462 		error = ENOMEM;
    463 		goto destroy_dmamap;
    464 	}
    465 
    466 	dma->buf_phys = dma->buf_map->dm_segs[0].ds_addr;
    467 	for (i = 0; i < dma->nbuf; i++) {
    468 		struct npebuf *npe = &dma->buf[i];
    469 		struct npehwbuf *hw = &dma->hwbuf[i];
    470 
    471 		/* calculate offset to shared area */
    472 		npe->ix_neaddr = dma->buf_phys +
    473 			((uintptr_t)hw - (uintptr_t)dma->hwbuf);
    474 		KASSERT((npe->ix_neaddr & 0x1f) == 0);
    475 		error = bus_dmamap_create(sc->sc_dt, MCLBYTES, maxseg,
    476 		    MCLBYTES, 0, 0, &npe->ix_map);
    477 		if (error != 0) {
    478 			printf("%s: unable to create dmamap for %s buffer %u, "
    479 			    "error %u\n", sc->sc_dev.dv_xname, dma->name, i,
    480 			    error);
    481 			/* XXXSCW: Free up maps... */
    482 			return error;
    483 		}
    484 		npe->ix_hw = hw;
    485 	}
    486 	bus_dmamap_sync(sc->sc_dt, dma->buf_map, 0, dma->buf_map->dm_mapsize,
    487 	    BUS_DMASYNC_PREWRITE);
    488 	return 0;
    489 }
    490 
    491 #if 0
    492 static void
    493 npe_dma_destroy(struct npe_softc *sc, struct npedma *dma)
    494 {
    495 	int i;
    496 
    497 /* XXXSCW: Clean this up */
    498 
    499 	if (dma->hwbuf != NULL) {
    500 		for (i = 0; i < dma->nbuf; i++) {
    501 			struct npebuf *npe = &dma->buf[i];
    502 			bus_dmamap_destroy(sc->sc_dt, npe->ix_map);
    503 		}
    504 		bus_dmamap_unload(sc->sc_dt, dma->buf_map);
    505 		bus_dmamem_free(sc->sc_dt, (void *)dma->hwbuf, dma->buf_map);
    506 		bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
    507 	}
    508 	if (dma->buf != NULL)
    509 		free(dma->buf, M_TEMP);
    510 	memset(dma, 0, sizeof(*dma));
    511 }
    512 #endif
    513 
    514 static int
    515 npe_activate(struct npe_softc *sc)
    516 {
    517 	bus_dma_segment_t seg;
    518 	int unit = sc->sc_unit;
    519 	int error, i, rseg;
    520 	void *statbuf;
    521 
    522 	/* load NPE firmware and start it running */
    523 	error = ixpnpe_init(sc->sc_npe, "npe_fw", npeconfig[unit].imageid);
    524 	if (error != 0)
    525 		return error;
    526 
    527 	if (bus_space_map(sc->sc_iot, npeconfig[unit].regbase,
    528 	    npeconfig[unit].regsize, 0, &sc->sc_ioh)) {
    529 		printf("%s: Cannot map registers 0x%x:0x%x\n",
    530 		    sc->sc_dev.dv_xname, npeconfig[unit].regbase,
    531 		    npeconfig[unit].regsize);
    532 		return ENOMEM;
    533 	}
    534 
    535 	if (npeconfig[unit].miibase != npeconfig[unit].regbase) {
    536 		/*
    537 		 * The PHY's are only accessible from one MAC (it appears)
    538 		 * so for other MAC's setup an additional mapping for
    539 		 * frobbing the PHY registers.
    540 		 */
    541 		if (bus_space_map(sc->sc_iot, npeconfig[unit].miibase,
    542 		    npeconfig[unit].miisize, 0, &sc->sc_miih)) {
    543 			printf("%s: Cannot map MII registers 0x%x:0x%x\n",
    544 			    sc->sc_dev.dv_xname, npeconfig[unit].miibase,
    545 			    npeconfig[unit].miisize);
    546 			return ENOMEM;
    547 		}
    548 	} else
    549 		sc->sc_miih = sc->sc_ioh;
    550 	error = npe_dma_setup(sc, &sc->txdma, "tx", NPE_TXBUF, NPE_MAXSEG);
    551 	if (error != 0)
    552 		return error;
    553 	error = npe_dma_setup(sc, &sc->rxdma, "rx", NPE_RXBUF, 1);
    554 	if (error != 0)
    555 		return error;
    556 
    557 	/* setup statistics block */
    558 	error = bus_dmamem_alloc(sc->sc_dt, sizeof(struct npestats),
    559 	    sizeof(uint32_t), 0, &seg, 1, &rseg, BUS_DMA_NOWAIT);
    560 	if (error) {
    561 		printf("%s: unable to allocate memory for stats block, "
    562 		    "error %u\n", sc->sc_dev.dv_xname, error);
    563 		return error;
    564 	}
    565 
    566 	error = bus_dmamem_map(sc->sc_dt, &seg, 1, sizeof(struct npestats),
    567 	    &statbuf, BUS_DMA_NOWAIT);
    568 	if (error) {
    569 		printf("%s: unable to map memory for stats block, "
    570 		    "error %u\n", sc->sc_dev.dv_xname, error);
    571 		return error;
    572 	}
    573 	sc->sc_stats = (void *)statbuf;
    574 
    575 	error = bus_dmamap_create(sc->sc_dt, sizeof(struct npestats), 1,
    576 	    sizeof(struct npestats), 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    577 	    &sc->sc_stats_map);
    578 	if (error) {
    579 		printf("%s: unable to create map for stats block, "
    580 		    "error %u\n", sc->sc_dev.dv_xname, error);
    581 		return error;
    582 	}
    583 
    584 	if (bus_dmamap_load(sc->sc_dt, sc->sc_stats_map, sc->sc_stats,
    585 	    sizeof(struct npestats), NULL, BUS_DMA_NOWAIT) != 0) {
    586 		printf("%s: unable to load memory for stats block, error %u\n",
    587 		    sc->sc_dev.dv_xname, error);
    588 		return error;
    589 	}
    590 	sc->sc_stats_phys = sc->sc_stats_map->dm_segs[0].ds_addr;
    591 
    592 	/* XXX disable half-bridge LEARNING+FILTERING feature */
    593 
    594 	/*
    595 	 * Setup h/w rx/tx queues.  There are four q's:
    596 	 *   rx		inbound q of rx'd frames
    597 	 *   rx_free	pool of ixpbuf's for receiving frames
    598 	 *   tx		outbound q of frames to send
    599 	 *   tx_done	q of tx frames that have been processed
    600 	 *
    601 	 * The NPE handles the actual tx/rx process and the q manager
    602 	 * handles the queues.  The driver just writes entries to the
    603 	 * q manager mailbox's and gets callbacks when there are rx'd
    604 	 * frames to process or tx'd frames to reap.  These callbacks
    605 	 * are controlled by the q configurations; e.g. we get a
    606 	 * callback when tx_done has 2 or more frames to process and
    607 	 * when the rx q has at least one frame.  These setings can
    608 	 * changed at the time the q is configured.
    609 	 */
    610 	sc->rx_qid = npeconfig[unit].rx_qid;
    611 	ixpqmgr_qconfig(sc->rx_qid, NPE_RXBUF, 0,  1,
    612 		IX_QMGR_Q_SOURCE_ID_NOT_E, npe_rxdone, sc);
    613 	sc->rx_freeqid = npeconfig[unit].rx_freeqid;
    614 	ixpqmgr_qconfig(sc->rx_freeqid,	NPE_RXBUF, 0, NPE_RXBUF/2, 0, NULL, sc);
    615 	/* tell the NPE to direct all traffic to rx_qid */
    616 #if 0
    617 	for (i = 0; i < 8; i++)
    618 #else
    619 printf("%s: remember to fix rx q setup\n", sc->sc_dev.dv_xname);
    620 	for (i = 0; i < 4; i++)
    621 #endif
    622 		npe_setrxqosentry(sc, i, 0, sc->rx_qid);
    623 
    624 	sc->tx_qid = npeconfig[unit].tx_qid;
    625 	sc->tx_doneqid = npeconfig[unit].tx_doneqid;
    626 	ixpqmgr_qconfig(sc->tx_qid, NPE_TXBUF, 0, NPE_TXBUF, 0, NULL, sc);
    627 	if (tx_doneqid == -1) {
    628 		ixpqmgr_qconfig(sc->tx_doneqid,	NPE_TXBUF, 0,  2,
    629 			IX_QMGR_Q_SOURCE_ID_NOT_E, npe_txdone, sc);
    630 		tx_doneqid = sc->tx_doneqid;
    631 	}
    632 
    633 	KASSERT(npes[npeconfig[unit].npeid] == NULL);
    634 	npes[npeconfig[unit].npeid] = sc;
    635 
    636 	return 0;
    637 }
    638 
    639 #if 0
    640 static void
    641 npe_deactivate(struct npe_softc *sc);
    642 {
    643 	int unit = sc->sc_unit;
    644 
    645 	npes[npeconfig[unit].npeid] = NULL;
    646 
    647 	/* XXX disable q's */
    648 	if (sc->sc_npe != NULL)
    649 		ixpnpe_stop(sc->sc_npe);
    650 	if (sc->sc_stats != NULL) {
    651 		bus_dmamap_unload(sc->sc_stats_tag, sc->sc_stats_map);
    652 		bus_dmamem_free(sc->sc_stats_tag, sc->sc_stats,
    653 			sc->sc_stats_map);
    654 		bus_dmamap_destroy(sc->sc_stats_tag, sc->sc_stats_map);
    655 	}
    656 	if (sc->sc_stats_tag != NULL)
    657 		bus_dma_tag_destroy(sc->sc_stats_tag);
    658 	npe_dma_destroy(sc, &sc->txdma);
    659 	npe_dma_destroy(sc, &sc->rxdma);
    660 	bus_generic_detach(sc->sc_dev);
    661 	if (sc->sc_mii)
    662 		device_delete_child(sc->sc_dev, sc->sc_mii);
    663 #if 0
    664 	/* XXX sc_ioh and sc_miih */
    665 	if (sc->mem_res)
    666 		bus_release_resource(dev, SYS_RES_IOPORT,
    667 		    rman_get_rid(sc->mem_res), sc->mem_res);
    668 	sc->mem_res = 0;
    669 #endif
    670 }
    671 #endif
    672 
    673 /*
    674  * Change media according to request.
    675  */
    676 static int
    677 npe_ifmedia_change(struct ifnet *ifp)
    678 {
    679 	struct npe_softc *sc = ifp->if_softc;
    680 
    681 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT)
    682 		return ether_mediachange(ifp);
    683 	return 0;
    684 }
    685 
    686 /*
    687  * Notify the world which media we're using.
    688  */
    689 static void
    690 npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
    691 {
    692 	struct npe_softc *sc = ifp->if_softc;
    693 
    694 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT)
    695 		mii_pollstat(&sc->sc_mii);
    696 
    697 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
    698 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
    699 }
    700 
    701 static void
    702 npe_addstats(struct npe_softc *sc)
    703 {
    704 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    705 	struct npestats *ns = sc->sc_stats;
    706 
    707 	ifp->if_oerrors +=
    708 		  be32toh(ns->dot3StatsInternalMacTransmitErrors)
    709 		+ be32toh(ns->dot3StatsCarrierSenseErrors)
    710 		+ be32toh(ns->TxVLANIdFilterDiscards)
    711 		;
    712 	ifp->if_ierrors += be32toh(ns->dot3StatsFCSErrors)
    713 		+ be32toh(ns->dot3StatsInternalMacReceiveErrors)
    714 		+ be32toh(ns->RxOverrunDiscards)
    715 		+ be32toh(ns->RxUnderflowEntryDiscards)
    716 		;
    717 	ifp->if_collisions +=
    718 		  be32toh(ns->dot3StatsSingleCollisionFrames)
    719 		+ be32toh(ns->dot3StatsMultipleCollisionFrames)
    720 		;
    721 }
    722 
    723 static void
    724 npe_tick(void *xsc)
    725 {
    726 #define	ACK	(NPE_RESETSTATS << NPE_MAC_MSGID_SHL)
    727 	struct npe_softc *sc = xsc;
    728 	uint32_t msg[2];
    729 
    730 	/*
    731 	 * NB: to avoid sleeping with the softc lock held we
    732 	 * split the NPE msg processing into two parts.  The
    733 	 * request for statistics is sent w/o waiting for a
    734 	 * reply and then on the next tick we retrieve the
    735 	 * results.  This works because npe_tick is the only
    736 	 * code that talks via the mailbox's (except at setup).
    737 	 * This likely can be handled better.
    738 	 */
    739 	if (ixpnpe_recvmsg(sc->sc_npe, msg) == 0 && msg[0] == ACK) {
    740 		bus_dmamap_sync(sc->sc_dt, sc->sc_stats_map, 0,
    741 		    sizeof(struct npestats), BUS_DMASYNC_POSTREAD);
    742 		npe_addstats(sc);
    743 	}
    744 	npe_updatestats(sc);
    745 	mii_tick(&sc->sc_mii);
    746 
    747 	/* schedule next poll */
    748 	callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
    749 #undef ACK
    750 }
    751 
    752 static void
    753 npe_setmac(struct npe_softc *sc, const u_char *eaddr)
    754 {
    755 
    756 	WR4(sc, NPE_MAC_UNI_ADDR_1, eaddr[0]);
    757 	WR4(sc, NPE_MAC_UNI_ADDR_2, eaddr[1]);
    758 	WR4(sc, NPE_MAC_UNI_ADDR_3, eaddr[2]);
    759 	WR4(sc, NPE_MAC_UNI_ADDR_4, eaddr[3]);
    760 	WR4(sc, NPE_MAC_UNI_ADDR_5, eaddr[4]);
    761 	WR4(sc, NPE_MAC_UNI_ADDR_6, eaddr[5]);
    762 }
    763 
    764 static void
    765 npe_getmac(struct npe_softc *sc)
    766 {
    767 	uint8_t *eaddr = sc->sc_enaddr;
    768 
    769 	if (npe_getmac_md != NULL) {
    770 		(*npe_getmac_md)(sc->sc_dev.dv_unit, eaddr);
    771 	} else {
    772 		/*
    773 		 * Some system's unicast address appears to be loaded from
    774 		 * EEPROM on reset
    775 		 */
    776 		eaddr[0] = RD4(sc, NPE_MAC_UNI_ADDR_1) & 0xff;
    777 		eaddr[1] = RD4(sc, NPE_MAC_UNI_ADDR_2) & 0xff;
    778 		eaddr[2] = RD4(sc, NPE_MAC_UNI_ADDR_3) & 0xff;
    779 		eaddr[3] = RD4(sc, NPE_MAC_UNI_ADDR_4) & 0xff;
    780 		eaddr[4] = RD4(sc, NPE_MAC_UNI_ADDR_5) & 0xff;
    781 		eaddr[5] = RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff;
    782 	}
    783 }
    784 
    785 struct txdone {
    786 	struct npebuf *head;
    787 	struct npebuf **tail;
    788 	int count;
    789 };
    790 
    791 static __inline void
    792 npe_txdone_finish(struct npe_softc *sc, const struct txdone *td)
    793 {
    794 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    795 
    796 	*td->tail = sc->tx_free;
    797 	sc->tx_free = td->head;
    798 	/*
    799 	 * We're no longer busy, so clear the busy flag and call the
    800 	 * start routine to xmit more packets.
    801 	 */
    802 	ifp->if_opackets += td->count;
    803 	ifp->if_flags &= ~IFF_OACTIVE;
    804 	ifp->if_timer = 0;
    805 	npestart(ifp);
    806 }
    807 
    808 /*
    809  * Q manager callback on tx done queue.  Reap mbufs
    810  * and return tx buffers to the free list.  Finally
    811  * restart output.  Note the microcode has only one
    812  * txdone q wired into it so we must use the NPE ID
    813  * returned with each npehwbuf to decide where to
    814  * send buffers.
    815  */
    816 static void
    817 npe_txdone(int qid, void *arg)
    818 {
    819 #define	P2V(a, dma) \
    820 	&(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
    821 	struct npe_softc *sc;
    822 	struct npebuf *npe;
    823 	struct txdone *td, q[NPE_MAX];
    824 	uint32_t entry;
    825 
    826 	/* XXX no NPE-A support */
    827 	q[NPE_B].tail = &q[NPE_B].head; q[NPE_B].count = 0;
    828 	q[NPE_C].tail = &q[NPE_C].head; q[NPE_C].count = 0;
    829 	/* XXX max # at a time? */
    830 	while (ixpqmgr_qread(qid, &entry) == 0) {
    831 		sc = npes[NPE_QM_Q_NPE(entry)];
    832 		DPRINTF(sc, "%s: entry 0x%x NPE %u port %u\n",
    833 		    __func__, entry, NPE_QM_Q_NPE(entry), NPE_QM_Q_PORT(entry));
    834 
    835 		npe = P2V(NPE_QM_Q_ADDR(entry), &sc->txdma);
    836 		m_freem(npe->ix_m);
    837 		npe->ix_m = NULL;
    838 
    839 		td = &q[NPE_QM_Q_NPE(entry)];
    840 		*td->tail = npe;
    841 		td->tail = &npe->ix_next;
    842 		td->count++;
    843 	}
    844 
    845 	if (q[NPE_B].count)
    846 		npe_txdone_finish(npes[NPE_B], &q[NPE_B]);
    847 	if (q[NPE_C].count)
    848 		npe_txdone_finish(npes[NPE_C], &q[NPE_C]);
    849 #undef P2V
    850 }
    851 
    852 static __inline struct mbuf *
    853 npe_getcl(void)
    854 {
    855 	struct mbuf *m;
    856 
    857 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    858 	if (m != NULL) {
    859 		MCLGET(m, M_DONTWAIT);
    860 		if ((m->m_flags & M_EXT) == 0) {
    861 			m_freem(m);
    862 			m = NULL;
    863 		}
    864 	}
    865 	return (m);
    866 }
    867 
    868 static int
    869 npe_rxbuf_init(struct npe_softc *sc, struct npebuf *npe, struct mbuf *m)
    870 {
    871 	struct npehwbuf *hw;
    872 	int error;
    873 
    874 	if (m == NULL) {
    875 		m = npe_getcl();
    876 		if (m == NULL)
    877 			return ENOBUFS;
    878 	}
    879 	KASSERT(m->m_ext.ext_size >= (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
    880 	m->m_pkthdr.len = m->m_len = NPE_FRAME_SIZE_DEFAULT;
    881 	/* backload payload and align ip hdr */
    882 	m->m_data = m->m_ext.ext_buf + (m->m_ext.ext_size
    883 	    - (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
    884 	error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
    885 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
    886 	if (error != 0) {
    887 		m_freem(m);
    888 		return error;
    889 	}
    890 	hw = npe->ix_hw;
    891 	hw->ix_ne[0].data = htobe32(npe->ix_map->dm_segs[0].ds_addr);
    892 	/* NB: NPE requires length be a multiple of 64 */
    893 	/* NB: buffer length is shifted in word */
    894 	hw->ix_ne[0].len = htobe32(npe->ix_map->dm_segs[0].ds_len << 16);
    895 	hw->ix_ne[0].next = 0;
    896 	npe->ix_m = m;
    897 	/* Flush the memory in the mbuf */
    898 	bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0, npe->ix_map->dm_mapsize,
    899 	    BUS_DMASYNC_PREREAD);
    900 	return 0;
    901 }
    902 
    903 /*
    904  * RX q processing for a specific NPE.  Claim entries
    905  * from the hardware queue and pass the frames up the
    906  * stack. Pass the rx buffers to the free list.
    907  */
    908 static void
    909 npe_rxdone(int qid, void *arg)
    910 {
    911 #define	P2V(a, dma) \
    912 	&(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
    913 	struct npe_softc *sc = arg;
    914 	struct npedma *dma = &sc->rxdma;
    915 	uint32_t entry;
    916 
    917 	while (ixpqmgr_qread(qid, &entry) == 0) {
    918 		struct npebuf *npe = P2V(NPE_QM_Q_ADDR(entry), dma);
    919 		struct mbuf *m;
    920 
    921 		DPRINTF(sc, "%s: entry 0x%x neaddr 0x%x ne_len 0x%x\n",
    922 		    __func__, entry, npe->ix_neaddr, npe->ix_hw->ix_ne[0].len);
    923 		/*
    924 		 * Allocate a new mbuf to replenish the rx buffer.
    925 		 * If doing so fails we drop the rx'd frame so we
    926 		 * can reuse the previous mbuf.  When we're able to
    927 		 * allocate a new mbuf dispatch the mbuf w/ rx'd
    928 		 * data up the stack and replace it with the newly
    929 		 * allocated one.
    930 		 */
    931 		m = npe_getcl();
    932 		if (m != NULL) {
    933 			struct mbuf *mrx = npe->ix_m;
    934 			struct npehwbuf *hw = npe->ix_hw;
    935 			struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    936 
    937 			/* Flush mbuf memory for rx'd data */
    938 			bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
    939 			    npe->ix_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
    940 
    941 			/* XXX flush hw buffer; works now 'cuz coherent */
    942 			/* set m_len etc. per rx frame size */
    943 			mrx->m_len = be32toh(hw->ix_ne[0].len) & 0xffff;
    944 			mrx->m_pkthdr.len = mrx->m_len;
    945 			mrx->m_pkthdr.rcvif = ifp;
    946 			/* Don't add M_HASFCS. See below */
    947 
    948 #if 1
    949 			if (mrx->m_pkthdr.len < sizeof(struct ether_header)) {
    950 				log(LOG_INFO, "%s: too short frame (len=%d)\n",
    951 				    sc->sc_dev.dv_xname, mrx->m_pkthdr.len);
    952 				/* Back out "newly allocated" mbuf. */
    953 				m_freem(m);
    954 				ifp->if_ierrors++;
    955 				goto fail;
    956 			}
    957 			if ((ifp->if_flags & IFF_PROMISC) == 0) {
    958 				struct ether_header *eh;
    959 
    960 				/*
    961 				 * Workaround for "Non-Intel XScale Technology
    962 				 * Eratta" No. 29. AA:BB:CC:DD:EE:xF's packet
    963 				 * matches the filter (both unicast and
    964 				 * multicast).
    965 				 */
    966 				eh = mtod(mrx, struct ether_header *);
    967 				if (ETHER_IS_MULTICAST(eh->ether_dhost) == 0) {
    968 					/* unicast */
    969 
    970 					if (sc->sc_enaddr[5] != eh->ether_dhost[5]) {
    971 						/* discard it */
    972 #if 0
    973 						printf("discard it\n");
    974 #endif
    975 						/*
    976 						 * Back out "newly allocated"
    977 						 * mbuf.
    978 						 */
    979 						m_freem(m);
    980 						goto fail;
    981 					}
    982 				} else if (memcmp(eh->ether_dhost,
    983 					etherbroadcastaddr, 6) == 0) {
    984 					/* Always accept broadcast packet*/
    985 				} else {
    986 					struct ethercom *ec = &sc->sc_ethercom;
    987 					struct ether_multi *enm;
    988 					struct ether_multistep step;
    989 					int match = 0;
    990 
    991 					/* multicast */
    992 
    993 					ETHER_FIRST_MULTI(step, ec, enm);
    994 					while (enm != NULL) {
    995 						uint64_t lowint, highint, dest;
    996 
    997 						lowint = MAC2UINT64(enm->enm_addrlo);
    998 						highint = MAC2UINT64(enm->enm_addrhi);
    999 						dest = MAC2UINT64(eh->ether_dhost);
   1000 #if 0
   1001 						printf("%llx\n", lowint);
   1002 						printf("%llx\n", dest);
   1003 						printf("%llx\n", highint);
   1004 #endif
   1005 						if ((lowint <= dest) && (dest <= highint)) {
   1006 							match = 1;
   1007 							break;
   1008 						}
   1009 						ETHER_NEXT_MULTI(step, enm);
   1010 					}
   1011 					if (match == 0) {
   1012 						/* discard it */
   1013 #if 0
   1014 						printf("discard it(M)\n");
   1015 #endif
   1016 						/*
   1017 						 * Back out "newly allocated"
   1018 						 * mbuf.
   1019 						 */
   1020 						m_freem(m);
   1021 						goto fail;
   1022 					}
   1023 				}
   1024 			}
   1025 			if (mrx->m_pkthdr.len > NPE_FRAME_SIZE_DEFAULT) {
   1026 				log(LOG_INFO, "%s: oversized frame (len=%d)\n",
   1027 				    sc->sc_dev.dv_xname, mrx->m_pkthdr.len);
   1028 				/* Back out "newly allocated" mbuf. */
   1029 				m_freem(m);
   1030 				ifp->if_ierrors++;
   1031 				goto fail;
   1032 			}
   1033 #endif
   1034 
   1035 			/*
   1036 			 * Trim FCS!
   1037 			 * NPE always adds the FCS by this driver's setting,
   1038 			 * so we always trim it here and not add M_HASFCS.
   1039 			 */
   1040 			m_adj(mrx, -ETHER_CRC_LEN);
   1041 
   1042 			ifp->if_ipackets++;
   1043 #if NBPFILTER > 0
   1044 			/*
   1045 			 * Tap off here if there is a bpf listener.
   1046 			 */
   1047 			if (__predict_false(ifp->if_bpf))
   1048 				bpf_mtap(ifp->if_bpf, mrx);
   1049 #endif
   1050 			ifp->if_input(ifp, mrx);
   1051 		} else {
   1052 fail:
   1053 			/* discard frame and re-use mbuf */
   1054 			m = npe->ix_m;
   1055 		}
   1056 		if (npe_rxbuf_init(sc, npe, m) == 0) {
   1057 			/* return npe buf to rx free list */
   1058 			ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
   1059 		} else {
   1060 			/* XXX should not happen */
   1061 		}
   1062 	}
   1063 #undef P2V
   1064 }
   1065 
   1066 static void
   1067 npe_startxmit(struct npe_softc *sc)
   1068 {
   1069 	struct npedma *dma = &sc->txdma;
   1070 	int i;
   1071 
   1072 	sc->tx_free = NULL;
   1073 	for (i = 0; i < dma->nbuf; i++) {
   1074 		struct npebuf *npe = &dma->buf[i];
   1075 		if (npe->ix_m != NULL) {
   1076 			/* NB: should not happen */
   1077 			printf("%s: %s: free mbuf at entry %u\n",
   1078 			    sc->sc_dev.dv_xname, __func__, i);
   1079 			m_freem(npe->ix_m);
   1080 		}
   1081 		npe->ix_m = NULL;
   1082 		npe->ix_next = sc->tx_free;
   1083 		sc->tx_free = npe;
   1084 	}
   1085 }
   1086 
   1087 static void
   1088 npe_startrecv(struct npe_softc *sc)
   1089 {
   1090 	struct npedma *dma = &sc->rxdma;
   1091 	struct npebuf *npe;
   1092 	int i;
   1093 
   1094 	for (i = 0; i < dma->nbuf; i++) {
   1095 		npe = &dma->buf[i];
   1096 		npe_rxbuf_init(sc, npe, npe->ix_m);
   1097 		/* set npe buf on rx free list */
   1098 		ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
   1099 	}
   1100 }
   1101 
   1102 static void
   1103 npeinit_macreg(struct npe_softc *sc)
   1104 {
   1105 
   1106 	/*
   1107 	 * Reset MAC core.
   1108 	 */
   1109 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
   1110 	DELAY(NPE_MAC_RESET_DELAY);
   1111 	/* configure MAC to generate MDC clock */
   1112 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
   1113 
   1114 	/* disable transmitter and reciver in the MAC */
   1115  	WR4(sc, NPE_MAC_RX_CNTRL1,
   1116 	    RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
   1117  	WR4(sc, NPE_MAC_TX_CNTRL1,
   1118 	    RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
   1119 
   1120 	/*
   1121 	 * Set the MAC core registers.
   1122 	 */
   1123 	WR4(sc, NPE_MAC_INT_CLK_THRESH, 0x1);	/* clock ratio: for ipx4xx */
   1124 	WR4(sc, NPE_MAC_TX_CNTRL2,	0xf);	/* max retries */
   1125 	WR4(sc, NPE_MAC_RANDOM_SEED,	0x8);	/* LFSR back-off seed */
   1126 	/* thresholds determined by NPE firmware FS */
   1127 	WR4(sc, NPE_MAC_THRESH_P_EMPTY,	0x12);
   1128 	WR4(sc, NPE_MAC_THRESH_P_FULL,	0x30);
   1129 	WR4(sc, NPE_MAC_BUF_SIZE_TX, NPE_MAC_BUF_SIZE_TX_DEFAULT);
   1130 						/* tx fifo threshold (bytes) */
   1131 	WR4(sc, NPE_MAC_TX_DEFER,	0x15);	/* for single deferral */
   1132 	WR4(sc, NPE_MAC_RX_DEFER,	0x16);	/* deferral on inter-frame gap*/
   1133 	WR4(sc, NPE_MAC_TX_TWO_DEFER_1,	0x8);	/* for 2-part deferral */
   1134 	WR4(sc, NPE_MAC_TX_TWO_DEFER_2,	0x7);	/* for 2-part deferral */
   1135 	WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
   1136 						/* assumes MII mode */
   1137 	WR4(sc, NPE_MAC_TX_CNTRL1,
   1138 		  NPE_TX_CNTRL1_RETRY		/* retry failed xmits */
   1139 		| NPE_TX_CNTRL1_FCS_EN		/* append FCS */
   1140 		| NPE_TX_CNTRL1_2DEFER		/* 2-part deferal */
   1141 		| NPE_TX_CNTRL1_PAD_EN);	/* pad runt frames */
   1142 	/* XXX pad strip? */
   1143 	WR4(sc, NPE_MAC_RX_CNTRL1,
   1144 		  NPE_RX_CNTRL1_CRC_EN		/* include CRC/FCS */
   1145 		| NPE_RX_CNTRL1_PAUSE_EN);	/* ena pause frame handling */
   1146 	WR4(sc, NPE_MAC_RX_CNTRL2, 0);
   1147 }
   1148 
   1149 /*
   1150  * Reset and initialize the chip
   1151  */
   1152 static void
   1153 npeinit_locked(void *xsc)
   1154 {
   1155 	struct npe_softc *sc = xsc;
   1156 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1157 
   1158 	/* Cancel any pending I/O. */
   1159 	npestop(ifp, 0);
   1160 
   1161 	/* Reset the chip to a known state. */
   1162 	npeinit_macreg(sc);
   1163 	npe_setmac(sc, CLLADDR(ifp->if_sadl));
   1164 	npe_ifmedia_change(ifp);
   1165 	npe_setmcast(sc);
   1166 
   1167 	npe_startxmit(sc);
   1168 	npe_startrecv(sc);
   1169 
   1170 	ifp->if_flags |= IFF_RUNNING;
   1171 	ifp->if_flags &= ~IFF_OACTIVE;
   1172 	ifp->if_timer = 0;		/* just in case */
   1173 
   1174 	/* enable transmitter and reciver in the MAC */
   1175  	WR4(sc, NPE_MAC_RX_CNTRL1,
   1176 	    RD4(sc, NPE_MAC_RX_CNTRL1) | NPE_RX_CNTRL1_RX_EN);
   1177  	WR4(sc, NPE_MAC_TX_CNTRL1,
   1178 	    RD4(sc, NPE_MAC_TX_CNTRL1) | NPE_TX_CNTRL1_TX_EN);
   1179 
   1180 	callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
   1181 }
   1182 
   1183 static int
   1184 npeinit(struct ifnet *ifp)
   1185 {
   1186 	struct npe_softc *sc = ifp->if_softc;
   1187 	int s;
   1188 
   1189 	s = splnet();
   1190 	npeinit_locked(sc);
   1191 	splx(s);
   1192 
   1193 	return (0);
   1194 }
   1195 
   1196 /*
   1197  * Defragment an mbuf chain, returning at most maxfrags separate
   1198  * mbufs+clusters.  If this is not possible NULL is returned and
   1199  * the original mbuf chain is left in it's present (potentially
   1200  * modified) state.  We use two techniques: collapsing consecutive
   1201  * mbufs and replacing consecutive mbufs by a cluster.
   1202  */
   1203 static __inline struct mbuf *
   1204 npe_defrag(struct mbuf *m0)
   1205 {
   1206 	struct mbuf *m;
   1207 
   1208 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1209 	if (m == NULL)
   1210 		return (NULL);
   1211 	M_COPY_PKTHDR(m, m0);
   1212 
   1213 	if ((m->m_len = m0->m_pkthdr.len) > MHLEN) {
   1214 		MCLGET(m, M_DONTWAIT);
   1215 		if ((m->m_flags & M_EXT) == 0) {
   1216 			m_freem(m);
   1217 			return (NULL);
   1218 		}
   1219 	}
   1220 
   1221 	m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1222 	m_freem(m0);
   1223 
   1224 	return (m);
   1225 }
   1226 
   1227 /*
   1228  * Dequeue packets and place on the h/w transmit queue.
   1229  */
   1230 static void
   1231 npestart(struct ifnet *ifp)
   1232 {
   1233 	struct npe_softc *sc = ifp->if_softc;
   1234 	struct npebuf *npe;
   1235 	struct npehwbuf *hw;
   1236 	struct mbuf *m, *n;
   1237 	bus_dma_segment_t *segs;
   1238 	int nseg, len, error, i;
   1239 	uint32_t next;
   1240 
   1241 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1242 		return;
   1243 
   1244 	while (sc->tx_free != NULL) {
   1245 		IFQ_DEQUEUE(&ifp->if_snd, m);
   1246 		if (m == NULL)
   1247 			break;
   1248 		npe = sc->tx_free;
   1249 		error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
   1250 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1251 		if (error == EFBIG) {
   1252 			n = npe_defrag(m);
   1253 			if (n == NULL) {
   1254 				printf("%s: %s: too many fragments\n",
   1255 				    sc->sc_dev.dv_xname, __func__);
   1256 				m_freem(m);
   1257 				return;	/* XXX? */
   1258 			}
   1259 			m = n;
   1260 			error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map,
   1261 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1262 		}
   1263 		if (error != 0) {
   1264 			printf("%s: %s: error %u\n",
   1265 			    sc->sc_dev.dv_xname, __func__, error);
   1266 			m_freem(m);
   1267 			return;	/* XXX? */
   1268 		}
   1269 		sc->tx_free = npe->ix_next;
   1270 
   1271 #if NBPFILTER > 0
   1272 		/*
   1273 		 * Tap off here if there is a bpf listener.
   1274 		 */
   1275 		if (__predict_false(ifp->if_bpf))
   1276 			bpf_mtap(ifp->if_bpf, m);
   1277 #endif
   1278 
   1279 		bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
   1280 		    npe->ix_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1281 
   1282 		npe->ix_m = m;
   1283 		hw = npe->ix_hw;
   1284 		len = m->m_pkthdr.len;
   1285 		nseg = npe->ix_map->dm_nsegs;
   1286 		segs = npe->ix_map->dm_segs;
   1287 		next = npe->ix_neaddr + sizeof(hw->ix_ne[0]);
   1288 		for (i = 0; i < nseg; i++) {
   1289 			hw->ix_ne[i].data = htobe32(segs[i].ds_addr);
   1290 			hw->ix_ne[i].len = htobe32((segs[i].ds_len<<16) | len);
   1291 			hw->ix_ne[i].next = htobe32(next);
   1292 
   1293 			len = 0;		/* zero for segments > 1 */
   1294 			next += sizeof(hw->ix_ne[0]);
   1295 		}
   1296 		hw->ix_ne[i-1].next = 0;	/* zero last in chain */
   1297 		/* XXX flush descriptor instead of using uncached memory */
   1298 
   1299 		DPRINTF(sc, "%s: qwrite(%u, 0x%x) ne_data %x ne_len 0x%x\n",
   1300 		    __func__, sc->tx_qid, npe->ix_neaddr,
   1301 		    hw->ix_ne[0].data, hw->ix_ne[0].len);
   1302 		/* stick it on the tx q */
   1303 		/* XXX add vlan priority */
   1304 		ixpqmgr_qwrite(sc->tx_qid, npe->ix_neaddr);
   1305 
   1306 		ifp->if_timer = 5;
   1307 	}
   1308 	if (sc->tx_free == NULL)
   1309 		ifp->if_flags |= IFF_OACTIVE;
   1310 }
   1311 
   1312 static void
   1313 npe_stopxmit(struct npe_softc *sc)
   1314 {
   1315 	struct npedma *dma = &sc->txdma;
   1316 	int i;
   1317 
   1318 	/* XXX qmgr */
   1319 	for (i = 0; i < dma->nbuf; i++) {
   1320 		struct npebuf *npe = &dma->buf[i];
   1321 
   1322 		if (npe->ix_m != NULL) {
   1323 			bus_dmamap_unload(sc->sc_dt, npe->ix_map);
   1324 			m_freem(npe->ix_m);
   1325 			npe->ix_m = NULL;
   1326 		}
   1327 	}
   1328 }
   1329 
   1330 static void
   1331 npe_stoprecv(struct npe_softc *sc)
   1332 {
   1333 	struct npedma *dma = &sc->rxdma;
   1334 	int i;
   1335 
   1336 	/* XXX qmgr */
   1337 	for (i = 0; i < dma->nbuf; i++) {
   1338 		struct npebuf *npe = &dma->buf[i];
   1339 
   1340 		if (npe->ix_m != NULL) {
   1341 			bus_dmamap_unload(sc->sc_dt, npe->ix_map);
   1342 			m_freem(npe->ix_m);
   1343 			npe->ix_m = NULL;
   1344 		}
   1345 	}
   1346 }
   1347 
   1348 /*
   1349  * Turn off interrupts, and stop the nic.
   1350  */
   1351 void
   1352 npestop(struct ifnet *ifp, int disable)
   1353 {
   1354 	struct npe_softc *sc = ifp->if_softc;
   1355 
   1356 	/*  disable transmitter and reciver in the MAC  */
   1357  	WR4(sc, NPE_MAC_RX_CNTRL1,
   1358 	    RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
   1359  	WR4(sc, NPE_MAC_TX_CNTRL1,
   1360 	    RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
   1361 
   1362 	callout_stop(&sc->sc_tick_ch);
   1363 
   1364 	npe_stopxmit(sc);
   1365 	npe_stoprecv(sc);
   1366 	/* XXX go into loopback & drain q's? */
   1367 	/* XXX but beware of disabling tx above */
   1368 
   1369 	/*
   1370 	 * The MAC core rx/tx disable may leave the MAC hardware in an
   1371 	 * unpredictable state. A hw reset is executed before resetting
   1372 	 * all the MAC parameters to a known value.
   1373 	 */
   1374 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
   1375 	DELAY(NPE_MAC_RESET_DELAY);
   1376 	WR4(sc, NPE_MAC_INT_CLK_THRESH, NPE_MAC_INT_CLK_THRESH_DEFAULT);
   1377 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
   1378 
   1379 	ifp->if_timer = 0;
   1380 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1381 }
   1382 
   1383 void
   1384 npewatchdog(struct ifnet *ifp)
   1385 {
   1386 	struct npe_softc *sc = ifp->if_softc;
   1387 	int s;
   1388 
   1389 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1390 	s = splnet();
   1391 	ifp->if_oerrors++;
   1392 	npeinit_locked(sc);
   1393 	splx(s);
   1394 }
   1395 
   1396 static int
   1397 npeioctl(struct ifnet *ifp, u_long cmd, void *data)
   1398 {
   1399 	struct npe_softc *sc = ifp->if_softc;
   1400 	struct ifreq *ifr = (struct ifreq *) data;
   1401 	int s, error = 0;
   1402 
   1403 	s = splnet();
   1404 
   1405 	switch (cmd) {
   1406 	case SIOCSIFMEDIA:
   1407 	case SIOCGIFMEDIA:
   1408 #if 0 /* not yet */
   1409 		/* Flow control requires full-duplex mode. */
   1410 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1411 		    (ifr->ifr_media & IFM_FDX) == 0)
   1412 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1413 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1414 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1415 				/* We can do both TXPAUSE and RXPAUSE. */
   1416 				ifr->ifr_media |=
   1417 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1418 			}
   1419 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1420 		}
   1421 #endif
   1422 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1423 		break;
   1424 	case SIOCSIFFLAGS:
   1425 		if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == IFF_RUNNING) {
   1426 			/*
   1427 			 * If interface is marked down and it is running,
   1428 			 * then stop and disable it.
   1429 			 */
   1430 			(*ifp->if_stop)(ifp, 1);
   1431 		} else if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == IFF_UP) {
   1432 			/*
   1433 			 * If interface is marked up and it is stopped, then
   1434 			 * start it.
   1435 			 */
   1436 			error = (*ifp->if_init)(ifp);
   1437 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1438 			int diff;
   1439 
   1440 			/* Up (AND RUNNING). */
   1441 
   1442 			diff = (ifp->if_flags ^ sc->sc_if_flags)
   1443 			    & (IFF_PROMISC|IFF_ALLMULTI);
   1444 			if ((diff & (IFF_PROMISC|IFF_ALLMULTI)) != 0) {
   1445 				/*
   1446 				 * If the difference bettween last flag and
   1447 				 * new flag only IFF_PROMISC or IFF_ALLMULTI,
   1448 				 * set multicast filter only (don't reset to
   1449 				 * prevent link down).
   1450 				 */
   1451 				npe_setmcast(sc);
   1452 			} else {
   1453 				/*
   1454 				 * Reset the interface to pick up changes in
   1455 				 * any other flags that affect the hardware
   1456 				 * state.
   1457 				 */
   1458 				error = (*ifp->if_init)(ifp);
   1459 			}
   1460 		}
   1461 		sc->sc_if_flags = ifp->if_flags;
   1462 		break;
   1463 	default:
   1464 		error = ether_ioctl(ifp, cmd, data);
   1465 		if (error == ENETRESET) {
   1466 			/*
   1467 			 * Multicast list has changed; set the hardware filter
   1468 			 * accordingly.
   1469 			 */
   1470 			npe_setmcast(sc);
   1471 			error = 0;
   1472 		}
   1473 	}
   1474 
   1475 	npestart(ifp);
   1476 
   1477 	splx(s);
   1478 	return error;
   1479 }
   1480 
   1481 /*
   1482  * Setup a traffic class -> rx queue mapping.
   1483  */
   1484 static int
   1485 npe_setrxqosentry(struct npe_softc *sc, int classix, int trafclass, int qid)
   1486 {
   1487 	int npeid = npeconfig[sc->sc_unit].npeid;
   1488 	uint32_t msg[2];
   1489 
   1490 	msg[0] = (NPE_SETRXQOSENTRY << 24) | (npeid << 20) | classix;
   1491 	msg[1] = (trafclass << 24) | (1 << 23) | (qid << 16) | (qid << 4);
   1492 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
   1493 }
   1494 
   1495 /*
   1496  * Update and reset the statistics in the NPE.
   1497  */
   1498 static int
   1499 npe_updatestats(struct npe_softc *sc)
   1500 {
   1501 	uint32_t msg[2];
   1502 
   1503 	msg[0] = NPE_RESETSTATS << NPE_MAC_MSGID_SHL;
   1504 	msg[1] = sc->sc_stats_phys;	/* physical address of stat block */
   1505 	return ixpnpe_sendmsg(sc->sc_npe, msg);		/* NB: no recv */
   1506 }
   1507 
   1508 #if 0
   1509 /*
   1510  * Get the current statistics block.
   1511  */
   1512 static int
   1513 npe_getstats(struct npe_softc *sc)
   1514 {
   1515 	uint32_t msg[2];
   1516 
   1517 	msg[0] = NPE_GETSTATS << NPE_MAC_MSGID_SHL;
   1518 	msg[1] = sc->sc_stats_phys;	/* physical address of stat block */
   1519 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
   1520 }
   1521 
   1522 /*
   1523  * Query the image id of the loaded firmware.
   1524  */
   1525 static uint32_t
   1526 npe_getimageid(struct npe_softc *sc)
   1527 {
   1528 	uint32_t msg[2];
   1529 
   1530 	msg[0] = NPE_GETSTATUS << NPE_MAC_MSGID_SHL;
   1531 	msg[1] = 0;
   1532 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg) == 0 ? msg[1] : 0;
   1533 }
   1534 
   1535 /*
   1536  * Enable/disable loopback.
   1537  */
   1538 static int
   1539 npe_setloopback(struct npe_softc *sc, int ena)
   1540 {
   1541 	uint32_t msg[2];
   1542 
   1543 	msg[0] = (NPE_SETLOOPBACK << NPE_MAC_MSGID_SHL) | (ena != 0);
   1544 	msg[1] = 0;
   1545 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
   1546 }
   1547 #endif
   1548 
   1549 /*
   1550  * MII bus support routines.
   1551  *
   1552  * NB: ixp425 has one PHY per NPE
   1553  */
   1554 static uint32_t
   1555 npe_mii_mdio_read(struct npe_softc *sc, int reg)
   1556 {
   1557 #define	MII_RD4(sc, reg)	bus_space_read_4(sc->sc_iot, sc->sc_miih, reg)
   1558 	uint32_t v;
   1559 
   1560 	/* NB: registers are known to be sequential */
   1561 	v =  (MII_RD4(sc, reg+0) & 0xff) << 0;
   1562 	v |= (MII_RD4(sc, reg+4) & 0xff) << 8;
   1563 	v |= (MII_RD4(sc, reg+8) & 0xff) << 16;
   1564 	v |= (MII_RD4(sc, reg+12) & 0xff) << 24;
   1565 	return v;
   1566 #undef MII_RD4
   1567 }
   1568 
   1569 static void
   1570 npe_mii_mdio_write(struct npe_softc *sc, int reg, uint32_t cmd)
   1571 {
   1572 #define	MII_WR4(sc, reg, v) \
   1573 	bus_space_write_4(sc->sc_iot, sc->sc_miih, reg, v)
   1574 
   1575 	/* NB: registers are known to be sequential */
   1576 	MII_WR4(sc, reg+0, cmd & 0xff);
   1577 	MII_WR4(sc, reg+4, (cmd >> 8) & 0xff);
   1578 	MII_WR4(sc, reg+8, (cmd >> 16) & 0xff);
   1579 	MII_WR4(sc, reg+12, (cmd >> 24) & 0xff);
   1580 #undef MII_WR4
   1581 }
   1582 
   1583 static int
   1584 npe_mii_mdio_wait(struct npe_softc *sc)
   1585 {
   1586 #define	MAXTRIES	100	/* XXX */
   1587 	uint32_t v;
   1588 	int i;
   1589 
   1590 	for (i = 0; i < MAXTRIES; i++) {
   1591 		v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_CMD);
   1592 		if ((v & NPE_MII_GO) == 0)
   1593 			return 1;
   1594 	}
   1595 	return 0;		/* NB: timeout */
   1596 #undef MAXTRIES
   1597 }
   1598 
   1599 static int
   1600 npe_miibus_readreg(struct device *self, int phy, int reg)
   1601 {
   1602 	struct npe_softc *sc = (void *)self;
   1603 	uint32_t v;
   1604 
   1605 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
   1606 		return 0xffff;
   1607 	v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
   1608 	  | NPE_MII_GO;
   1609 	npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
   1610 	if (npe_mii_mdio_wait(sc))
   1611 		v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_STS);
   1612 	else
   1613 		v = 0xffff | NPE_MII_READ_FAIL;
   1614 	return (v & NPE_MII_READ_FAIL) ? 0xffff : (v & 0xffff);
   1615 #undef MAXTRIES
   1616 }
   1617 
   1618 static void
   1619 npe_miibus_writereg(struct device *self, int phy, int reg, int data)
   1620 {
   1621 	struct npe_softc *sc = (void *)self;
   1622 	uint32_t v;
   1623 
   1624 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
   1625 		return;
   1626 	v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
   1627 	  | data | NPE_MII_WRITE
   1628 	  | NPE_MII_GO;
   1629 	npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
   1630 	/* XXX complain about timeout */
   1631 	(void) npe_mii_mdio_wait(sc);
   1632 }
   1633 
   1634 static void
   1635 npe_miibus_statchg(struct device *self)
   1636 {
   1637 	struct npe_softc *sc = (void *)self;
   1638 	uint32_t tx1, rx1;
   1639 
   1640 	/* sync MAC duplex state */
   1641 	tx1 = RD4(sc, NPE_MAC_TX_CNTRL1);
   1642 	rx1 = RD4(sc, NPE_MAC_RX_CNTRL1);
   1643 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1644 		tx1 &= ~NPE_TX_CNTRL1_DUPLEX;
   1645 		rx1 |= NPE_RX_CNTRL1_PAUSE_EN;
   1646 	} else {
   1647 		tx1 |= NPE_TX_CNTRL1_DUPLEX;
   1648 		rx1 &= ~NPE_RX_CNTRL1_PAUSE_EN;
   1649 	}
   1650 	WR4(sc, NPE_MAC_RX_CNTRL1, rx1);
   1651 	WR4(sc, NPE_MAC_TX_CNTRL1, tx1);
   1652 }
   1653