ixp425_if_npe.c revision 1.16 1 /* $NetBSD: ixp425_if_npe.c,v 1.16 2009/03/11 16:30:20 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2006 Sam Leffler. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #include <sys/cdefs.h>
28 #if 0
29 __FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/if_npe.c,v 1.1 2006/11/19 23:55:23 sam Exp $");
30 #endif
31 __KERNEL_RCSID(0, "$NetBSD: ixp425_if_npe.c,v 1.16 2009/03/11 16:30:20 msaitoh Exp $");
32
33 /*
34 * Intel XScale NPE Ethernet driver.
35 *
36 * This driver handles the two ports present on the IXP425.
37 * Packet processing is done by the Network Processing Engines
38 * (NPE's) that work together with a MAC and PHY. The MAC
39 * is also mapped to the XScale cpu; the PHY is accessed via
40 * the MAC. NPE-XScale communication happens through h/w
41 * queues managed by the Q Manager block.
42 *
43 * The code here replaces the ethAcc, ethMii, and ethDB classes
44 * in the Intel Access Library (IAL) and the OS-specific driver.
45 *
46 * XXX add vlan support
47 * XXX NPE-C port doesn't work yet
48 */
49
50 #include "bpfilter.h"
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/device.h>
56 #include <sys/callout.h>
57 #include <sys/mbuf.h>
58 #include <sys/malloc.h>
59 #include <sys/socket.h>
60 #include <sys/endian.h>
61 #include <sys/ioctl.h>
62 #include <sys/syslog.h>
63
64 #include <machine/bus.h>
65
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_media.h>
69 #include <net/if_ether.h>
70
71 #if NBPFILTER > 0
72 #include <net/bpf.h>
73 #endif
74
75 #include <arm/xscale/ixp425reg.h>
76 #include <arm/xscale/ixp425var.h>
77 #include <arm/xscale/ixp425_qmgr.h>
78 #include <arm/xscale/ixp425_npevar.h>
79 #include <arm/xscale/ixp425_if_npereg.h>
80
81 #include <dev/mii/miivar.h>
82
83 #include "locators.h"
84
85 struct npebuf {
86 struct npebuf *ix_next; /* chain to next buffer */
87 void *ix_m; /* backpointer to mbuf */
88 bus_dmamap_t ix_map; /* bus dma map for associated data */
89 struct npehwbuf *ix_hw; /* associated h/w block */
90 uint32_t ix_neaddr; /* phys address of ix_hw */
91 };
92
93 struct npedma {
94 const char* name;
95 int nbuf; /* # npebuf's allocated */
96 bus_dmamap_t m_map;
97 struct npehwbuf *hwbuf; /* NPE h/w buffers */
98 bus_dmamap_t buf_map;
99 bus_addr_t buf_phys; /* phys addr of buffers */
100 struct npebuf *buf; /* s/w buffers (1-1 w/ h/w) */
101 };
102
103 struct npe_softc {
104 struct device sc_dev;
105 struct ethercom sc_ethercom;
106 uint8_t sc_enaddr[ETHER_ADDR_LEN];
107 struct mii_data sc_mii;
108 bus_space_tag_t sc_iot;
109 bus_dma_tag_t sc_dt;
110 bus_space_handle_t sc_ioh; /* MAC register window */
111 bus_space_handle_t sc_miih; /* MII register window */
112 struct ixpnpe_softc *sc_npe; /* NPE support */
113 int sc_unit;
114 int sc_phy;
115 struct callout sc_tick_ch; /* Tick callout */
116 struct npedma txdma;
117 struct npebuf *tx_free; /* list of free tx buffers */
118 struct npedma rxdma;
119 int rx_qid; /* rx qid */
120 int rx_freeqid; /* rx free buffers qid */
121 int tx_qid; /* tx qid */
122 int tx_doneqid; /* tx completed qid */
123 struct npestats *sc_stats;
124 bus_dmamap_t sc_stats_map;
125 bus_addr_t sc_stats_phys; /* phys addr of sc_stats */
126 int sc_if_flags; /* keep last if_flags */
127 };
128
129 /*
130 * Per-unit static configuration for IXP425. The tx and
131 * rx free Q id's are fixed by the NPE microcode. The
132 * rx Q id's are programmed to be separate to simplify
133 * multi-port processing. It may be better to handle
134 * all traffic through one Q (as done by the Intel drivers).
135 *
136 * Note that the PHY's are accessible only from MAC A
137 * on the IXP425. This and other platform-specific
138 * assumptions probably need to be handled through hints.
139 */
140 static const struct {
141 const char *desc; /* device description */
142 int npeid; /* NPE assignment */
143 int macport; /* Port number of the MAC */
144 uint32_t imageid; /* NPE firmware image id */
145 uint32_t regbase;
146 int regsize;
147 uint32_t miibase;
148 int miisize;
149 uint8_t rx_qid;
150 uint8_t rx_freeqid;
151 uint8_t tx_qid;
152 uint8_t tx_doneqid;
153 } npeconfig[NPE_PORTS_MAX] = {
154 { .desc = "IXP NPE-B",
155 .npeid = NPE_B,
156 .macport = 0x10,
157 .imageid = IXP425_NPE_B_IMAGEID,
158 .regbase = IXP425_MAC_A_HWBASE,
159 .regsize = IXP425_MAC_A_SIZE,
160 .miibase = IXP425_MAC_A_HWBASE,
161 .miisize = IXP425_MAC_A_SIZE,
162 .rx_qid = 4,
163 .rx_freeqid = 27,
164 .tx_qid = 24,
165 .tx_doneqid = 31
166 },
167 { .desc = "IXP NPE-C",
168 .npeid = NPE_C,
169 .macport = 0x20,
170 .imageid = IXP425_NPE_C_IMAGEID,
171 .regbase = IXP425_MAC_B_HWBASE,
172 .regsize = IXP425_MAC_B_SIZE,
173 .miibase = IXP425_MAC_A_HWBASE,
174 .miisize = IXP425_MAC_A_SIZE,
175 .rx_qid = 12,
176 .rx_freeqid = 28,
177 .tx_qid = 25,
178 .tx_doneqid = 31
179 },
180 };
181 static struct npe_softc *npes[NPE_MAX]; /* NB: indexed by npeid */
182
183 static __inline uint32_t
184 RD4(struct npe_softc *sc, bus_size_t off)
185 {
186 return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
187 }
188
189 static __inline void
190 WR4(struct npe_softc *sc, bus_size_t off, uint32_t val)
191 {
192 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
193 }
194
195 static int npe_activate(struct npe_softc *);
196 #if 0
197 static void npe_deactivate(struct npe_softc *);
198 #endif
199 static void npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr);
200 static void npe_setmac(struct npe_softc *sc, const u_char *eaddr);
201 static void npe_getmac(struct npe_softc *sc);
202 static void npe_txdone(int qid, void *arg);
203 static int npe_rxbuf_init(struct npe_softc *, struct npebuf *,
204 struct mbuf *);
205 static void npe_rxdone(int qid, void *arg);
206 static void npeinit_macreg(struct npe_softc *);
207 static int npeinit(struct ifnet *);
208 static void npeinit_resetcb(void *);
209 static void npeinit_locked(void *);
210 static void npestart(struct ifnet *);
211 static void npestop(struct ifnet *, int);
212 static void npewatchdog(struct ifnet *);
213 static int npeioctl(struct ifnet * ifp, u_long, void *);
214
215 static int npe_setrxqosentry(struct npe_softc *, int classix,
216 int trafclass, int qid);
217 static int npe_updatestats(struct npe_softc *);
218 #if 0
219 static int npe_getstats(struct npe_softc *);
220 static uint32_t npe_getimageid(struct npe_softc *);
221 static int npe_setloopback(struct npe_softc *, int ena);
222 #endif
223
224 static int npe_miibus_readreg(struct device *, int, int);
225 static void npe_miibus_writereg(struct device *, int, int, int);
226 static void npe_miibus_statchg(struct device *);
227
228 static int npe_debug;
229 #define DPRINTF(sc, fmt, ...) do { \
230 if (npe_debug) printf(fmt, __VA_ARGS__); \
231 } while (0)
232 #define DPRINTFn(n, sc, fmt, ...) do { \
233 if (npe_debug >= n) printf(fmt, __VA_ARGS__); \
234 } while (0)
235
236 #define NPE_TXBUF 128
237 #define NPE_RXBUF 64
238
239 #ifndef ETHER_ALIGN
240 #define ETHER_ALIGN 2 /* XXX: Ditch this */
241 #endif
242
243 #define MAC2UINT64(addr) (((uint64_t)addr[0] << 40) \
244 + ((uint64_t)addr[1] << 32) \
245 + ((uint64_t)addr[2] << 24) \
246 + ((uint64_t)addr[3] << 16) \
247 + ((uint64_t)addr[4] << 8) \
248 + (uint64_t)addr[5])
249
250 /* NB: all tx done processing goes through one queue */
251 static int tx_doneqid = -1;
252
253 void (*npe_getmac_md)(int, uint8_t *);
254
255 static int npe_match(struct device *, struct cfdata *, void *);
256 static void npe_attach(struct device *, struct device *, void *);
257
258 CFATTACH_DECL(npe, sizeof(struct npe_softc),
259 npe_match, npe_attach, NULL, NULL);
260
261 static int
262 npe_match(struct device *parent, struct cfdata *cf, void *arg)
263 {
264 struct ixpnpe_attach_args *na = arg;
265
266 return (na->na_unit == NPE_B || na->na_unit == NPE_C);
267 }
268
269 static void
270 npe_attach(struct device *parent, struct device *self, void *arg)
271 {
272 struct npe_softc *sc = (void *)self;
273 struct ixpnpe_attach_args *na = arg;
274 struct ixpnpe_softc *isc = (struct ixpnpe_softc *)parent;
275 struct ifnet *ifp;
276
277 aprint_naive("\n");
278 aprint_normal(": Ethernet co-processor\n");
279
280 sc->sc_iot = na->na_iot;
281 sc->sc_dt = na->na_dt;
282 sc->sc_npe = na->na_npe;
283 sc->sc_unit = (na->na_unit == NPE_B) ? 0 : 1;
284 sc->sc_phy = na->na_phy;
285
286 memset(&sc->sc_ethercom, 0, sizeof(sc->sc_ethercom));
287 memset(&sc->sc_mii, 0, sizeof(sc->sc_mii));
288
289 callout_init(&sc->sc_tick_ch, 0);
290
291 if (npe_activate(sc)) {
292 aprint_error("%s: Failed to activate NPE (missing "
293 "microcode?)\n", sc->sc_dev.dv_xname);
294 return;
295 }
296
297 npe_getmac(sc);
298 npeinit_macreg(sc);
299
300 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
301 ether_sprintf(sc->sc_enaddr));
302
303 ifp = &sc->sc_ethercom.ec_if;
304 sc->sc_mii.mii_ifp = ifp;
305 sc->sc_mii.mii_readreg = npe_miibus_readreg;
306 sc->sc_mii.mii_writereg = npe_miibus_writereg;
307 sc->sc_mii.mii_statchg = npe_miibus_statchg;
308 sc->sc_ethercom.ec_mii = &sc->sc_mii;
309
310 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
311 npe_ifmedia_status);
312
313 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
314 MII_OFFSET_ANY, MIIF_DOPAUSE);
315 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
316 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
317 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
318 } else
319 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
320
321 ifp->if_softc = sc;
322 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
323 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
324 ifp->if_start = npestart;
325 ifp->if_ioctl = npeioctl;
326 ifp->if_watchdog = npewatchdog;
327 ifp->if_init = npeinit;
328 ifp->if_stop = npestop;
329 IFQ_SET_READY(&ifp->if_snd);
330
331 /* VLAN capable */
332 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
333
334 if_attach(ifp);
335 ether_ifattach(ifp, sc->sc_enaddr);
336
337 /* callback function to reset MAC */
338 isc->macresetcbfunc = npeinit_resetcb;
339 isc->macresetcbarg = sc;
340 }
341
342 /*
343 * Compute and install the multicast filter.
344 */
345 static void
346 npe_setmcast(struct npe_softc *sc)
347 {
348 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
349 uint8_t mask[ETHER_ADDR_LEN], addr[ETHER_ADDR_LEN];
350 uint32_t reg;
351 uint32_t msg[2];
352 int i;
353
354 /* Always use filter. Is here a correct position? */
355 reg = RD4(sc, NPE_MAC_RX_CNTRL1);
356 WR4(sc, NPE_MAC_RX_CNTRL1, reg | NPE_RX_CNTRL1_ADDR_FLTR_EN);
357
358 if (ifp->if_flags & IFF_PROMISC) {
359 memset(mask, 0, ETHER_ADDR_LEN);
360 memset(addr, 0, ETHER_ADDR_LEN);
361 } else if (ifp->if_flags & IFF_ALLMULTI) {
362 static const uint8_t allmulti[ETHER_ADDR_LEN] =
363 { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
364 all_multi:
365 memcpy(mask, allmulti, ETHER_ADDR_LEN);
366 memcpy(addr, allmulti, ETHER_ADDR_LEN);
367 } else {
368 uint8_t clr[ETHER_ADDR_LEN], set[ETHER_ADDR_LEN];
369 struct ether_multistep step;
370 struct ether_multi *enm;
371
372 memset(clr, 0, ETHER_ADDR_LEN);
373 memset(set, 0xff, ETHER_ADDR_LEN);
374
375 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
376 while (enm != NULL) {
377 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
378 ifp->if_flags |= IFF_ALLMULTI;
379 goto all_multi;
380 }
381
382 for (i = 0; i < ETHER_ADDR_LEN; i++) {
383 clr[i] |= enm->enm_addrlo[i];
384 set[i] &= enm->enm_addrlo[i];
385 }
386
387 ETHER_NEXT_MULTI(step, enm);
388 }
389
390 for (i = 0; i < ETHER_ADDR_LEN; i++) {
391 mask[i] = set[i] | ~clr[i];
392 addr[i] = set[i];
393 }
394 }
395
396 /*
397 * Write the mask and address registers.
398 */
399 for (i = 0; i < ETHER_ADDR_LEN; i++) {
400 WR4(sc, NPE_MAC_ADDR_MASK(i), mask[i]);
401 WR4(sc, NPE_MAC_ADDR(i), addr[i]);
402 }
403
404 msg[0] = NPE_ADDRESSFILTERCONFIG << NPE_MAC_MSGID_SHL
405 | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL);
406 msg[1] = ((ifp->if_flags & IFF_PROMISC) ? 1 : 0) << 24
407 | ((RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff) << 16)
408 | (addr[5] << 8) | mask[5];
409 ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
410 }
411
412 static int
413 npe_dma_setup(struct npe_softc *sc, struct npedma *dma,
414 const char *name, int nbuf, int maxseg)
415 {
416 bus_dma_segment_t seg;
417 int rseg, error, i;
418 void *hwbuf;
419 size_t size;
420
421 memset(dma, 0, sizeof(*dma));
422
423 dma->name = name;
424 dma->nbuf = nbuf;
425
426 size = nbuf * sizeof(struct npehwbuf);
427
428 /* XXX COHERENT for now */
429 error = bus_dmamem_alloc(sc->sc_dt, size, sizeof(uint32_t), 0, &seg,
430 1, &rseg, BUS_DMA_NOWAIT);
431 if (error) {
432 printf("%s: unable to allocate memory for %s h/w buffers, "
433 "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
434 }
435
436 error = bus_dmamem_map(sc->sc_dt, &seg, 1, size, &hwbuf,
437 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_NOCACHE);
438 if (error) {
439 printf("%s: unable to map memory for %s h/w buffers, "
440 "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
441 free_dmamem:
442 bus_dmamem_free(sc->sc_dt, &seg, rseg);
443 return error;
444 }
445 dma->hwbuf = (void *)hwbuf;
446
447 error = bus_dmamap_create(sc->sc_dt, size, 1, size, 0,
448 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &dma->buf_map);
449 if (error) {
450 printf("%s: unable to create map for %s h/w buffers, "
451 "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
452 unmap_dmamem:
453 dma->hwbuf = NULL;
454 bus_dmamem_unmap(sc->sc_dt, hwbuf, size);
455 goto free_dmamem;
456 }
457
458 error = bus_dmamap_load(sc->sc_dt, dma->buf_map, hwbuf, size, NULL,
459 BUS_DMA_NOWAIT);
460 if (error) {
461 printf("%s: unable to load map for %s h/w buffers, "
462 "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
463 destroy_dmamap:
464 bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
465 goto unmap_dmamem;
466 }
467
468 /* XXX M_TEMP */
469 dma->buf = malloc(nbuf * sizeof(struct npebuf), M_TEMP, M_NOWAIT | M_ZERO);
470 if (dma->buf == NULL) {
471 printf("%s: unable to allocate memory for %s s/w buffers\n",
472 sc->sc_dev.dv_xname, dma->name);
473 bus_dmamap_unload(sc->sc_dt, dma->buf_map);
474 error = ENOMEM;
475 goto destroy_dmamap;
476 }
477
478 dma->buf_phys = dma->buf_map->dm_segs[0].ds_addr;
479 for (i = 0; i < dma->nbuf; i++) {
480 struct npebuf *npe = &dma->buf[i];
481 struct npehwbuf *hw = &dma->hwbuf[i];
482
483 /* calculate offset to shared area */
484 npe->ix_neaddr = dma->buf_phys +
485 ((uintptr_t)hw - (uintptr_t)dma->hwbuf);
486 KASSERT((npe->ix_neaddr & 0x1f) == 0);
487 error = bus_dmamap_create(sc->sc_dt, MCLBYTES, maxseg,
488 MCLBYTES, 0, 0, &npe->ix_map);
489 if (error != 0) {
490 printf("%s: unable to create dmamap for %s buffer %u, "
491 "error %u\n", sc->sc_dev.dv_xname, dma->name, i,
492 error);
493 /* XXXSCW: Free up maps... */
494 return error;
495 }
496 npe->ix_hw = hw;
497 }
498 bus_dmamap_sync(sc->sc_dt, dma->buf_map, 0, dma->buf_map->dm_mapsize,
499 BUS_DMASYNC_PREWRITE);
500 return 0;
501 }
502
503 #if 0
504 static void
505 npe_dma_destroy(struct npe_softc *sc, struct npedma *dma)
506 {
507 int i;
508
509 /* XXXSCW: Clean this up */
510
511 if (dma->hwbuf != NULL) {
512 for (i = 0; i < dma->nbuf; i++) {
513 struct npebuf *npe = &dma->buf[i];
514 bus_dmamap_destroy(sc->sc_dt, npe->ix_map);
515 }
516 bus_dmamap_unload(sc->sc_dt, dma->buf_map);
517 bus_dmamem_free(sc->sc_dt, (void *)dma->hwbuf, dma->buf_map);
518 bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
519 }
520 if (dma->buf != NULL)
521 free(dma->buf, M_TEMP);
522 memset(dma, 0, sizeof(*dma));
523 }
524 #endif
525
526 static int
527 npe_activate(struct npe_softc *sc)
528 {
529 bus_dma_segment_t seg;
530 int unit = sc->sc_unit;
531 int error, i, rseg;
532 void *statbuf;
533
534 /* load NPE firmware and start it running */
535 error = ixpnpe_init(sc->sc_npe, "npe_fw", npeconfig[unit].imageid);
536 if (error != 0)
537 return error;
538
539 if (bus_space_map(sc->sc_iot, npeconfig[unit].regbase,
540 npeconfig[unit].regsize, 0, &sc->sc_ioh)) {
541 printf("%s: Cannot map registers 0x%x:0x%x\n",
542 sc->sc_dev.dv_xname, npeconfig[unit].regbase,
543 npeconfig[unit].regsize);
544 return ENOMEM;
545 }
546
547 if (npeconfig[unit].miibase != npeconfig[unit].regbase) {
548 /*
549 * The PHY's are only accessible from one MAC (it appears)
550 * so for other MAC's setup an additional mapping for
551 * frobbing the PHY registers.
552 */
553 if (bus_space_map(sc->sc_iot, npeconfig[unit].miibase,
554 npeconfig[unit].miisize, 0, &sc->sc_miih)) {
555 printf("%s: Cannot map MII registers 0x%x:0x%x\n",
556 sc->sc_dev.dv_xname, npeconfig[unit].miibase,
557 npeconfig[unit].miisize);
558 return ENOMEM;
559 }
560 } else
561 sc->sc_miih = sc->sc_ioh;
562 error = npe_dma_setup(sc, &sc->txdma, "tx", NPE_TXBUF, NPE_MAXSEG);
563 if (error != 0)
564 return error;
565 error = npe_dma_setup(sc, &sc->rxdma, "rx", NPE_RXBUF, 1);
566 if (error != 0)
567 return error;
568
569 /* setup statistics block */
570 error = bus_dmamem_alloc(sc->sc_dt, sizeof(struct npestats),
571 sizeof(uint32_t), 0, &seg, 1, &rseg, BUS_DMA_NOWAIT);
572 if (error) {
573 printf("%s: unable to allocate memory for stats block, "
574 "error %u\n", sc->sc_dev.dv_xname, error);
575 return error;
576 }
577
578 error = bus_dmamem_map(sc->sc_dt, &seg, 1, sizeof(struct npestats),
579 &statbuf, BUS_DMA_NOWAIT);
580 if (error) {
581 printf("%s: unable to map memory for stats block, "
582 "error %u\n", sc->sc_dev.dv_xname, error);
583 return error;
584 }
585 sc->sc_stats = (void *)statbuf;
586
587 error = bus_dmamap_create(sc->sc_dt, sizeof(struct npestats), 1,
588 sizeof(struct npestats), 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
589 &sc->sc_stats_map);
590 if (error) {
591 printf("%s: unable to create map for stats block, "
592 "error %u\n", sc->sc_dev.dv_xname, error);
593 return error;
594 }
595
596 if (bus_dmamap_load(sc->sc_dt, sc->sc_stats_map, sc->sc_stats,
597 sizeof(struct npestats), NULL, BUS_DMA_NOWAIT) != 0) {
598 printf("%s: unable to load memory for stats block, error %u\n",
599 sc->sc_dev.dv_xname, error);
600 return error;
601 }
602 sc->sc_stats_phys = sc->sc_stats_map->dm_segs[0].ds_addr;
603
604 /* XXX disable half-bridge LEARNING+FILTERING feature */
605
606 /*
607 * Setup h/w rx/tx queues. There are four q's:
608 * rx inbound q of rx'd frames
609 * rx_free pool of ixpbuf's for receiving frames
610 * tx outbound q of frames to send
611 * tx_done q of tx frames that have been processed
612 *
613 * The NPE handles the actual tx/rx process and the q manager
614 * handles the queues. The driver just writes entries to the
615 * q manager mailbox's and gets callbacks when there are rx'd
616 * frames to process or tx'd frames to reap. These callbacks
617 * are controlled by the q configurations; e.g. we get a
618 * callback when tx_done has 2 or more frames to process and
619 * when the rx q has at least one frame. These setings can
620 * changed at the time the q is configured.
621 */
622 sc->rx_qid = npeconfig[unit].rx_qid;
623 ixpqmgr_qconfig(sc->rx_qid, NPE_RXBUF, 0, 1,
624 IX_QMGR_Q_SOURCE_ID_NOT_E, npe_rxdone, sc);
625 sc->rx_freeqid = npeconfig[unit].rx_freeqid;
626 ixpqmgr_qconfig(sc->rx_freeqid, NPE_RXBUF, 0, NPE_RXBUF/2, 0, NULL, sc);
627 /* tell the NPE to direct all traffic to rx_qid */
628 #if 0
629 for (i = 0; i < 8; i++)
630 #else
631 printf("%s: remember to fix rx q setup\n", sc->sc_dev.dv_xname);
632 for (i = 0; i < 4; i++)
633 #endif
634 npe_setrxqosentry(sc, i, 0, sc->rx_qid);
635
636 sc->tx_qid = npeconfig[unit].tx_qid;
637 sc->tx_doneqid = npeconfig[unit].tx_doneqid;
638 ixpqmgr_qconfig(sc->tx_qid, NPE_TXBUF, 0, NPE_TXBUF, 0, NULL, sc);
639 if (tx_doneqid == -1) {
640 ixpqmgr_qconfig(sc->tx_doneqid, NPE_TXBUF, 0, 2,
641 IX_QMGR_Q_SOURCE_ID_NOT_E, npe_txdone, sc);
642 tx_doneqid = sc->tx_doneqid;
643 }
644
645 KASSERT(npes[npeconfig[unit].npeid] == NULL);
646 npes[npeconfig[unit].npeid] = sc;
647
648 return 0;
649 }
650
651 #if 0
652 static void
653 npe_deactivate(struct npe_softc *sc);
654 {
655 int unit = sc->sc_unit;
656
657 npes[npeconfig[unit].npeid] = NULL;
658
659 /* XXX disable q's */
660 if (sc->sc_npe != NULL)
661 ixpnpe_stop(sc->sc_npe);
662 if (sc->sc_stats != NULL) {
663 bus_dmamap_unload(sc->sc_stats_tag, sc->sc_stats_map);
664 bus_dmamem_free(sc->sc_stats_tag, sc->sc_stats,
665 sc->sc_stats_map);
666 bus_dmamap_destroy(sc->sc_stats_tag, sc->sc_stats_map);
667 }
668 if (sc->sc_stats_tag != NULL)
669 bus_dma_tag_destroy(sc->sc_stats_tag);
670 npe_dma_destroy(sc, &sc->txdma);
671 npe_dma_destroy(sc, &sc->rxdma);
672 bus_generic_detach(sc->sc_dev);
673 if (sc->sc_mii)
674 device_delete_child(sc->sc_dev, sc->sc_mii);
675 #if 0
676 /* XXX sc_ioh and sc_miih */
677 if (sc->mem_res)
678 bus_release_resource(dev, SYS_RES_IOPORT,
679 rman_get_rid(sc->mem_res), sc->mem_res);
680 sc->mem_res = 0;
681 #endif
682 }
683 #endif
684
685 /*
686 * Notify the world which media we're using.
687 */
688 static void
689 npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
690 {
691 struct npe_softc *sc = ifp->if_softc;
692
693 mii_pollstat(&sc->sc_mii);
694
695 ifmr->ifm_active = sc->sc_mii.mii_media_active;
696 ifmr->ifm_status = sc->sc_mii.mii_media_status;
697 }
698
699 static void
700 npe_addstats(struct npe_softc *sc)
701 {
702 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
703 struct npestats *ns = sc->sc_stats;
704
705 ifp->if_oerrors +=
706 be32toh(ns->dot3StatsInternalMacTransmitErrors)
707 + be32toh(ns->dot3StatsCarrierSenseErrors)
708 + be32toh(ns->TxVLANIdFilterDiscards)
709 ;
710 ifp->if_ierrors += be32toh(ns->dot3StatsFCSErrors)
711 + be32toh(ns->dot3StatsInternalMacReceiveErrors)
712 + be32toh(ns->RxOverrunDiscards)
713 + be32toh(ns->RxUnderflowEntryDiscards)
714 ;
715 ifp->if_collisions +=
716 be32toh(ns->dot3StatsSingleCollisionFrames)
717 + be32toh(ns->dot3StatsMultipleCollisionFrames)
718 ;
719 }
720
721 static void
722 npe_tick(void *xsc)
723 {
724 #define ACK (NPE_RESETSTATS << NPE_MAC_MSGID_SHL)
725 struct npe_softc *sc = xsc;
726 uint32_t msg[2];
727
728 /*
729 * NB: to avoid sleeping with the softc lock held we
730 * split the NPE msg processing into two parts. The
731 * request for statistics is sent w/o waiting for a
732 * reply and then on the next tick we retrieve the
733 * results. This works because npe_tick is the only
734 * code that talks via the mailbox's (except at setup).
735 * This likely can be handled better.
736 */
737 if (ixpnpe_recvmsg(sc->sc_npe, msg) == 0 && msg[0] == ACK) {
738 bus_dmamap_sync(sc->sc_dt, sc->sc_stats_map, 0,
739 sizeof(struct npestats), BUS_DMASYNC_POSTREAD);
740 npe_addstats(sc);
741 }
742 npe_updatestats(sc);
743 mii_tick(&sc->sc_mii);
744
745 /* schedule next poll */
746 callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
747 #undef ACK
748 }
749
750 static void
751 npe_setmac(struct npe_softc *sc, const u_char *eaddr)
752 {
753
754 WR4(sc, NPE_MAC_UNI_ADDR_1, eaddr[0]);
755 WR4(sc, NPE_MAC_UNI_ADDR_2, eaddr[1]);
756 WR4(sc, NPE_MAC_UNI_ADDR_3, eaddr[2]);
757 WR4(sc, NPE_MAC_UNI_ADDR_4, eaddr[3]);
758 WR4(sc, NPE_MAC_UNI_ADDR_5, eaddr[4]);
759 WR4(sc, NPE_MAC_UNI_ADDR_6, eaddr[5]);
760 }
761
762 static void
763 npe_getmac(struct npe_softc *sc)
764 {
765 uint8_t *eaddr = sc->sc_enaddr;
766
767 if (npe_getmac_md != NULL) {
768 (*npe_getmac_md)(sc->sc_dev.dv_unit, eaddr);
769 } else {
770 /*
771 * Some system's unicast address appears to be loaded from
772 * EEPROM on reset
773 */
774 eaddr[0] = RD4(sc, NPE_MAC_UNI_ADDR_1) & 0xff;
775 eaddr[1] = RD4(sc, NPE_MAC_UNI_ADDR_2) & 0xff;
776 eaddr[2] = RD4(sc, NPE_MAC_UNI_ADDR_3) & 0xff;
777 eaddr[3] = RD4(sc, NPE_MAC_UNI_ADDR_4) & 0xff;
778 eaddr[4] = RD4(sc, NPE_MAC_UNI_ADDR_5) & 0xff;
779 eaddr[5] = RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff;
780 }
781 }
782
783 struct txdone {
784 struct npebuf *head;
785 struct npebuf **tail;
786 int count;
787 };
788
789 static __inline void
790 npe_txdone_finish(struct npe_softc *sc, const struct txdone *td)
791 {
792 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
793
794 *td->tail = sc->tx_free;
795 sc->tx_free = td->head;
796 /*
797 * We're no longer busy, so clear the busy flag and call the
798 * start routine to xmit more packets.
799 */
800 ifp->if_opackets += td->count;
801 ifp->if_flags &= ~IFF_OACTIVE;
802 ifp->if_timer = 0;
803 npestart(ifp);
804 }
805
806 /*
807 * Q manager callback on tx done queue. Reap mbufs
808 * and return tx buffers to the free list. Finally
809 * restart output. Note the microcode has only one
810 * txdone q wired into it so we must use the NPE ID
811 * returned with each npehwbuf to decide where to
812 * send buffers.
813 */
814 static void
815 npe_txdone(int qid, void *arg)
816 {
817 #define P2V(a, dma) \
818 &(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
819 struct npe_softc *sc;
820 struct npebuf *npe;
821 struct txdone *td, q[NPE_MAX];
822 uint32_t entry;
823
824 /* XXX no NPE-A support */
825 q[NPE_B].tail = &q[NPE_B].head; q[NPE_B].count = 0;
826 q[NPE_C].tail = &q[NPE_C].head; q[NPE_C].count = 0;
827 /* XXX max # at a time? */
828 while (ixpqmgr_qread(qid, &entry) == 0) {
829 sc = npes[NPE_QM_Q_NPE(entry)];
830 DPRINTF(sc, "%s: entry 0x%x NPE %u port %u\n",
831 __func__, entry, NPE_QM_Q_NPE(entry), NPE_QM_Q_PORT(entry));
832
833 npe = P2V(NPE_QM_Q_ADDR(entry), &sc->txdma);
834 m_freem(npe->ix_m);
835 npe->ix_m = NULL;
836
837 td = &q[NPE_QM_Q_NPE(entry)];
838 *td->tail = npe;
839 td->tail = &npe->ix_next;
840 td->count++;
841 }
842
843 if (q[NPE_B].count)
844 npe_txdone_finish(npes[NPE_B], &q[NPE_B]);
845 if (q[NPE_C].count)
846 npe_txdone_finish(npes[NPE_C], &q[NPE_C]);
847 #undef P2V
848 }
849
850 static __inline struct mbuf *
851 npe_getcl(void)
852 {
853 struct mbuf *m;
854
855 MGETHDR(m, M_DONTWAIT, MT_DATA);
856 if (m != NULL) {
857 MCLGET(m, M_DONTWAIT);
858 if ((m->m_flags & M_EXT) == 0) {
859 m_freem(m);
860 m = NULL;
861 }
862 }
863 return (m);
864 }
865
866 static int
867 npe_rxbuf_init(struct npe_softc *sc, struct npebuf *npe, struct mbuf *m)
868 {
869 struct npehwbuf *hw;
870 int error;
871
872 if (m == NULL) {
873 m = npe_getcl();
874 if (m == NULL)
875 return ENOBUFS;
876 }
877 KASSERT(m->m_ext.ext_size >= (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
878 m->m_pkthdr.len = m->m_len = NPE_FRAME_SIZE_DEFAULT;
879 /* backload payload and align ip hdr */
880 m->m_data = m->m_ext.ext_buf + (m->m_ext.ext_size
881 - (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
882 error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
883 BUS_DMA_READ|BUS_DMA_NOWAIT);
884 if (error != 0) {
885 m_freem(m);
886 return error;
887 }
888 hw = npe->ix_hw;
889 hw->ix_ne[0].data = htobe32(npe->ix_map->dm_segs[0].ds_addr);
890 /* NB: NPE requires length be a multiple of 64 */
891 /* NB: buffer length is shifted in word */
892 hw->ix_ne[0].len = htobe32(npe->ix_map->dm_segs[0].ds_len << 16);
893 hw->ix_ne[0].next = 0;
894 npe->ix_m = m;
895 /* Flush the memory in the mbuf */
896 bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0, npe->ix_map->dm_mapsize,
897 BUS_DMASYNC_PREREAD);
898 return 0;
899 }
900
901 /*
902 * RX q processing for a specific NPE. Claim entries
903 * from the hardware queue and pass the frames up the
904 * stack. Pass the rx buffers to the free list.
905 */
906 static void
907 npe_rxdone(int qid, void *arg)
908 {
909 #define P2V(a, dma) \
910 &(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
911 struct npe_softc *sc = arg;
912 struct npedma *dma = &sc->rxdma;
913 uint32_t entry;
914
915 while (ixpqmgr_qread(qid, &entry) == 0) {
916 struct npebuf *npe = P2V(NPE_QM_Q_ADDR(entry), dma);
917 struct mbuf *m;
918
919 DPRINTF(sc, "%s: entry 0x%x neaddr 0x%x ne_len 0x%x\n",
920 __func__, entry, npe->ix_neaddr, npe->ix_hw->ix_ne[0].len);
921 /*
922 * Allocate a new mbuf to replenish the rx buffer.
923 * If doing so fails we drop the rx'd frame so we
924 * can reuse the previous mbuf. When we're able to
925 * allocate a new mbuf dispatch the mbuf w/ rx'd
926 * data up the stack and replace it with the newly
927 * allocated one.
928 */
929 m = npe_getcl();
930 if (m != NULL) {
931 struct mbuf *mrx = npe->ix_m;
932 struct npehwbuf *hw = npe->ix_hw;
933 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
934
935 /* Flush mbuf memory for rx'd data */
936 bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
937 npe->ix_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
938
939 /* XXX flush hw buffer; works now 'cuz coherent */
940 /* set m_len etc. per rx frame size */
941 mrx->m_len = be32toh(hw->ix_ne[0].len) & 0xffff;
942 mrx->m_pkthdr.len = mrx->m_len;
943 mrx->m_pkthdr.rcvif = ifp;
944 /* Don't add M_HASFCS. See below */
945
946 #if 1
947 if (mrx->m_pkthdr.len < sizeof(struct ether_header)) {
948 log(LOG_INFO, "%s: too short frame (len=%d)\n",
949 sc->sc_dev.dv_xname, mrx->m_pkthdr.len);
950 /* Back out "newly allocated" mbuf. */
951 m_freem(m);
952 ifp->if_ierrors++;
953 goto fail;
954 }
955 if ((ifp->if_flags & IFF_PROMISC) == 0) {
956 struct ether_header *eh;
957
958 /*
959 * Workaround for "Non-Intel XScale Technology
960 * Eratta" No. 29. AA:BB:CC:DD:EE:xF's packet
961 * matches the filter (both unicast and
962 * multicast).
963 */
964 eh = mtod(mrx, struct ether_header *);
965 if (ETHER_IS_MULTICAST(eh->ether_dhost) == 0) {
966 /* unicast */
967
968 if (sc->sc_enaddr[5] != eh->ether_dhost[5]) {
969 /* discard it */
970 #if 0
971 printf("discard it\n");
972 #endif
973 /*
974 * Back out "newly allocated"
975 * mbuf.
976 */
977 m_freem(m);
978 goto fail;
979 }
980 } else if (memcmp(eh->ether_dhost,
981 etherbroadcastaddr, 6) == 0) {
982 /* Always accept broadcast packet*/
983 } else {
984 struct ethercom *ec = &sc->sc_ethercom;
985 struct ether_multi *enm;
986 struct ether_multistep step;
987 int match = 0;
988
989 /* multicast */
990
991 ETHER_FIRST_MULTI(step, ec, enm);
992 while (enm != NULL) {
993 uint64_t lowint, highint, dest;
994
995 lowint = MAC2UINT64(enm->enm_addrlo);
996 highint = MAC2UINT64(enm->enm_addrhi);
997 dest = MAC2UINT64(eh->ether_dhost);
998 #if 0
999 printf("%llx\n", lowint);
1000 printf("%llx\n", dest);
1001 printf("%llx\n", highint);
1002 #endif
1003 if ((lowint <= dest) && (dest <= highint)) {
1004 match = 1;
1005 break;
1006 }
1007 ETHER_NEXT_MULTI(step, enm);
1008 }
1009 if (match == 0) {
1010 /* discard it */
1011 #if 0
1012 printf("discard it(M)\n");
1013 #endif
1014 /*
1015 * Back out "newly allocated"
1016 * mbuf.
1017 */
1018 m_freem(m);
1019 goto fail;
1020 }
1021 }
1022 }
1023 if (mrx->m_pkthdr.len > NPE_FRAME_SIZE_DEFAULT) {
1024 log(LOG_INFO, "%s: oversized frame (len=%d)\n",
1025 sc->sc_dev.dv_xname, mrx->m_pkthdr.len);
1026 /* Back out "newly allocated" mbuf. */
1027 m_freem(m);
1028 ifp->if_ierrors++;
1029 goto fail;
1030 }
1031 #endif
1032
1033 /*
1034 * Trim FCS!
1035 * NPE always adds the FCS by this driver's setting,
1036 * so we always trim it here and not add M_HASFCS.
1037 */
1038 m_adj(mrx, -ETHER_CRC_LEN);
1039
1040 ifp->if_ipackets++;
1041 #if NBPFILTER > 0
1042 /*
1043 * Tap off here if there is a bpf listener.
1044 */
1045 if (__predict_false(ifp->if_bpf))
1046 bpf_mtap(ifp->if_bpf, mrx);
1047 #endif
1048 ifp->if_input(ifp, mrx);
1049 } else {
1050 fail:
1051 /* discard frame and re-use mbuf */
1052 m = npe->ix_m;
1053 }
1054 if (npe_rxbuf_init(sc, npe, m) == 0) {
1055 /* return npe buf to rx free list */
1056 ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
1057 } else {
1058 /* XXX should not happen */
1059 }
1060 }
1061 #undef P2V
1062 }
1063
1064 static void
1065 npe_startxmit(struct npe_softc *sc)
1066 {
1067 struct npedma *dma = &sc->txdma;
1068 int i;
1069
1070 sc->tx_free = NULL;
1071 for (i = 0; i < dma->nbuf; i++) {
1072 struct npebuf *npe = &dma->buf[i];
1073 if (npe->ix_m != NULL) {
1074 /* NB: should not happen */
1075 printf("%s: %s: free mbuf at entry %u\n",
1076 sc->sc_dev.dv_xname, __func__, i);
1077 m_freem(npe->ix_m);
1078 }
1079 npe->ix_m = NULL;
1080 npe->ix_next = sc->tx_free;
1081 sc->tx_free = npe;
1082 }
1083 }
1084
1085 static void
1086 npe_startrecv(struct npe_softc *sc)
1087 {
1088 struct npedma *dma = &sc->rxdma;
1089 struct npebuf *npe;
1090 int i;
1091
1092 for (i = 0; i < dma->nbuf; i++) {
1093 npe = &dma->buf[i];
1094 npe_rxbuf_init(sc, npe, npe->ix_m);
1095 /* set npe buf on rx free list */
1096 ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
1097 }
1098 }
1099
1100 static void
1101 npeinit_macreg(struct npe_softc *sc)
1102 {
1103
1104 /*
1105 * Reset MAC core.
1106 */
1107 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
1108 DELAY(NPE_MAC_RESET_DELAY);
1109 /* configure MAC to generate MDC clock */
1110 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
1111
1112 /* disable transmitter and reciver in the MAC */
1113 WR4(sc, NPE_MAC_RX_CNTRL1,
1114 RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
1115 WR4(sc, NPE_MAC_TX_CNTRL1,
1116 RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
1117
1118 /*
1119 * Set the MAC core registers.
1120 */
1121 WR4(sc, NPE_MAC_INT_CLK_THRESH, 0x1); /* clock ratio: for ipx4xx */
1122 WR4(sc, NPE_MAC_TX_CNTRL2, 0xf); /* max retries */
1123 WR4(sc, NPE_MAC_RANDOM_SEED, 0x8); /* LFSR back-off seed */
1124 /* thresholds determined by NPE firmware FS */
1125 WR4(sc, NPE_MAC_THRESH_P_EMPTY, 0x12);
1126 WR4(sc, NPE_MAC_THRESH_P_FULL, 0x30);
1127 WR4(sc, NPE_MAC_BUF_SIZE_TX, NPE_MAC_BUF_SIZE_TX_DEFAULT);
1128 /* tx fifo threshold (bytes) */
1129 WR4(sc, NPE_MAC_TX_DEFER, 0x15); /* for single deferral */
1130 WR4(sc, NPE_MAC_RX_DEFER, 0x16); /* deferral on inter-frame gap*/
1131 WR4(sc, NPE_MAC_TX_TWO_DEFER_1, 0x8); /* for 2-part deferral */
1132 WR4(sc, NPE_MAC_TX_TWO_DEFER_2, 0x7); /* for 2-part deferral */
1133 WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
1134 /* assumes MII mode */
1135 WR4(sc, NPE_MAC_TX_CNTRL1,
1136 NPE_TX_CNTRL1_RETRY /* retry failed xmits */
1137 | NPE_TX_CNTRL1_FCS_EN /* append FCS */
1138 | NPE_TX_CNTRL1_2DEFER /* 2-part deferal */
1139 | NPE_TX_CNTRL1_PAD_EN); /* pad runt frames */
1140 /* XXX pad strip? */
1141 WR4(sc, NPE_MAC_RX_CNTRL1,
1142 NPE_RX_CNTRL1_CRC_EN /* include CRC/FCS */
1143 | NPE_RX_CNTRL1_PAUSE_EN); /* ena pause frame handling */
1144 WR4(sc, NPE_MAC_RX_CNTRL2, 0);
1145 }
1146
1147 static void
1148 npeinit_resetcb(void *xsc)
1149 {
1150 struct npe_softc *sc = xsc;
1151 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1152 uint32_t msg[2];
1153
1154 ifp->if_oerrors++;
1155 npeinit_locked(sc);
1156
1157 msg[0] = NPE_NOTIFYMACRECOVERYDONE << NPE_MAC_MSGID_SHL
1158 | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL);
1159 msg[1] = 0;
1160 ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1161 }
1162
1163 /*
1164 * Reset and initialize the chip
1165 */
1166 static void
1167 npeinit_locked(void *xsc)
1168 {
1169 struct npe_softc *sc = xsc;
1170 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1171
1172 /* Cancel any pending I/O. */
1173 npestop(ifp, 0);
1174
1175 /* Reset the chip to a known state. */
1176 npeinit_macreg(sc);
1177 npe_setmac(sc, CLLADDR(ifp->if_sadl));
1178 ether_mediachange(ifp);
1179 npe_setmcast(sc);
1180
1181 npe_startxmit(sc);
1182 npe_startrecv(sc);
1183
1184 ifp->if_flags |= IFF_RUNNING;
1185 ifp->if_flags &= ~IFF_OACTIVE;
1186 ifp->if_timer = 0; /* just in case */
1187
1188 /* enable transmitter and reciver in the MAC */
1189 WR4(sc, NPE_MAC_RX_CNTRL1,
1190 RD4(sc, NPE_MAC_RX_CNTRL1) | NPE_RX_CNTRL1_RX_EN);
1191 WR4(sc, NPE_MAC_TX_CNTRL1,
1192 RD4(sc, NPE_MAC_TX_CNTRL1) | NPE_TX_CNTRL1_TX_EN);
1193
1194 callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
1195 }
1196
1197 static int
1198 npeinit(struct ifnet *ifp)
1199 {
1200 struct npe_softc *sc = ifp->if_softc;
1201 int s;
1202
1203 s = splnet();
1204 npeinit_locked(sc);
1205 splx(s);
1206
1207 return (0);
1208 }
1209
1210 /*
1211 * Defragment an mbuf chain, returning at most maxfrags separate
1212 * mbufs+clusters. If this is not possible NULL is returned and
1213 * the original mbuf chain is left in it's present (potentially
1214 * modified) state. We use two techniques: collapsing consecutive
1215 * mbufs and replacing consecutive mbufs by a cluster.
1216 */
1217 static __inline struct mbuf *
1218 npe_defrag(struct mbuf *m0)
1219 {
1220 struct mbuf *m;
1221
1222 MGETHDR(m, M_DONTWAIT, MT_DATA);
1223 if (m == NULL)
1224 return (NULL);
1225 M_COPY_PKTHDR(m, m0);
1226
1227 if ((m->m_len = m0->m_pkthdr.len) > MHLEN) {
1228 MCLGET(m, M_DONTWAIT);
1229 if ((m->m_flags & M_EXT) == 0) {
1230 m_freem(m);
1231 return (NULL);
1232 }
1233 }
1234
1235 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1236 m_freem(m0);
1237
1238 return (m);
1239 }
1240
1241 /*
1242 * Dequeue packets and place on the h/w transmit queue.
1243 */
1244 static void
1245 npestart(struct ifnet *ifp)
1246 {
1247 struct npe_softc *sc = ifp->if_softc;
1248 struct npebuf *npe;
1249 struct npehwbuf *hw;
1250 struct mbuf *m, *n;
1251 bus_dma_segment_t *segs;
1252 int nseg, len, error, i;
1253 uint32_t next;
1254
1255 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1256 return;
1257
1258 while (sc->tx_free != NULL) {
1259 IFQ_DEQUEUE(&ifp->if_snd, m);
1260 if (m == NULL)
1261 break;
1262 npe = sc->tx_free;
1263 error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
1264 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1265 if (error == EFBIG) {
1266 n = npe_defrag(m);
1267 if (n == NULL) {
1268 printf("%s: %s: too many fragments\n",
1269 sc->sc_dev.dv_xname, __func__);
1270 m_freem(m);
1271 return; /* XXX? */
1272 }
1273 m = n;
1274 error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map,
1275 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1276 }
1277 if (error != 0) {
1278 printf("%s: %s: error %u\n",
1279 sc->sc_dev.dv_xname, __func__, error);
1280 m_freem(m);
1281 return; /* XXX? */
1282 }
1283 sc->tx_free = npe->ix_next;
1284
1285 #if NBPFILTER > 0
1286 /*
1287 * Tap off here if there is a bpf listener.
1288 */
1289 if (__predict_false(ifp->if_bpf))
1290 bpf_mtap(ifp->if_bpf, m);
1291 #endif
1292
1293 bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
1294 npe->ix_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1295
1296 npe->ix_m = m;
1297 hw = npe->ix_hw;
1298 len = m->m_pkthdr.len;
1299 nseg = npe->ix_map->dm_nsegs;
1300 segs = npe->ix_map->dm_segs;
1301 next = npe->ix_neaddr + sizeof(hw->ix_ne[0]);
1302 for (i = 0; i < nseg; i++) {
1303 hw->ix_ne[i].data = htobe32(segs[i].ds_addr);
1304 hw->ix_ne[i].len = htobe32((segs[i].ds_len<<16) | len);
1305 hw->ix_ne[i].next = htobe32(next);
1306
1307 len = 0; /* zero for segments > 1 */
1308 next += sizeof(hw->ix_ne[0]);
1309 }
1310 hw->ix_ne[i-1].next = 0; /* zero last in chain */
1311 /* XXX flush descriptor instead of using uncached memory */
1312
1313 DPRINTF(sc, "%s: qwrite(%u, 0x%x) ne_data %x ne_len 0x%x\n",
1314 __func__, sc->tx_qid, npe->ix_neaddr,
1315 hw->ix_ne[0].data, hw->ix_ne[0].len);
1316 /* stick it on the tx q */
1317 /* XXX add vlan priority */
1318 ixpqmgr_qwrite(sc->tx_qid, npe->ix_neaddr);
1319
1320 ifp->if_timer = 5;
1321 }
1322 if (sc->tx_free == NULL)
1323 ifp->if_flags |= IFF_OACTIVE;
1324 }
1325
1326 static void
1327 npe_stopxmit(struct npe_softc *sc)
1328 {
1329 struct npedma *dma = &sc->txdma;
1330 int i;
1331
1332 /* XXX qmgr */
1333 for (i = 0; i < dma->nbuf; i++) {
1334 struct npebuf *npe = &dma->buf[i];
1335
1336 if (npe->ix_m != NULL) {
1337 bus_dmamap_unload(sc->sc_dt, npe->ix_map);
1338 m_freem(npe->ix_m);
1339 npe->ix_m = NULL;
1340 }
1341 }
1342 }
1343
1344 static void
1345 npe_stoprecv(struct npe_softc *sc)
1346 {
1347 struct npedma *dma = &sc->rxdma;
1348 int i;
1349
1350 /* XXX qmgr */
1351 for (i = 0; i < dma->nbuf; i++) {
1352 struct npebuf *npe = &dma->buf[i];
1353
1354 if (npe->ix_m != NULL) {
1355 bus_dmamap_unload(sc->sc_dt, npe->ix_map);
1356 m_freem(npe->ix_m);
1357 npe->ix_m = NULL;
1358 }
1359 }
1360 }
1361
1362 /*
1363 * Turn off interrupts, and stop the nic.
1364 */
1365 void
1366 npestop(struct ifnet *ifp, int disable)
1367 {
1368 struct npe_softc *sc = ifp->if_softc;
1369
1370 /* disable transmitter and reciver in the MAC */
1371 WR4(sc, NPE_MAC_RX_CNTRL1,
1372 RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
1373 WR4(sc, NPE_MAC_TX_CNTRL1,
1374 RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
1375
1376 callout_stop(&sc->sc_tick_ch);
1377
1378 npe_stopxmit(sc);
1379 npe_stoprecv(sc);
1380 /* XXX go into loopback & drain q's? */
1381 /* XXX but beware of disabling tx above */
1382
1383 /*
1384 * The MAC core rx/tx disable may leave the MAC hardware in an
1385 * unpredictable state. A hw reset is executed before resetting
1386 * all the MAC parameters to a known value.
1387 */
1388 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
1389 DELAY(NPE_MAC_RESET_DELAY);
1390 WR4(sc, NPE_MAC_INT_CLK_THRESH, NPE_MAC_INT_CLK_THRESH_DEFAULT);
1391 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
1392
1393 ifp->if_timer = 0;
1394 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1395 }
1396
1397 void
1398 npewatchdog(struct ifnet *ifp)
1399 {
1400 struct npe_softc *sc = ifp->if_softc;
1401 int s;
1402
1403 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1404 s = splnet();
1405 ifp->if_oerrors++;
1406 npeinit_locked(sc);
1407 splx(s);
1408 }
1409
1410 static int
1411 npeioctl(struct ifnet *ifp, u_long cmd, void *data)
1412 {
1413 struct npe_softc *sc = ifp->if_softc;
1414 struct ifreq *ifr = (struct ifreq *) data;
1415 int s, error = 0;
1416
1417 s = splnet();
1418
1419 switch (cmd) {
1420 case SIOCSIFMEDIA:
1421 case SIOCGIFMEDIA:
1422 #if 0 /* not yet */
1423 /* Flow control requires full-duplex mode. */
1424 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1425 (ifr->ifr_media & IFM_FDX) == 0)
1426 ifr->ifr_media &= ~IFM_ETH_FMASK;
1427 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1428 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1429 /* We can do both TXPAUSE and RXPAUSE. */
1430 ifr->ifr_media |=
1431 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1432 }
1433 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1434 }
1435 #endif
1436 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1437 break;
1438 case SIOCSIFFLAGS:
1439 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == IFF_RUNNING) {
1440 /*
1441 * If interface is marked down and it is running,
1442 * then stop and disable it.
1443 */
1444 (*ifp->if_stop)(ifp, 1);
1445 } else if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == IFF_UP) {
1446 /*
1447 * If interface is marked up and it is stopped, then
1448 * start it.
1449 */
1450 error = (*ifp->if_init)(ifp);
1451 } else if ((ifp->if_flags & IFF_UP) != 0) {
1452 int diff;
1453
1454 /* Up (AND RUNNING). */
1455
1456 diff = (ifp->if_flags ^ sc->sc_if_flags)
1457 & (IFF_PROMISC|IFF_ALLMULTI);
1458 if ((diff & (IFF_PROMISC|IFF_ALLMULTI)) != 0) {
1459 /*
1460 * If the difference bettween last flag and
1461 * new flag only IFF_PROMISC or IFF_ALLMULTI,
1462 * set multicast filter only (don't reset to
1463 * prevent link down).
1464 */
1465 npe_setmcast(sc);
1466 } else {
1467 /*
1468 * Reset the interface to pick up changes in
1469 * any other flags that affect the hardware
1470 * state.
1471 */
1472 error = (*ifp->if_init)(ifp);
1473 }
1474 }
1475 sc->sc_if_flags = ifp->if_flags;
1476 break;
1477 default:
1478 error = ether_ioctl(ifp, cmd, data);
1479 if (error == ENETRESET) {
1480 /*
1481 * Multicast list has changed; set the hardware filter
1482 * accordingly.
1483 */
1484 npe_setmcast(sc);
1485 error = 0;
1486 }
1487 }
1488
1489 npestart(ifp);
1490
1491 splx(s);
1492 return error;
1493 }
1494
1495 /*
1496 * Setup a traffic class -> rx queue mapping.
1497 */
1498 static int
1499 npe_setrxqosentry(struct npe_softc *sc, int classix, int trafclass, int qid)
1500 {
1501 int npeid = npeconfig[sc->sc_unit].npeid;
1502 uint32_t msg[2];
1503
1504 msg[0] = (NPE_SETRXQOSENTRY << NPE_MAC_MSGID_SHL) | (npeid << 20)
1505 | classix;
1506 msg[1] = (trafclass << 24) | (1 << 23) | (qid << 16) | (qid << 4);
1507 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1508 }
1509
1510 /*
1511 * Update and reset the statistics in the NPE.
1512 */
1513 static int
1514 npe_updatestats(struct npe_softc *sc)
1515 {
1516 uint32_t msg[2];
1517
1518 msg[0] = NPE_RESETSTATS << NPE_MAC_MSGID_SHL;
1519 msg[1] = sc->sc_stats_phys; /* physical address of stat block */
1520 return ixpnpe_sendmsg(sc->sc_npe, msg); /* NB: no recv */
1521 }
1522
1523 #if 0
1524 /*
1525 * Get the current statistics block.
1526 */
1527 static int
1528 npe_getstats(struct npe_softc *sc)
1529 {
1530 uint32_t msg[2];
1531
1532 msg[0] = NPE_GETSTATS << NPE_MAC_MSGID_SHL;
1533 msg[1] = sc->sc_stats_phys; /* physical address of stat block */
1534 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1535 }
1536
1537 /*
1538 * Query the image id of the loaded firmware.
1539 */
1540 static uint32_t
1541 npe_getimageid(struct npe_softc *sc)
1542 {
1543 uint32_t msg[2];
1544
1545 msg[0] = NPE_GETSTATUS << NPE_MAC_MSGID_SHL;
1546 msg[1] = 0;
1547 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg) == 0 ? msg[1] : 0;
1548 }
1549
1550 /*
1551 * Enable/disable loopback.
1552 */
1553 static int
1554 npe_setloopback(struct npe_softc *sc, int ena)
1555 {
1556 uint32_t msg[2];
1557
1558 msg[0] = (NPE_SETLOOPBACK << NPE_MAC_MSGID_SHL) | (ena != 0);
1559 msg[1] = 0;
1560 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1561 }
1562 #endif
1563
1564 /*
1565 * MII bus support routines.
1566 *
1567 * NB: ixp425 has one PHY per NPE
1568 */
1569 static uint32_t
1570 npe_mii_mdio_read(struct npe_softc *sc, int reg)
1571 {
1572 #define MII_RD4(sc, reg) bus_space_read_4(sc->sc_iot, sc->sc_miih, reg)
1573 uint32_t v;
1574
1575 /* NB: registers are known to be sequential */
1576 v = (MII_RD4(sc, reg+0) & 0xff) << 0;
1577 v |= (MII_RD4(sc, reg+4) & 0xff) << 8;
1578 v |= (MII_RD4(sc, reg+8) & 0xff) << 16;
1579 v |= (MII_RD4(sc, reg+12) & 0xff) << 24;
1580 return v;
1581 #undef MII_RD4
1582 }
1583
1584 static void
1585 npe_mii_mdio_write(struct npe_softc *sc, int reg, uint32_t cmd)
1586 {
1587 #define MII_WR4(sc, reg, v) \
1588 bus_space_write_4(sc->sc_iot, sc->sc_miih, reg, v)
1589
1590 /* NB: registers are known to be sequential */
1591 MII_WR4(sc, reg+0, cmd & 0xff);
1592 MII_WR4(sc, reg+4, (cmd >> 8) & 0xff);
1593 MII_WR4(sc, reg+8, (cmd >> 16) & 0xff);
1594 MII_WR4(sc, reg+12, (cmd >> 24) & 0xff);
1595 #undef MII_WR4
1596 }
1597
1598 static int
1599 npe_mii_mdio_wait(struct npe_softc *sc)
1600 {
1601 #define MAXTRIES 100 /* XXX */
1602 uint32_t v;
1603 int i;
1604
1605 for (i = 0; i < MAXTRIES; i++) {
1606 v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_CMD);
1607 if ((v & NPE_MII_GO) == 0)
1608 return 1;
1609 }
1610 return 0; /* NB: timeout */
1611 #undef MAXTRIES
1612 }
1613
1614 static int
1615 npe_miibus_readreg(struct device *self, int phy, int reg)
1616 {
1617 struct npe_softc *sc = (void *)self;
1618 uint32_t v;
1619
1620 if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
1621 return 0xffff;
1622 v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
1623 | NPE_MII_GO;
1624 npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
1625 if (npe_mii_mdio_wait(sc))
1626 v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_STS);
1627 else
1628 v = 0xffff | NPE_MII_READ_FAIL;
1629 return (v & NPE_MII_READ_FAIL) ? 0xffff : (v & 0xffff);
1630 #undef MAXTRIES
1631 }
1632
1633 static void
1634 npe_miibus_writereg(struct device *self, int phy, int reg, int data)
1635 {
1636 struct npe_softc *sc = (void *)self;
1637 uint32_t v;
1638
1639 if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
1640 return;
1641 v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
1642 | data | NPE_MII_WRITE
1643 | NPE_MII_GO;
1644 npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
1645 /* XXX complain about timeout */
1646 (void) npe_mii_mdio_wait(sc);
1647 }
1648
1649 static void
1650 npe_miibus_statchg(struct device *self)
1651 {
1652 struct npe_softc *sc = (void *)self;
1653 uint32_t tx1, rx1;
1654 uint32_t randoff;
1655
1656 /* sync MAC duplex state */
1657 tx1 = RD4(sc, NPE_MAC_TX_CNTRL1);
1658 rx1 = RD4(sc, NPE_MAC_RX_CNTRL1);
1659 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1660 WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
1661 tx1 &= ~NPE_TX_CNTRL1_DUPLEX;
1662 rx1 |= NPE_RX_CNTRL1_PAUSE_EN;
1663 } else {
1664 struct timeval now;
1665 getmicrotime(&now);
1666 randoff = (RD4(sc, NPE_MAC_UNI_ADDR_6) ^ now.tv_usec)
1667 & 0x7f;
1668 WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT
1669 + randoff);
1670 tx1 |= NPE_TX_CNTRL1_DUPLEX;
1671 rx1 &= ~NPE_RX_CNTRL1_PAUSE_EN;
1672 }
1673 WR4(sc, NPE_MAC_RX_CNTRL1, rx1);
1674 WR4(sc, NPE_MAC_TX_CNTRL1, tx1);
1675 }
1676