ixp425_if_npe.c revision 1.20 1 /* $NetBSD: ixp425_if_npe.c,v 1.20 2011/07/01 20:32:51 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2006 Sam Leffler. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #include <sys/cdefs.h>
28 #if 0
29 __FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/if_npe.c,v 1.1 2006/11/19 23:55:23 sam Exp $");
30 #endif
31 __KERNEL_RCSID(0, "$NetBSD: ixp425_if_npe.c,v 1.20 2011/07/01 20:32:51 dyoung Exp $");
32
33 /*
34 * Intel XScale NPE Ethernet driver.
35 *
36 * This driver handles the two ports present on the IXP425.
37 * Packet processing is done by the Network Processing Engines
38 * (NPE's) that work together with a MAC and PHY. The MAC
39 * is also mapped to the XScale cpu; the PHY is accessed via
40 * the MAC. NPE-XScale communication happens through h/w
41 * queues managed by the Q Manager block.
42 *
43 * The code here replaces the ethAcc, ethMii, and ethDB classes
44 * in the Intel Access Library (IAL) and the OS-specific driver.
45 *
46 * XXX add vlan support
47 * XXX NPE-C port doesn't work yet
48 */
49
50 #include "rnd.h"
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/device.h>
56 #include <sys/callout.h>
57 #include <sys/mbuf.h>
58 #include <sys/malloc.h>
59 #include <sys/socket.h>
60 #include <sys/endian.h>
61 #include <sys/ioctl.h>
62 #include <sys/syslog.h>
63
64 #include <sys/bus.h>
65
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_media.h>
69 #include <net/if_ether.h>
70
71 #include <net/bpf.h>
72
73 #if NRND > 0
74 #include <sys/rnd.h>
75 #endif
76
77 #include <arm/xscale/ixp425reg.h>
78 #include <arm/xscale/ixp425var.h>
79 #include <arm/xscale/ixp425_qmgr.h>
80 #include <arm/xscale/ixp425_npevar.h>
81 #include <arm/xscale/ixp425_if_npereg.h>
82
83 #include <dev/mii/miivar.h>
84
85 #include "locators.h"
86
87 struct npebuf {
88 struct npebuf *ix_next; /* chain to next buffer */
89 void *ix_m; /* backpointer to mbuf */
90 bus_dmamap_t ix_map; /* bus dma map for associated data */
91 struct npehwbuf *ix_hw; /* associated h/w block */
92 uint32_t ix_neaddr; /* phys address of ix_hw */
93 };
94
95 struct npedma {
96 const char* name;
97 int nbuf; /* # npebuf's allocated */
98 bus_dmamap_t m_map;
99 struct npehwbuf *hwbuf; /* NPE h/w buffers */
100 bus_dmamap_t buf_map;
101 bus_addr_t buf_phys; /* phys addr of buffers */
102 struct npebuf *buf; /* s/w buffers (1-1 w/ h/w) */
103 };
104
105 struct npe_softc {
106 struct device sc_dev;
107 struct ethercom sc_ethercom;
108 uint8_t sc_enaddr[ETHER_ADDR_LEN];
109 struct mii_data sc_mii;
110 bus_space_tag_t sc_iot;
111 bus_dma_tag_t sc_dt;
112 bus_space_handle_t sc_ioh; /* MAC register window */
113 bus_space_handle_t sc_miih; /* MII register window */
114 struct ixpnpe_softc *sc_npe; /* NPE support */
115 int sc_unit;
116 int sc_phy;
117 struct callout sc_tick_ch; /* Tick callout */
118 struct npedma txdma;
119 struct npebuf *tx_free; /* list of free tx buffers */
120 struct npedma rxdma;
121 int rx_qid; /* rx qid */
122 int rx_freeqid; /* rx free buffers qid */
123 int tx_qid; /* tx qid */
124 int tx_doneqid; /* tx completed qid */
125 struct npestats *sc_stats;
126 bus_dmamap_t sc_stats_map;
127 bus_addr_t sc_stats_phys; /* phys addr of sc_stats */
128 int sc_if_flags; /* keep last if_flags */
129 #if NRND > 0
130 rndsource_element_t rnd_source; /* random source */
131 #endif
132 };
133
134 /*
135 * Per-unit static configuration for IXP425. The tx and
136 * rx free Q id's are fixed by the NPE microcode. The
137 * rx Q id's are programmed to be separate to simplify
138 * multi-port processing. It may be better to handle
139 * all traffic through one Q (as done by the Intel drivers).
140 *
141 * Note that the PHY's are accessible only from MAC A
142 * on the IXP425. This and other platform-specific
143 * assumptions probably need to be handled through hints.
144 */
145 static const struct {
146 const char *desc; /* device description */
147 int npeid; /* NPE assignment */
148 int macport; /* Port number of the MAC */
149 uint32_t imageid; /* NPE firmware image id */
150 uint32_t regbase;
151 int regsize;
152 uint32_t miibase;
153 int miisize;
154 uint8_t rx_qid;
155 uint8_t rx_freeqid;
156 uint8_t tx_qid;
157 uint8_t tx_doneqid;
158 } npeconfig[NPE_PORTS_MAX] = {
159 { .desc = "IXP NPE-B",
160 .npeid = NPE_B,
161 .macport = 0x10,
162 .imageid = IXP425_NPE_B_IMAGEID,
163 .regbase = IXP425_MAC_A_HWBASE,
164 .regsize = IXP425_MAC_A_SIZE,
165 .miibase = IXP425_MAC_A_HWBASE,
166 .miisize = IXP425_MAC_A_SIZE,
167 .rx_qid = 4,
168 .rx_freeqid = 27,
169 .tx_qid = 24,
170 .tx_doneqid = 31
171 },
172 { .desc = "IXP NPE-C",
173 .npeid = NPE_C,
174 .macport = 0x20,
175 .imageid = IXP425_NPE_C_IMAGEID,
176 .regbase = IXP425_MAC_B_HWBASE,
177 .regsize = IXP425_MAC_B_SIZE,
178 .miibase = IXP425_MAC_A_HWBASE,
179 .miisize = IXP425_MAC_A_SIZE,
180 .rx_qid = 12,
181 .rx_freeqid = 28,
182 .tx_qid = 25,
183 .tx_doneqid = 31
184 },
185 };
186 static struct npe_softc *npes[NPE_MAX]; /* NB: indexed by npeid */
187
188 static __inline uint32_t
189 RD4(struct npe_softc *sc, bus_size_t off)
190 {
191 return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
192 }
193
194 static __inline void
195 WR4(struct npe_softc *sc, bus_size_t off, uint32_t val)
196 {
197 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
198 }
199
200 static int npe_activate(struct npe_softc *);
201 #if 0
202 static void npe_deactivate(struct npe_softc *);
203 #endif
204 static void npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr);
205 static void npe_setmac(struct npe_softc *sc, const u_char *eaddr);
206 static void npe_getmac(struct npe_softc *sc);
207 static void npe_txdone(int qid, void *arg);
208 static int npe_rxbuf_init(struct npe_softc *, struct npebuf *,
209 struct mbuf *);
210 static void npe_rxdone(int qid, void *arg);
211 static void npeinit_macreg(struct npe_softc *);
212 static int npeinit(struct ifnet *);
213 static void npeinit_resetcb(void *);
214 static void npeinit_locked(void *);
215 static void npestart(struct ifnet *);
216 static void npestop(struct ifnet *, int);
217 static void npewatchdog(struct ifnet *);
218 static int npeioctl(struct ifnet * ifp, u_long, void *);
219
220 static int npe_setrxqosentry(struct npe_softc *, int classix,
221 int trafclass, int qid);
222 static int npe_updatestats(struct npe_softc *);
223 #if 0
224 static int npe_getstats(struct npe_softc *);
225 static uint32_t npe_getimageid(struct npe_softc *);
226 static int npe_setloopback(struct npe_softc *, int ena);
227 #endif
228
229 static int npe_miibus_readreg(struct device *, int, int);
230 static void npe_miibus_writereg(struct device *, int, int, int);
231 static void npe_miibus_statchg(struct device *);
232
233 static int npe_debug;
234 #define DPRINTF(sc, fmt, ...) do { \
235 if (npe_debug) printf(fmt, __VA_ARGS__); \
236 } while (0)
237 #define DPRINTFn(n, sc, fmt, ...) do { \
238 if (npe_debug >= n) printf(fmt, __VA_ARGS__); \
239 } while (0)
240
241 #define NPE_TXBUF 128
242 #define NPE_RXBUF 64
243
244 #ifndef ETHER_ALIGN
245 #define ETHER_ALIGN 2 /* XXX: Ditch this */
246 #endif
247
248 #define MAC2UINT64(addr) (((uint64_t)addr[0] << 40) \
249 + ((uint64_t)addr[1] << 32) \
250 + ((uint64_t)addr[2] << 24) \
251 + ((uint64_t)addr[3] << 16) \
252 + ((uint64_t)addr[4] << 8) \
253 + (uint64_t)addr[5])
254
255 /* NB: all tx done processing goes through one queue */
256 static int tx_doneqid = -1;
257
258 void (*npe_getmac_md)(int, uint8_t *);
259
260 static int npe_match(struct device *, struct cfdata *, void *);
261 static void npe_attach(struct device *, struct device *, void *);
262
263 CFATTACH_DECL(npe, sizeof(struct npe_softc),
264 npe_match, npe_attach, NULL, NULL);
265
266 static int
267 npe_match(struct device *parent, struct cfdata *cf, void *arg)
268 {
269 struct ixpnpe_attach_args *na = arg;
270
271 return (na->na_unit == NPE_B || na->na_unit == NPE_C);
272 }
273
274 static void
275 npe_attach(struct device *parent, struct device *self, void *arg)
276 {
277 struct npe_softc *sc = (void *)self;
278 struct ixpnpe_attach_args *na = arg;
279 struct ixpnpe_softc *isc = (struct ixpnpe_softc *)parent;
280 struct ifnet *ifp;
281
282 aprint_naive("\n");
283 aprint_normal(": Ethernet co-processor\n");
284
285 sc->sc_iot = na->na_iot;
286 sc->sc_dt = na->na_dt;
287 sc->sc_npe = na->na_npe;
288 sc->sc_unit = (na->na_unit == NPE_B) ? 0 : 1;
289 sc->sc_phy = na->na_phy;
290
291 memset(&sc->sc_ethercom, 0, sizeof(sc->sc_ethercom));
292 memset(&sc->sc_mii, 0, sizeof(sc->sc_mii));
293
294 callout_init(&sc->sc_tick_ch, 0);
295
296 if (npe_activate(sc)) {
297 aprint_error("%s: Failed to activate NPE (missing "
298 "microcode?)\n", sc->sc_dev.dv_xname);
299 return;
300 }
301
302 npe_getmac(sc);
303 npeinit_macreg(sc);
304
305 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
306 ether_sprintf(sc->sc_enaddr));
307
308 ifp = &sc->sc_ethercom.ec_if;
309 sc->sc_mii.mii_ifp = ifp;
310 sc->sc_mii.mii_readreg = npe_miibus_readreg;
311 sc->sc_mii.mii_writereg = npe_miibus_writereg;
312 sc->sc_mii.mii_statchg = npe_miibus_statchg;
313 sc->sc_ethercom.ec_mii = &sc->sc_mii;
314
315 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
316 npe_ifmedia_status);
317
318 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
319 MII_OFFSET_ANY, MIIF_DOPAUSE);
320 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
321 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
322 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
323 } else
324 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
325
326 ifp->if_softc = sc;
327 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
328 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
329 ifp->if_start = npestart;
330 ifp->if_ioctl = npeioctl;
331 ifp->if_watchdog = npewatchdog;
332 ifp->if_init = npeinit;
333 ifp->if_stop = npestop;
334 IFQ_SET_READY(&ifp->if_snd);
335
336 /* VLAN capable */
337 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
338
339 if_attach(ifp);
340 ether_ifattach(ifp, sc->sc_enaddr);
341 #if NRND > 0
342 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
343 RND_TYPE_NET, 0);
344 #endif
345
346 /* callback function to reset MAC */
347 isc->macresetcbfunc = npeinit_resetcb;
348 isc->macresetcbarg = sc;
349 }
350
351 /*
352 * Compute and install the multicast filter.
353 */
354 static void
355 npe_setmcast(struct npe_softc *sc)
356 {
357 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
358 uint8_t mask[ETHER_ADDR_LEN], addr[ETHER_ADDR_LEN];
359 uint32_t reg;
360 uint32_t msg[2];
361 int i;
362
363 /* Always use filter. Is here a correct position? */
364 reg = RD4(sc, NPE_MAC_RX_CNTRL1);
365 WR4(sc, NPE_MAC_RX_CNTRL1, reg | NPE_RX_CNTRL1_ADDR_FLTR_EN);
366
367 if (ifp->if_flags & IFF_PROMISC) {
368 memset(mask, 0, ETHER_ADDR_LEN);
369 memset(addr, 0, ETHER_ADDR_LEN);
370 } else if (ifp->if_flags & IFF_ALLMULTI) {
371 static const uint8_t allmulti[ETHER_ADDR_LEN] =
372 { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
373 all_multi:
374 memcpy(mask, allmulti, ETHER_ADDR_LEN);
375 memcpy(addr, allmulti, ETHER_ADDR_LEN);
376 } else {
377 uint8_t clr[ETHER_ADDR_LEN], set[ETHER_ADDR_LEN];
378 struct ether_multistep step;
379 struct ether_multi *enm;
380
381 memset(clr, 0, ETHER_ADDR_LEN);
382 memset(set, 0xff, ETHER_ADDR_LEN);
383
384 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
385 while (enm != NULL) {
386 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
387 ifp->if_flags |= IFF_ALLMULTI;
388 goto all_multi;
389 }
390
391 for (i = 0; i < ETHER_ADDR_LEN; i++) {
392 clr[i] |= enm->enm_addrlo[i];
393 set[i] &= enm->enm_addrlo[i];
394 }
395
396 ETHER_NEXT_MULTI(step, enm);
397 }
398
399 for (i = 0; i < ETHER_ADDR_LEN; i++) {
400 mask[i] = set[i] | ~clr[i];
401 addr[i] = set[i];
402 }
403 }
404
405 /*
406 * Write the mask and address registers.
407 */
408 for (i = 0; i < ETHER_ADDR_LEN; i++) {
409 WR4(sc, NPE_MAC_ADDR_MASK(i), mask[i]);
410 WR4(sc, NPE_MAC_ADDR(i), addr[i]);
411 }
412
413 msg[0] = NPE_ADDRESSFILTERCONFIG << NPE_MAC_MSGID_SHL
414 | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL);
415 msg[1] = ((ifp->if_flags & IFF_PROMISC) ? 1 : 0) << 24
416 | ((RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff) << 16)
417 | (addr[5] << 8) | mask[5];
418 ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
419 }
420
421 static int
422 npe_dma_setup(struct npe_softc *sc, struct npedma *dma,
423 const char *name, int nbuf, int maxseg)
424 {
425 bus_dma_segment_t seg;
426 int rseg, error, i;
427 void *hwbuf;
428 size_t size;
429
430 memset(dma, 0, sizeof(*dma));
431
432 dma->name = name;
433 dma->nbuf = nbuf;
434
435 size = nbuf * sizeof(struct npehwbuf);
436
437 /* XXX COHERENT for now */
438 error = bus_dmamem_alloc(sc->sc_dt, size, sizeof(uint32_t), 0, &seg,
439 1, &rseg, BUS_DMA_NOWAIT);
440 if (error) {
441 printf("%s: unable to allocate memory for %s h/w buffers, "
442 "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
443 }
444
445 error = bus_dmamem_map(sc->sc_dt, &seg, 1, size, &hwbuf,
446 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_NOCACHE);
447 if (error) {
448 printf("%s: unable to map memory for %s h/w buffers, "
449 "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
450 free_dmamem:
451 bus_dmamem_free(sc->sc_dt, &seg, rseg);
452 return error;
453 }
454 dma->hwbuf = (void *)hwbuf;
455
456 error = bus_dmamap_create(sc->sc_dt, size, 1, size, 0,
457 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &dma->buf_map);
458 if (error) {
459 printf("%s: unable to create map for %s h/w buffers, "
460 "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
461 unmap_dmamem:
462 dma->hwbuf = NULL;
463 bus_dmamem_unmap(sc->sc_dt, hwbuf, size);
464 goto free_dmamem;
465 }
466
467 error = bus_dmamap_load(sc->sc_dt, dma->buf_map, hwbuf, size, NULL,
468 BUS_DMA_NOWAIT);
469 if (error) {
470 printf("%s: unable to load map for %s h/w buffers, "
471 "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
472 destroy_dmamap:
473 bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
474 goto unmap_dmamem;
475 }
476
477 /* XXX M_TEMP */
478 dma->buf = malloc(nbuf * sizeof(struct npebuf), M_TEMP, M_NOWAIT | M_ZERO);
479 if (dma->buf == NULL) {
480 printf("%s: unable to allocate memory for %s s/w buffers\n",
481 sc->sc_dev.dv_xname, dma->name);
482 bus_dmamap_unload(sc->sc_dt, dma->buf_map);
483 error = ENOMEM;
484 goto destroy_dmamap;
485 }
486
487 dma->buf_phys = dma->buf_map->dm_segs[0].ds_addr;
488 for (i = 0; i < dma->nbuf; i++) {
489 struct npebuf *npe = &dma->buf[i];
490 struct npehwbuf *hw = &dma->hwbuf[i];
491
492 /* calculate offset to shared area */
493 npe->ix_neaddr = dma->buf_phys +
494 ((uintptr_t)hw - (uintptr_t)dma->hwbuf);
495 KASSERT((npe->ix_neaddr & 0x1f) == 0);
496 error = bus_dmamap_create(sc->sc_dt, MCLBYTES, maxseg,
497 MCLBYTES, 0, 0, &npe->ix_map);
498 if (error != 0) {
499 printf("%s: unable to create dmamap for %s buffer %u, "
500 "error %u\n", sc->sc_dev.dv_xname, dma->name, i,
501 error);
502 /* XXXSCW: Free up maps... */
503 return error;
504 }
505 npe->ix_hw = hw;
506 }
507 bus_dmamap_sync(sc->sc_dt, dma->buf_map, 0, dma->buf_map->dm_mapsize,
508 BUS_DMASYNC_PREWRITE);
509 return 0;
510 }
511
512 #if 0
513 static void
514 npe_dma_destroy(struct npe_softc *sc, struct npedma *dma)
515 {
516 int i;
517
518 /* XXXSCW: Clean this up */
519
520 if (dma->hwbuf != NULL) {
521 for (i = 0; i < dma->nbuf; i++) {
522 struct npebuf *npe = &dma->buf[i];
523 bus_dmamap_destroy(sc->sc_dt, npe->ix_map);
524 }
525 bus_dmamap_unload(sc->sc_dt, dma->buf_map);
526 bus_dmamem_free(sc->sc_dt, (void *)dma->hwbuf, dma->buf_map);
527 bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
528 }
529 if (dma->buf != NULL)
530 free(dma->buf, M_TEMP);
531 memset(dma, 0, sizeof(*dma));
532 }
533 #endif
534
535 static int
536 npe_activate(struct npe_softc *sc)
537 {
538 bus_dma_segment_t seg;
539 int unit = sc->sc_unit;
540 int error, i, rseg;
541 void *statbuf;
542
543 /* load NPE firmware and start it running */
544 error = ixpnpe_init(sc->sc_npe, "npe_fw", npeconfig[unit].imageid);
545 if (error != 0)
546 return error;
547
548 if (bus_space_map(sc->sc_iot, npeconfig[unit].regbase,
549 npeconfig[unit].regsize, 0, &sc->sc_ioh)) {
550 printf("%s: Cannot map registers 0x%x:0x%x\n",
551 sc->sc_dev.dv_xname, npeconfig[unit].regbase,
552 npeconfig[unit].regsize);
553 return ENOMEM;
554 }
555
556 if (npeconfig[unit].miibase != npeconfig[unit].regbase) {
557 /*
558 * The PHY's are only accessible from one MAC (it appears)
559 * so for other MAC's setup an additional mapping for
560 * frobbing the PHY registers.
561 */
562 if (bus_space_map(sc->sc_iot, npeconfig[unit].miibase,
563 npeconfig[unit].miisize, 0, &sc->sc_miih)) {
564 printf("%s: Cannot map MII registers 0x%x:0x%x\n",
565 sc->sc_dev.dv_xname, npeconfig[unit].miibase,
566 npeconfig[unit].miisize);
567 return ENOMEM;
568 }
569 } else
570 sc->sc_miih = sc->sc_ioh;
571 error = npe_dma_setup(sc, &sc->txdma, "tx", NPE_TXBUF, NPE_MAXSEG);
572 if (error != 0)
573 return error;
574 error = npe_dma_setup(sc, &sc->rxdma, "rx", NPE_RXBUF, 1);
575 if (error != 0)
576 return error;
577
578 /* setup statistics block */
579 error = bus_dmamem_alloc(sc->sc_dt, sizeof(struct npestats),
580 sizeof(uint32_t), 0, &seg, 1, &rseg, BUS_DMA_NOWAIT);
581 if (error) {
582 printf("%s: unable to allocate memory for stats block, "
583 "error %u\n", sc->sc_dev.dv_xname, error);
584 return error;
585 }
586
587 error = bus_dmamem_map(sc->sc_dt, &seg, 1, sizeof(struct npestats),
588 &statbuf, BUS_DMA_NOWAIT);
589 if (error) {
590 printf("%s: unable to map memory for stats block, "
591 "error %u\n", sc->sc_dev.dv_xname, error);
592 return error;
593 }
594 sc->sc_stats = (void *)statbuf;
595
596 error = bus_dmamap_create(sc->sc_dt, sizeof(struct npestats), 1,
597 sizeof(struct npestats), 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
598 &sc->sc_stats_map);
599 if (error) {
600 printf("%s: unable to create map for stats block, "
601 "error %u\n", sc->sc_dev.dv_xname, error);
602 return error;
603 }
604
605 if (bus_dmamap_load(sc->sc_dt, sc->sc_stats_map, sc->sc_stats,
606 sizeof(struct npestats), NULL, BUS_DMA_NOWAIT) != 0) {
607 printf("%s: unable to load memory for stats block, error %u\n",
608 sc->sc_dev.dv_xname, error);
609 return error;
610 }
611 sc->sc_stats_phys = sc->sc_stats_map->dm_segs[0].ds_addr;
612
613 /* XXX disable half-bridge LEARNING+FILTERING feature */
614
615 /*
616 * Setup h/w rx/tx queues. There are four q's:
617 * rx inbound q of rx'd frames
618 * rx_free pool of ixpbuf's for receiving frames
619 * tx outbound q of frames to send
620 * tx_done q of tx frames that have been processed
621 *
622 * The NPE handles the actual tx/rx process and the q manager
623 * handles the queues. The driver just writes entries to the
624 * q manager mailbox's and gets callbacks when there are rx'd
625 * frames to process or tx'd frames to reap. These callbacks
626 * are controlled by the q configurations; e.g. we get a
627 * callback when tx_done has 2 or more frames to process and
628 * when the rx q has at least one frame. These setings can
629 * changed at the time the q is configured.
630 */
631 sc->rx_qid = npeconfig[unit].rx_qid;
632 ixpqmgr_qconfig(sc->rx_qid, NPE_RXBUF, 0, 1,
633 IX_QMGR_Q_SOURCE_ID_NOT_E, npe_rxdone, sc);
634 sc->rx_freeqid = npeconfig[unit].rx_freeqid;
635 ixpqmgr_qconfig(sc->rx_freeqid, NPE_RXBUF, 0, NPE_RXBUF/2, 0, NULL, sc);
636 /* tell the NPE to direct all traffic to rx_qid */
637 #if 0
638 for (i = 0; i < 8; i++)
639 #else
640 printf("%s: remember to fix rx q setup\n", sc->sc_dev.dv_xname);
641 for (i = 0; i < 4; i++)
642 #endif
643 npe_setrxqosentry(sc, i, 0, sc->rx_qid);
644
645 sc->tx_qid = npeconfig[unit].tx_qid;
646 sc->tx_doneqid = npeconfig[unit].tx_doneqid;
647 ixpqmgr_qconfig(sc->tx_qid, NPE_TXBUF, 0, NPE_TXBUF, 0, NULL, sc);
648 if (tx_doneqid == -1) {
649 ixpqmgr_qconfig(sc->tx_doneqid, NPE_TXBUF, 0, 2,
650 IX_QMGR_Q_SOURCE_ID_NOT_E, npe_txdone, sc);
651 tx_doneqid = sc->tx_doneqid;
652 }
653
654 KASSERT(npes[npeconfig[unit].npeid] == NULL);
655 npes[npeconfig[unit].npeid] = sc;
656
657 return 0;
658 }
659
660 #if 0
661 static void
662 npe_deactivate(struct npe_softc *sc);
663 {
664 int unit = sc->sc_unit;
665
666 npes[npeconfig[unit].npeid] = NULL;
667
668 /* XXX disable q's */
669 if (sc->sc_npe != NULL)
670 ixpnpe_stop(sc->sc_npe);
671 if (sc->sc_stats != NULL) {
672 bus_dmamap_unload(sc->sc_stats_tag, sc->sc_stats_map);
673 bus_dmamem_free(sc->sc_stats_tag, sc->sc_stats,
674 sc->sc_stats_map);
675 bus_dmamap_destroy(sc->sc_stats_tag, sc->sc_stats_map);
676 }
677 if (sc->sc_stats_tag != NULL)
678 bus_dma_tag_destroy(sc->sc_stats_tag);
679 npe_dma_destroy(sc, &sc->txdma);
680 npe_dma_destroy(sc, &sc->rxdma);
681 bus_generic_detach(sc->sc_dev);
682 if (sc->sc_mii)
683 device_delete_child(sc->sc_dev, sc->sc_mii);
684 #if 0
685 /* XXX sc_ioh and sc_miih */
686 if (sc->mem_res)
687 bus_release_resource(dev, SYS_RES_IOPORT,
688 rman_get_rid(sc->mem_res), sc->mem_res);
689 sc->mem_res = 0;
690 #endif
691 }
692 #endif
693
694 /*
695 * Notify the world which media we're using.
696 */
697 static void
698 npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
699 {
700 struct npe_softc *sc = ifp->if_softc;
701
702 mii_pollstat(&sc->sc_mii);
703
704 ifmr->ifm_active = sc->sc_mii.mii_media_active;
705 ifmr->ifm_status = sc->sc_mii.mii_media_status;
706 }
707
708 static void
709 npe_addstats(struct npe_softc *sc)
710 {
711 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
712 struct npestats *ns = sc->sc_stats;
713
714 ifp->if_oerrors +=
715 be32toh(ns->dot3StatsInternalMacTransmitErrors)
716 + be32toh(ns->dot3StatsCarrierSenseErrors)
717 + be32toh(ns->TxVLANIdFilterDiscards)
718 ;
719 ifp->if_ierrors += be32toh(ns->dot3StatsFCSErrors)
720 + be32toh(ns->dot3StatsInternalMacReceiveErrors)
721 + be32toh(ns->RxOverrunDiscards)
722 + be32toh(ns->RxUnderflowEntryDiscards)
723 ;
724 ifp->if_collisions +=
725 be32toh(ns->dot3StatsSingleCollisionFrames)
726 + be32toh(ns->dot3StatsMultipleCollisionFrames)
727 ;
728 }
729
730 static void
731 npe_tick(void *xsc)
732 {
733 #define ACK (NPE_RESETSTATS << NPE_MAC_MSGID_SHL)
734 struct npe_softc *sc = xsc;
735 uint32_t msg[2];
736
737 /*
738 * NB: to avoid sleeping with the softc lock held we
739 * split the NPE msg processing into two parts. The
740 * request for statistics is sent w/o waiting for a
741 * reply and then on the next tick we retrieve the
742 * results. This works because npe_tick is the only
743 * code that talks via the mailbox's (except at setup).
744 * This likely can be handled better.
745 */
746 if (ixpnpe_recvmsg(sc->sc_npe, msg) == 0 && msg[0] == ACK) {
747 bus_dmamap_sync(sc->sc_dt, sc->sc_stats_map, 0,
748 sizeof(struct npestats), BUS_DMASYNC_POSTREAD);
749 npe_addstats(sc);
750 }
751 npe_updatestats(sc);
752 mii_tick(&sc->sc_mii);
753
754 /* schedule next poll */
755 callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
756 #undef ACK
757 }
758
759 static void
760 npe_setmac(struct npe_softc *sc, const u_char *eaddr)
761 {
762
763 WR4(sc, NPE_MAC_UNI_ADDR_1, eaddr[0]);
764 WR4(sc, NPE_MAC_UNI_ADDR_2, eaddr[1]);
765 WR4(sc, NPE_MAC_UNI_ADDR_3, eaddr[2]);
766 WR4(sc, NPE_MAC_UNI_ADDR_4, eaddr[3]);
767 WR4(sc, NPE_MAC_UNI_ADDR_5, eaddr[4]);
768 WR4(sc, NPE_MAC_UNI_ADDR_6, eaddr[5]);
769 }
770
771 static void
772 npe_getmac(struct npe_softc *sc)
773 {
774 uint8_t *eaddr = sc->sc_enaddr;
775
776 if (npe_getmac_md != NULL) {
777 (*npe_getmac_md)(sc->sc_dev.dv_unit, eaddr);
778 } else {
779 /*
780 * Some system's unicast address appears to be loaded from
781 * EEPROM on reset
782 */
783 eaddr[0] = RD4(sc, NPE_MAC_UNI_ADDR_1) & 0xff;
784 eaddr[1] = RD4(sc, NPE_MAC_UNI_ADDR_2) & 0xff;
785 eaddr[2] = RD4(sc, NPE_MAC_UNI_ADDR_3) & 0xff;
786 eaddr[3] = RD4(sc, NPE_MAC_UNI_ADDR_4) & 0xff;
787 eaddr[4] = RD4(sc, NPE_MAC_UNI_ADDR_5) & 0xff;
788 eaddr[5] = RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff;
789 }
790 }
791
792 struct txdone {
793 struct npebuf *head;
794 struct npebuf **tail;
795 int count;
796 };
797
798 static __inline void
799 npe_txdone_finish(struct npe_softc *sc, const struct txdone *td)
800 {
801 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
802
803 *td->tail = sc->tx_free;
804 sc->tx_free = td->head;
805 /*
806 * We're no longer busy, so clear the busy flag and call the
807 * start routine to xmit more packets.
808 */
809 ifp->if_opackets += td->count;
810 ifp->if_flags &= ~IFF_OACTIVE;
811 ifp->if_timer = 0;
812 npestart(ifp);
813 }
814
815 /*
816 * Q manager callback on tx done queue. Reap mbufs
817 * and return tx buffers to the free list. Finally
818 * restart output. Note the microcode has only one
819 * txdone q wired into it so we must use the NPE ID
820 * returned with each npehwbuf to decide where to
821 * send buffers.
822 */
823 static void
824 npe_txdone(int qid, void *arg)
825 {
826 #define P2V(a, dma) \
827 &(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
828 struct npe_softc *sc;
829 struct npebuf *npe;
830 struct txdone *td, q[NPE_MAX];
831 uint32_t entry;
832
833 /* XXX no NPE-A support */
834 q[NPE_B].tail = &q[NPE_B].head; q[NPE_B].count = 0;
835 q[NPE_C].tail = &q[NPE_C].head; q[NPE_C].count = 0;
836 /* XXX max # at a time? */
837 while (ixpqmgr_qread(qid, &entry) == 0) {
838 sc = npes[NPE_QM_Q_NPE(entry)];
839 DPRINTF(sc, "%s: entry 0x%x NPE %u port %u\n",
840 __func__, entry, NPE_QM_Q_NPE(entry), NPE_QM_Q_PORT(entry));
841 #if NRND > 0
842 if (RND_ENABLED(&sc->rnd_source))
843 rnd_add_uint32(&sc->rnd_source, entry);
844 #endif
845
846 npe = P2V(NPE_QM_Q_ADDR(entry), &sc->txdma);
847 m_freem(npe->ix_m);
848 npe->ix_m = NULL;
849
850 td = &q[NPE_QM_Q_NPE(entry)];
851 *td->tail = npe;
852 td->tail = &npe->ix_next;
853 td->count++;
854 }
855
856 if (q[NPE_B].count)
857 npe_txdone_finish(npes[NPE_B], &q[NPE_B]);
858 if (q[NPE_C].count)
859 npe_txdone_finish(npes[NPE_C], &q[NPE_C]);
860 #undef P2V
861 }
862
863 static __inline struct mbuf *
864 npe_getcl(void)
865 {
866 struct mbuf *m;
867
868 MGETHDR(m, M_DONTWAIT, MT_DATA);
869 if (m != NULL) {
870 MCLGET(m, M_DONTWAIT);
871 if ((m->m_flags & M_EXT) == 0) {
872 m_freem(m);
873 m = NULL;
874 }
875 }
876 return (m);
877 }
878
879 static int
880 npe_rxbuf_init(struct npe_softc *sc, struct npebuf *npe, struct mbuf *m)
881 {
882 struct npehwbuf *hw;
883 int error;
884
885 if (m == NULL) {
886 m = npe_getcl();
887 if (m == NULL)
888 return ENOBUFS;
889 }
890 KASSERT(m->m_ext.ext_size >= (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
891 m->m_pkthdr.len = m->m_len = NPE_FRAME_SIZE_DEFAULT;
892 /* backload payload and align ip hdr */
893 m->m_data = m->m_ext.ext_buf + (m->m_ext.ext_size
894 - (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
895 error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
896 BUS_DMA_READ|BUS_DMA_NOWAIT);
897 if (error != 0) {
898 m_freem(m);
899 return error;
900 }
901 hw = npe->ix_hw;
902 hw->ix_ne[0].data = htobe32(npe->ix_map->dm_segs[0].ds_addr);
903 /* NB: NPE requires length be a multiple of 64 */
904 /* NB: buffer length is shifted in word */
905 hw->ix_ne[0].len = htobe32(npe->ix_map->dm_segs[0].ds_len << 16);
906 hw->ix_ne[0].next = 0;
907 npe->ix_m = m;
908 /* Flush the memory in the mbuf */
909 bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0, npe->ix_map->dm_mapsize,
910 BUS_DMASYNC_PREREAD);
911 return 0;
912 }
913
914 /*
915 * RX q processing for a specific NPE. Claim entries
916 * from the hardware queue and pass the frames up the
917 * stack. Pass the rx buffers to the free list.
918 */
919 static void
920 npe_rxdone(int qid, void *arg)
921 {
922 #define P2V(a, dma) \
923 &(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
924 struct npe_softc *sc = arg;
925 struct npedma *dma = &sc->rxdma;
926 uint32_t entry;
927
928 while (ixpqmgr_qread(qid, &entry) == 0) {
929 struct npebuf *npe = P2V(NPE_QM_Q_ADDR(entry), dma);
930 struct mbuf *m;
931
932 DPRINTF(sc, "%s: entry 0x%x neaddr 0x%x ne_len 0x%x\n",
933 __func__, entry, npe->ix_neaddr, npe->ix_hw->ix_ne[0].len);
934 #if NRND > 0
935 if (RND_ENABLED(&sc->rnd_source))
936 rnd_add_uint32(&sc->rnd_source, entry);
937 #endif
938 /*
939 * Allocate a new mbuf to replenish the rx buffer.
940 * If doing so fails we drop the rx'd frame so we
941 * can reuse the previous mbuf. When we're able to
942 * allocate a new mbuf dispatch the mbuf w/ rx'd
943 * data up the stack and replace it with the newly
944 * allocated one.
945 */
946 m = npe_getcl();
947 if (m != NULL) {
948 struct mbuf *mrx = npe->ix_m;
949 struct npehwbuf *hw = npe->ix_hw;
950 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
951
952 /* Flush mbuf memory for rx'd data */
953 bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
954 npe->ix_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
955
956 /* XXX flush hw buffer; works now 'cuz coherent */
957 /* set m_len etc. per rx frame size */
958 mrx->m_len = be32toh(hw->ix_ne[0].len) & 0xffff;
959 mrx->m_pkthdr.len = mrx->m_len;
960 mrx->m_pkthdr.rcvif = ifp;
961 /* Don't add M_HASFCS. See below */
962
963 #if 1
964 if (mrx->m_pkthdr.len < sizeof(struct ether_header)) {
965 log(LOG_INFO, "%s: too short frame (len=%d)\n",
966 sc->sc_dev.dv_xname, mrx->m_pkthdr.len);
967 /* Back out "newly allocated" mbuf. */
968 m_freem(m);
969 ifp->if_ierrors++;
970 goto fail;
971 }
972 if ((ifp->if_flags & IFF_PROMISC) == 0) {
973 struct ether_header *eh;
974
975 /*
976 * Workaround for "Non-Intel XScale Technology
977 * Eratta" No. 29. AA:BB:CC:DD:EE:xF's packet
978 * matches the filter (both unicast and
979 * multicast).
980 */
981 eh = mtod(mrx, struct ether_header *);
982 if (ETHER_IS_MULTICAST(eh->ether_dhost) == 0) {
983 /* unicast */
984
985 if (sc->sc_enaddr[5] != eh->ether_dhost[5]) {
986 /* discard it */
987 #if 0
988 printf("discard it\n");
989 #endif
990 /*
991 * Back out "newly allocated"
992 * mbuf.
993 */
994 m_freem(m);
995 goto fail;
996 }
997 } else if (memcmp(eh->ether_dhost,
998 etherbroadcastaddr, 6) == 0) {
999 /* Always accept broadcast packet*/
1000 } else {
1001 struct ethercom *ec = &sc->sc_ethercom;
1002 struct ether_multi *enm;
1003 struct ether_multistep step;
1004 int match = 0;
1005
1006 /* multicast */
1007
1008 ETHER_FIRST_MULTI(step, ec, enm);
1009 while (enm != NULL) {
1010 uint64_t lowint, highint, dest;
1011
1012 lowint = MAC2UINT64(enm->enm_addrlo);
1013 highint = MAC2UINT64(enm->enm_addrhi);
1014 dest = MAC2UINT64(eh->ether_dhost);
1015 #if 0
1016 printf("%llx\n", lowint);
1017 printf("%llx\n", dest);
1018 printf("%llx\n", highint);
1019 #endif
1020 if ((lowint <= dest) && (dest <= highint)) {
1021 match = 1;
1022 break;
1023 }
1024 ETHER_NEXT_MULTI(step, enm);
1025 }
1026 if (match == 0) {
1027 /* discard it */
1028 #if 0
1029 printf("discard it(M)\n");
1030 #endif
1031 /*
1032 * Back out "newly allocated"
1033 * mbuf.
1034 */
1035 m_freem(m);
1036 goto fail;
1037 }
1038 }
1039 }
1040 if (mrx->m_pkthdr.len > NPE_FRAME_SIZE_DEFAULT) {
1041 log(LOG_INFO, "%s: oversized frame (len=%d)\n",
1042 sc->sc_dev.dv_xname, mrx->m_pkthdr.len);
1043 /* Back out "newly allocated" mbuf. */
1044 m_freem(m);
1045 ifp->if_ierrors++;
1046 goto fail;
1047 }
1048 #endif
1049
1050 /*
1051 * Trim FCS!
1052 * NPE always adds the FCS by this driver's setting,
1053 * so we always trim it here and not add M_HASFCS.
1054 */
1055 m_adj(mrx, -ETHER_CRC_LEN);
1056
1057 ifp->if_ipackets++;
1058 /*
1059 * Tap off here if there is a bpf listener.
1060 */
1061 bpf_mtap(ifp, mrx);
1062 ifp->if_input(ifp, mrx);
1063 } else {
1064 fail:
1065 /* discard frame and re-use mbuf */
1066 m = npe->ix_m;
1067 }
1068 if (npe_rxbuf_init(sc, npe, m) == 0) {
1069 /* return npe buf to rx free list */
1070 ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
1071 } else {
1072 /* XXX should not happen */
1073 }
1074 }
1075 #undef P2V
1076 }
1077
1078 static void
1079 npe_startxmit(struct npe_softc *sc)
1080 {
1081 struct npedma *dma = &sc->txdma;
1082 int i;
1083
1084 sc->tx_free = NULL;
1085 for (i = 0; i < dma->nbuf; i++) {
1086 struct npebuf *npe = &dma->buf[i];
1087 if (npe->ix_m != NULL) {
1088 /* NB: should not happen */
1089 printf("%s: %s: free mbuf at entry %u\n",
1090 sc->sc_dev.dv_xname, __func__, i);
1091 m_freem(npe->ix_m);
1092 }
1093 npe->ix_m = NULL;
1094 npe->ix_next = sc->tx_free;
1095 sc->tx_free = npe;
1096 }
1097 }
1098
1099 static void
1100 npe_startrecv(struct npe_softc *sc)
1101 {
1102 struct npedma *dma = &sc->rxdma;
1103 struct npebuf *npe;
1104 int i;
1105
1106 for (i = 0; i < dma->nbuf; i++) {
1107 npe = &dma->buf[i];
1108 npe_rxbuf_init(sc, npe, npe->ix_m);
1109 /* set npe buf on rx free list */
1110 ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
1111 }
1112 }
1113
1114 static void
1115 npeinit_macreg(struct npe_softc *sc)
1116 {
1117
1118 /*
1119 * Reset MAC core.
1120 */
1121 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
1122 DELAY(NPE_MAC_RESET_DELAY);
1123 /* configure MAC to generate MDC clock */
1124 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
1125
1126 /* disable transmitter and reciver in the MAC */
1127 WR4(sc, NPE_MAC_RX_CNTRL1,
1128 RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
1129 WR4(sc, NPE_MAC_TX_CNTRL1,
1130 RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
1131
1132 /*
1133 * Set the MAC core registers.
1134 */
1135 WR4(sc, NPE_MAC_INT_CLK_THRESH, 0x1); /* clock ratio: for ipx4xx */
1136 WR4(sc, NPE_MAC_TX_CNTRL2, 0xf); /* max retries */
1137 WR4(sc, NPE_MAC_RANDOM_SEED, 0x8); /* LFSR back-off seed */
1138 /* thresholds determined by NPE firmware FS */
1139 WR4(sc, NPE_MAC_THRESH_P_EMPTY, 0x12);
1140 WR4(sc, NPE_MAC_THRESH_P_FULL, 0x30);
1141 WR4(sc, NPE_MAC_BUF_SIZE_TX, NPE_MAC_BUF_SIZE_TX_DEFAULT);
1142 /* tx fifo threshold (bytes) */
1143 WR4(sc, NPE_MAC_TX_DEFER, 0x15); /* for single deferral */
1144 WR4(sc, NPE_MAC_RX_DEFER, 0x16); /* deferral on inter-frame gap*/
1145 WR4(sc, NPE_MAC_TX_TWO_DEFER_1, 0x8); /* for 2-part deferral */
1146 WR4(sc, NPE_MAC_TX_TWO_DEFER_2, 0x7); /* for 2-part deferral */
1147 WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
1148 /* assumes MII mode */
1149 WR4(sc, NPE_MAC_TX_CNTRL1,
1150 NPE_TX_CNTRL1_RETRY /* retry failed xmits */
1151 | NPE_TX_CNTRL1_FCS_EN /* append FCS */
1152 | NPE_TX_CNTRL1_2DEFER /* 2-part deferal */
1153 | NPE_TX_CNTRL1_PAD_EN); /* pad runt frames */
1154 /* XXX pad strip? */
1155 WR4(sc, NPE_MAC_RX_CNTRL1,
1156 NPE_RX_CNTRL1_CRC_EN /* include CRC/FCS */
1157 | NPE_RX_CNTRL1_PAUSE_EN); /* ena pause frame handling */
1158 WR4(sc, NPE_MAC_RX_CNTRL2, 0);
1159 }
1160
1161 static void
1162 npeinit_resetcb(void *xsc)
1163 {
1164 struct npe_softc *sc = xsc;
1165 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1166 uint32_t msg[2];
1167
1168 ifp->if_oerrors++;
1169 npeinit_locked(sc);
1170
1171 msg[0] = NPE_NOTIFYMACRECOVERYDONE << NPE_MAC_MSGID_SHL
1172 | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL);
1173 msg[1] = 0;
1174 ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1175 }
1176
1177 /*
1178 * Reset and initialize the chip
1179 */
1180 static void
1181 npeinit_locked(void *xsc)
1182 {
1183 struct npe_softc *sc = xsc;
1184 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1185
1186 /* Cancel any pending I/O. */
1187 npestop(ifp, 0);
1188
1189 /* Reset the chip to a known state. */
1190 npeinit_macreg(sc);
1191 npe_setmac(sc, CLLADDR(ifp->if_sadl));
1192 ether_mediachange(ifp);
1193 npe_setmcast(sc);
1194
1195 npe_startxmit(sc);
1196 npe_startrecv(sc);
1197
1198 ifp->if_flags |= IFF_RUNNING;
1199 ifp->if_flags &= ~IFF_OACTIVE;
1200 ifp->if_timer = 0; /* just in case */
1201
1202 /* enable transmitter and reciver in the MAC */
1203 WR4(sc, NPE_MAC_RX_CNTRL1,
1204 RD4(sc, NPE_MAC_RX_CNTRL1) | NPE_RX_CNTRL1_RX_EN);
1205 WR4(sc, NPE_MAC_TX_CNTRL1,
1206 RD4(sc, NPE_MAC_TX_CNTRL1) | NPE_TX_CNTRL1_TX_EN);
1207
1208 callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
1209 }
1210
1211 static int
1212 npeinit(struct ifnet *ifp)
1213 {
1214 struct npe_softc *sc = ifp->if_softc;
1215 int s;
1216
1217 s = splnet();
1218 npeinit_locked(sc);
1219 splx(s);
1220
1221 return (0);
1222 }
1223
1224 /*
1225 * Defragment an mbuf chain, returning at most maxfrags separate
1226 * mbufs+clusters. If this is not possible NULL is returned and
1227 * the original mbuf chain is left in it's present (potentially
1228 * modified) state. We use two techniques: collapsing consecutive
1229 * mbufs and replacing consecutive mbufs by a cluster.
1230 */
1231 static __inline struct mbuf *
1232 npe_defrag(struct mbuf *m0)
1233 {
1234 struct mbuf *m;
1235
1236 MGETHDR(m, M_DONTWAIT, MT_DATA);
1237 if (m == NULL)
1238 return (NULL);
1239 M_COPY_PKTHDR(m, m0);
1240
1241 if ((m->m_len = m0->m_pkthdr.len) > MHLEN) {
1242 MCLGET(m, M_DONTWAIT);
1243 if ((m->m_flags & M_EXT) == 0) {
1244 m_freem(m);
1245 return (NULL);
1246 }
1247 }
1248
1249 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1250 m_freem(m0);
1251
1252 return (m);
1253 }
1254
1255 /*
1256 * Dequeue packets and place on the h/w transmit queue.
1257 */
1258 static void
1259 npestart(struct ifnet *ifp)
1260 {
1261 struct npe_softc *sc = ifp->if_softc;
1262 struct npebuf *npe;
1263 struct npehwbuf *hw;
1264 struct mbuf *m, *n;
1265 bus_dma_segment_t *segs;
1266 int nseg, len, error, i;
1267 uint32_t next;
1268
1269 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1270 return;
1271
1272 while (sc->tx_free != NULL) {
1273 IFQ_DEQUEUE(&ifp->if_snd, m);
1274 if (m == NULL)
1275 break;
1276 npe = sc->tx_free;
1277 error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
1278 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1279 if (error == EFBIG) {
1280 n = npe_defrag(m);
1281 if (n == NULL) {
1282 printf("%s: %s: too many fragments\n",
1283 sc->sc_dev.dv_xname, __func__);
1284 m_freem(m);
1285 return; /* XXX? */
1286 }
1287 m = n;
1288 error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map,
1289 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1290 }
1291 if (error != 0) {
1292 printf("%s: %s: error %u\n",
1293 sc->sc_dev.dv_xname, __func__, error);
1294 m_freem(m);
1295 return; /* XXX? */
1296 }
1297 sc->tx_free = npe->ix_next;
1298
1299 /*
1300 * Tap off here if there is a bpf listener.
1301 */
1302 bpf_mtap(ifp, m);
1303
1304 bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
1305 npe->ix_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1306
1307 npe->ix_m = m;
1308 hw = npe->ix_hw;
1309 len = m->m_pkthdr.len;
1310 nseg = npe->ix_map->dm_nsegs;
1311 segs = npe->ix_map->dm_segs;
1312 next = npe->ix_neaddr + sizeof(hw->ix_ne[0]);
1313 for (i = 0; i < nseg; i++) {
1314 hw->ix_ne[i].data = htobe32(segs[i].ds_addr);
1315 hw->ix_ne[i].len = htobe32((segs[i].ds_len<<16) | len);
1316 hw->ix_ne[i].next = htobe32(next);
1317
1318 len = 0; /* zero for segments > 1 */
1319 next += sizeof(hw->ix_ne[0]);
1320 }
1321 hw->ix_ne[i-1].next = 0; /* zero last in chain */
1322 /* XXX flush descriptor instead of using uncached memory */
1323
1324 DPRINTF(sc, "%s: qwrite(%u, 0x%x) ne_data %x ne_len 0x%x\n",
1325 __func__, sc->tx_qid, npe->ix_neaddr,
1326 hw->ix_ne[0].data, hw->ix_ne[0].len);
1327 /* stick it on the tx q */
1328 /* XXX add vlan priority */
1329 ixpqmgr_qwrite(sc->tx_qid, npe->ix_neaddr);
1330
1331 ifp->if_timer = 5;
1332 }
1333 if (sc->tx_free == NULL)
1334 ifp->if_flags |= IFF_OACTIVE;
1335 }
1336
1337 static void
1338 npe_stopxmit(struct npe_softc *sc)
1339 {
1340 struct npedma *dma = &sc->txdma;
1341 int i;
1342
1343 /* XXX qmgr */
1344 for (i = 0; i < dma->nbuf; i++) {
1345 struct npebuf *npe = &dma->buf[i];
1346
1347 if (npe->ix_m != NULL) {
1348 bus_dmamap_unload(sc->sc_dt, npe->ix_map);
1349 m_freem(npe->ix_m);
1350 npe->ix_m = NULL;
1351 }
1352 }
1353 }
1354
1355 static void
1356 npe_stoprecv(struct npe_softc *sc)
1357 {
1358 struct npedma *dma = &sc->rxdma;
1359 int i;
1360
1361 /* XXX qmgr */
1362 for (i = 0; i < dma->nbuf; i++) {
1363 struct npebuf *npe = &dma->buf[i];
1364
1365 if (npe->ix_m != NULL) {
1366 bus_dmamap_unload(sc->sc_dt, npe->ix_map);
1367 m_freem(npe->ix_m);
1368 npe->ix_m = NULL;
1369 }
1370 }
1371 }
1372
1373 /*
1374 * Turn off interrupts, and stop the nic.
1375 */
1376 void
1377 npestop(struct ifnet *ifp, int disable)
1378 {
1379 struct npe_softc *sc = ifp->if_softc;
1380
1381 /* disable transmitter and reciver in the MAC */
1382 WR4(sc, NPE_MAC_RX_CNTRL1,
1383 RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
1384 WR4(sc, NPE_MAC_TX_CNTRL1,
1385 RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
1386
1387 callout_stop(&sc->sc_tick_ch);
1388
1389 npe_stopxmit(sc);
1390 npe_stoprecv(sc);
1391 /* XXX go into loopback & drain q's? */
1392 /* XXX but beware of disabling tx above */
1393
1394 /*
1395 * The MAC core rx/tx disable may leave the MAC hardware in an
1396 * unpredictable state. A hw reset is executed before resetting
1397 * all the MAC parameters to a known value.
1398 */
1399 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
1400 DELAY(NPE_MAC_RESET_DELAY);
1401 WR4(sc, NPE_MAC_INT_CLK_THRESH, NPE_MAC_INT_CLK_THRESH_DEFAULT);
1402 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
1403
1404 ifp->if_timer = 0;
1405 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1406 }
1407
1408 void
1409 npewatchdog(struct ifnet *ifp)
1410 {
1411 struct npe_softc *sc = ifp->if_softc;
1412 int s;
1413
1414 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1415 s = splnet();
1416 ifp->if_oerrors++;
1417 npeinit_locked(sc);
1418 splx(s);
1419 }
1420
1421 static int
1422 npeioctl(struct ifnet *ifp, u_long cmd, void *data)
1423 {
1424 struct npe_softc *sc = ifp->if_softc;
1425 struct ifreq *ifr = (struct ifreq *) data;
1426 int s, error = 0;
1427
1428 s = splnet();
1429
1430 switch (cmd) {
1431 case SIOCSIFMEDIA:
1432 case SIOCGIFMEDIA:
1433 #if 0 /* not yet */
1434 /* Flow control requires full-duplex mode. */
1435 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1436 (ifr->ifr_media & IFM_FDX) == 0)
1437 ifr->ifr_media &= ~IFM_ETH_FMASK;
1438 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1439 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1440 /* We can do both TXPAUSE and RXPAUSE. */
1441 ifr->ifr_media |=
1442 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1443 }
1444 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1445 }
1446 #endif
1447 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1448 break;
1449 case SIOCSIFFLAGS:
1450 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == IFF_RUNNING) {
1451 /*
1452 * If interface is marked down and it is running,
1453 * then stop and disable it.
1454 */
1455 (*ifp->if_stop)(ifp, 1);
1456 } else if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == IFF_UP) {
1457 /*
1458 * If interface is marked up and it is stopped, then
1459 * start it.
1460 */
1461 error = (*ifp->if_init)(ifp);
1462 } else if ((ifp->if_flags & IFF_UP) != 0) {
1463 int diff;
1464
1465 /* Up (AND RUNNING). */
1466
1467 diff = (ifp->if_flags ^ sc->sc_if_flags)
1468 & (IFF_PROMISC|IFF_ALLMULTI);
1469 if ((diff & (IFF_PROMISC|IFF_ALLMULTI)) != 0) {
1470 /*
1471 * If the difference bettween last flag and
1472 * new flag only IFF_PROMISC or IFF_ALLMULTI,
1473 * set multicast filter only (don't reset to
1474 * prevent link down).
1475 */
1476 npe_setmcast(sc);
1477 } else {
1478 /*
1479 * Reset the interface to pick up changes in
1480 * any other flags that affect the hardware
1481 * state.
1482 */
1483 error = (*ifp->if_init)(ifp);
1484 }
1485 }
1486 sc->sc_if_flags = ifp->if_flags;
1487 break;
1488 default:
1489 error = ether_ioctl(ifp, cmd, data);
1490 if (error == ENETRESET) {
1491 /*
1492 * Multicast list has changed; set the hardware filter
1493 * accordingly.
1494 */
1495 npe_setmcast(sc);
1496 error = 0;
1497 }
1498 }
1499
1500 npestart(ifp);
1501
1502 splx(s);
1503 return error;
1504 }
1505
1506 /*
1507 * Setup a traffic class -> rx queue mapping.
1508 */
1509 static int
1510 npe_setrxqosentry(struct npe_softc *sc, int classix, int trafclass, int qid)
1511 {
1512 int npeid = npeconfig[sc->sc_unit].npeid;
1513 uint32_t msg[2];
1514
1515 msg[0] = (NPE_SETRXQOSENTRY << NPE_MAC_MSGID_SHL) | (npeid << 20)
1516 | classix;
1517 msg[1] = (trafclass << 24) | (1 << 23) | (qid << 16) | (qid << 4);
1518 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1519 }
1520
1521 /*
1522 * Update and reset the statistics in the NPE.
1523 */
1524 static int
1525 npe_updatestats(struct npe_softc *sc)
1526 {
1527 uint32_t msg[2];
1528
1529 msg[0] = NPE_RESETSTATS << NPE_MAC_MSGID_SHL;
1530 msg[1] = sc->sc_stats_phys; /* physical address of stat block */
1531 return ixpnpe_sendmsg(sc->sc_npe, msg); /* NB: no recv */
1532 }
1533
1534 #if 0
1535 /*
1536 * Get the current statistics block.
1537 */
1538 static int
1539 npe_getstats(struct npe_softc *sc)
1540 {
1541 uint32_t msg[2];
1542
1543 msg[0] = NPE_GETSTATS << NPE_MAC_MSGID_SHL;
1544 msg[1] = sc->sc_stats_phys; /* physical address of stat block */
1545 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1546 }
1547
1548 /*
1549 * Query the image id of the loaded firmware.
1550 */
1551 static uint32_t
1552 npe_getimageid(struct npe_softc *sc)
1553 {
1554 uint32_t msg[2];
1555
1556 msg[0] = NPE_GETSTATUS << NPE_MAC_MSGID_SHL;
1557 msg[1] = 0;
1558 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg) == 0 ? msg[1] : 0;
1559 }
1560
1561 /*
1562 * Enable/disable loopback.
1563 */
1564 static int
1565 npe_setloopback(struct npe_softc *sc, int ena)
1566 {
1567 uint32_t msg[2];
1568
1569 msg[0] = (NPE_SETLOOPBACK << NPE_MAC_MSGID_SHL) | (ena != 0);
1570 msg[1] = 0;
1571 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1572 }
1573 #endif
1574
1575 /*
1576 * MII bus support routines.
1577 *
1578 * NB: ixp425 has one PHY per NPE
1579 */
1580 static uint32_t
1581 npe_mii_mdio_read(struct npe_softc *sc, int reg)
1582 {
1583 #define MII_RD4(sc, reg) bus_space_read_4(sc->sc_iot, sc->sc_miih, reg)
1584 uint32_t v;
1585
1586 /* NB: registers are known to be sequential */
1587 v = (MII_RD4(sc, reg+0) & 0xff) << 0;
1588 v |= (MII_RD4(sc, reg+4) & 0xff) << 8;
1589 v |= (MII_RD4(sc, reg+8) & 0xff) << 16;
1590 v |= (MII_RD4(sc, reg+12) & 0xff) << 24;
1591 return v;
1592 #undef MII_RD4
1593 }
1594
1595 static void
1596 npe_mii_mdio_write(struct npe_softc *sc, int reg, uint32_t cmd)
1597 {
1598 #define MII_WR4(sc, reg, v) \
1599 bus_space_write_4(sc->sc_iot, sc->sc_miih, reg, v)
1600
1601 /* NB: registers are known to be sequential */
1602 MII_WR4(sc, reg+0, cmd & 0xff);
1603 MII_WR4(sc, reg+4, (cmd >> 8) & 0xff);
1604 MII_WR4(sc, reg+8, (cmd >> 16) & 0xff);
1605 MII_WR4(sc, reg+12, (cmd >> 24) & 0xff);
1606 #undef MII_WR4
1607 }
1608
1609 static int
1610 npe_mii_mdio_wait(struct npe_softc *sc)
1611 {
1612 #define MAXTRIES 100 /* XXX */
1613 uint32_t v;
1614 int i;
1615
1616 for (i = 0; i < MAXTRIES; i++) {
1617 v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_CMD);
1618 if ((v & NPE_MII_GO) == 0)
1619 return 1;
1620 }
1621 return 0; /* NB: timeout */
1622 #undef MAXTRIES
1623 }
1624
1625 static int
1626 npe_miibus_readreg(struct device *self, int phy, int reg)
1627 {
1628 struct npe_softc *sc = (void *)self;
1629 uint32_t v;
1630
1631 if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
1632 return 0xffff;
1633 v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
1634 | NPE_MII_GO;
1635 npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
1636 if (npe_mii_mdio_wait(sc))
1637 v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_STS);
1638 else
1639 v = 0xffff | NPE_MII_READ_FAIL;
1640 return (v & NPE_MII_READ_FAIL) ? 0xffff : (v & 0xffff);
1641 #undef MAXTRIES
1642 }
1643
1644 static void
1645 npe_miibus_writereg(struct device *self, int phy, int reg, int data)
1646 {
1647 struct npe_softc *sc = (void *)self;
1648 uint32_t v;
1649
1650 if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
1651 return;
1652 v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
1653 | data | NPE_MII_WRITE
1654 | NPE_MII_GO;
1655 npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
1656 /* XXX complain about timeout */
1657 (void) npe_mii_mdio_wait(sc);
1658 }
1659
1660 static void
1661 npe_miibus_statchg(struct device *self)
1662 {
1663 struct npe_softc *sc = (void *)self;
1664 uint32_t tx1, rx1;
1665 uint32_t randoff;
1666
1667 /* sync MAC duplex state */
1668 tx1 = RD4(sc, NPE_MAC_TX_CNTRL1);
1669 rx1 = RD4(sc, NPE_MAC_RX_CNTRL1);
1670 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1671 WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
1672 tx1 &= ~NPE_TX_CNTRL1_DUPLEX;
1673 rx1 |= NPE_RX_CNTRL1_PAUSE_EN;
1674 } else {
1675 struct timeval now;
1676 getmicrotime(&now);
1677 randoff = (RD4(sc, NPE_MAC_UNI_ADDR_6) ^ now.tv_usec)
1678 & 0x7f;
1679 WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT
1680 + randoff);
1681 tx1 |= NPE_TX_CNTRL1_DUPLEX;
1682 rx1 &= ~NPE_RX_CNTRL1_PAUSE_EN;
1683 }
1684 WR4(sc, NPE_MAC_RX_CNTRL1, rx1);
1685 WR4(sc, NPE_MAC_TX_CNTRL1, tx1);
1686 }
1687