Home | History | Annotate | Line # | Download | only in xscale
ixp425_if_npe.c revision 1.40
      1 /*	$NetBSD: ixp425_if_npe.c,v 1.40 2019/05/23 10:40:39 msaitoh Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2006 Sam Leffler.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     25  */
     26 
     27 #include <sys/cdefs.h>
     28 #if 0
     29 __FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/if_npe.c,v 1.1 2006/11/19 23:55:23 sam Exp $");
     30 #endif
     31 __KERNEL_RCSID(0, "$NetBSD: ixp425_if_npe.c,v 1.40 2019/05/23 10:40:39 msaitoh Exp $");
     32 
     33 /*
     34  * Intel XScale NPE Ethernet driver.
     35  *
     36  * This driver handles the two ports present on the IXP425.
     37  * Packet processing is done by the Network Processing Engines
     38  * (NPE's) that work together with a MAC and PHY. The MAC
     39  * is also mapped to the XScale cpu; the PHY is accessed via
     40  * the MAC. NPE-XScale communication happens through h/w
     41  * queues managed by the Q Manager block.
     42  *
     43  * The code here replaces the ethAcc, ethMii, and ethDB classes
     44  * in the Intel Access Library (IAL) and the OS-specific driver.
     45  *
     46  * XXX add vlan support
     47  * XXX NPE-C port doesn't work yet
     48  */
     49 
     50 #include <sys/param.h>
     51 #include <sys/systm.h>
     52 #include <sys/kernel.h>
     53 #include <sys/device.h>
     54 #include <sys/callout.h>
     55 #include <sys/mbuf.h>
     56 #include <sys/malloc.h>
     57 #include <sys/socket.h>
     58 #include <sys/endian.h>
     59 #include <sys/ioctl.h>
     60 #include <sys/syslog.h>
     61 #include <sys/bus.h>
     62 #include <sys/rndsource.h>
     63 
     64 #include <net/if.h>
     65 #include <net/if_dl.h>
     66 #include <net/if_media.h>
     67 #include <net/if_ether.h>
     68 #include <net/bpf.h>
     69 
     70 #include <arm/xscale/ixp425reg.h>
     71 #include <arm/xscale/ixp425var.h>
     72 #include <arm/xscale/ixp425_qmgr.h>
     73 #include <arm/xscale/ixp425_npevar.h>
     74 #include <arm/xscale/ixp425_if_npereg.h>
     75 
     76 #include <dev/mii/miivar.h>
     77 
     78 #include "locators.h"
     79 
     80 struct npebuf {
     81 	struct npebuf	*ix_next;	/* chain to next buffer */
     82 	void		*ix_m;		/* backpointer to mbuf */
     83 	bus_dmamap_t	ix_map;		/* bus dma map for associated data */
     84 	struct npehwbuf	*ix_hw;		/* associated h/w block */
     85 	uint32_t	ix_neaddr;	/* phys address of ix_hw */
     86 };
     87 
     88 struct npedma {
     89 	const char*	name;
     90 	int		nbuf;		/* # npebuf's allocated */
     91 	bus_dmamap_t	m_map;
     92 	struct npehwbuf	*hwbuf;		/* NPE h/w buffers */
     93 	bus_dmamap_t	buf_map;
     94 	bus_addr_t	buf_phys;	/* phys addr of buffers */
     95 	struct npebuf	*buf;		/* s/w buffers (1-1 w/ h/w) */
     96 };
     97 
     98 struct npe_softc {
     99 	device_t	sc_dev;
    100 	struct ethercom	sc_ethercom;
    101 	uint8_t		sc_enaddr[ETHER_ADDR_LEN];
    102 	struct mii_data	sc_mii;
    103 	bus_space_tag_t	sc_iot;
    104 	bus_dma_tag_t	sc_dt;
    105 	bus_space_handle_t sc_ioh;	/* MAC register window */
    106 	bus_space_handle_t sc_miih;	/* MII register window */
    107 	struct ixpnpe_softc *sc_npe;	/* NPE support */
    108 	int		sc_unit;
    109 	int		sc_phy;
    110 	struct callout	sc_tick_ch;	/* Tick callout */
    111 	struct npedma	txdma;
    112 	struct npebuf	*tx_free;	/* list of free tx buffers */
    113 	struct npedma	rxdma;
    114 	int		rx_qid;		/* rx qid */
    115 	int		rx_freeqid;	/* rx free buffers qid */
    116 	int		tx_qid;		/* tx qid */
    117 	int		tx_doneqid;	/* tx completed qid */
    118 	struct npestats	*sc_stats;
    119 	bus_dmamap_t	sc_stats_map;
    120 	bus_addr_t	sc_stats_phys;	/* phys addr of sc_stats */
    121 	int		sc_if_flags;	/* keep last if_flags */
    122 	krndsource_t rnd_source; /* random source */
    123 };
    124 
    125 /*
    126  * Per-unit static configuration for IXP425.  The tx and
    127  * rx free Q id's are fixed by the NPE microcode.  The
    128  * rx Q id's are programmed to be separate to simplify
    129  * multi-port processing.  It may be better to handle
    130  * all traffic through one Q (as done by the Intel drivers).
    131  *
    132  * Note that the PHY's are accessible only from MAC A
    133  * on the IXP425.  This and other platform-specific
    134  * assumptions probably need to be handled through hints.
    135  */
    136 static const struct {
    137 	const char	*desc;		/* device description */
    138 	int		npeid;		/* NPE assignment */
    139 	int		macport;	/* Port number of the MAC */
    140 	uint32_t	imageid;	/* NPE firmware image id */
    141 	uint32_t	regbase;
    142 	int		regsize;
    143 	uint32_t	miibase;
    144 	int		miisize;
    145 	uint8_t		rx_qid;
    146 	uint8_t		rx_freeqid;
    147 	uint8_t		tx_qid;
    148 	uint8_t		tx_doneqid;
    149 } npeconfig[NPE_PORTS_MAX] = {
    150 	{ .desc		= "IXP NPE-B",
    151 	  .npeid	= NPE_B,
    152 	  .macport	= 0x10,
    153 	  .imageid	= IXP425_NPE_B_IMAGEID,
    154 	  .regbase	= IXP425_MAC_A_HWBASE,
    155 	  .regsize	= IXP425_MAC_A_SIZE,
    156 	  .miibase	= IXP425_MAC_A_HWBASE,
    157 	  .miisize	= IXP425_MAC_A_SIZE,
    158 	  .rx_qid	= 4,
    159 	  .rx_freeqid	= 27,
    160 	  .tx_qid	= 24,
    161 	  .tx_doneqid	= 31
    162 	},
    163 	{ .desc		= "IXP NPE-C",
    164 	  .npeid	= NPE_C,
    165 	  .macport	= 0x20,
    166 	  .imageid	= IXP425_NPE_C_IMAGEID,
    167 	  .regbase	= IXP425_MAC_B_HWBASE,
    168 	  .regsize	= IXP425_MAC_B_SIZE,
    169 	  .miibase	= IXP425_MAC_A_HWBASE,
    170 	  .miisize	= IXP425_MAC_A_SIZE,
    171 	  .rx_qid	= 12,
    172 	  .rx_freeqid	= 28,
    173 	  .tx_qid	= 25,
    174 	  .tx_doneqid	= 31
    175 	},
    176 };
    177 static struct npe_softc *npes[NPE_MAX];	/* NB: indexed by npeid */
    178 
    179 static __inline uint32_t
    180 RD4(struct npe_softc *sc, bus_size_t off)
    181 {
    182 	return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
    183 }
    184 
    185 static __inline void
    186 WR4(struct npe_softc *sc, bus_size_t off, uint32_t val)
    187 {
    188 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
    189 }
    190 
    191 static int	npe_activate(struct npe_softc *);
    192 #if 0
    193 static void	npe_deactivate(struct npe_softc *);
    194 #endif
    195 static void	npe_ifmedia_status(struct ifnet *, struct ifmediareq *);
    196 static void	npe_setmac(struct npe_softc *, const u_char *);
    197 static void	npe_getmac(struct npe_softc *);
    198 static void	npe_txdone(int, void *);
    199 static int	npe_rxbuf_init(struct npe_softc *, struct npebuf *,
    200 			struct mbuf *);
    201 static void	npe_rxdone(int, void *);
    202 static void	npeinit_macreg(struct npe_softc *);
    203 static int	npeinit(struct ifnet *);
    204 static void	npeinit_resetcb(void *);
    205 static void	npeinit_locked(void *);
    206 static void	npestart(struct ifnet *);
    207 static void	npestop(struct ifnet *, int);
    208 static void	npewatchdog(struct ifnet *);
    209 static int	npeioctl(struct ifnet *, u_long, void *);
    210 
    211 static int	npe_setrxqosentry(struct npe_softc *, int, int, int);
    212 static int	npe_updatestats(struct npe_softc *);
    213 #if 0
    214 static int	npe_getstats(struct npe_softc *);
    215 static uint32_t	npe_getimageid(struct npe_softc *);
    216 static int	npe_setloopback(struct npe_softc *, int);
    217 #endif
    218 
    219 static int	npe_miibus_readreg(device_t, int, int, uint16_t *);
    220 static int	npe_miibus_writereg(device_t, int, int, uint16_t);
    221 static void	npe_miibus_statchg(struct ifnet *);
    222 
    223 static int	npe_debug;
    224 #define DPRINTF(sc, fmt, ...) do {			\
    225 	if (npe_debug) printf(fmt, __VA_ARGS__);	\
    226 } while (0)
    227 #define DPRINTFn(n, sc, fmt, ...) do {			\
    228 	if (npe_debug >= n) printf(fmt, __VA_ARGS__);	\
    229 } while (0)
    230 
    231 #define	NPE_TXBUF	128
    232 #define	NPE_RXBUF	64
    233 
    234 #define MAC2UINT64(addr)	(((uint64_t)addr[0] << 40)	\
    235 				    + ((uint64_t)addr[1] << 32)	\
    236 				    + ((uint64_t)addr[2] << 24)	\
    237 				    + ((uint64_t)addr[3] << 16)	\
    238 				    + ((uint64_t)addr[4] << 8)	\
    239 				    + (uint64_t)addr[5])
    240 
    241 /* NB: all tx done processing goes through one queue */
    242 static int tx_doneqid = -1;
    243 
    244 void (*npe_getmac_md)(int, uint8_t *);
    245 
    246 static int npe_match(device_t, cfdata_t, void *);
    247 static void npe_attach(device_t, device_t, void *);
    248 
    249 CFATTACH_DECL_NEW(npe, sizeof(struct npe_softc),
    250     npe_match, npe_attach, NULL, NULL);
    251 
    252 static int
    253 npe_match(device_t parent, cfdata_t cf, void *arg)
    254 {
    255 	struct ixpnpe_attach_args *na = arg;
    256 
    257 	return (na->na_unit == NPE_B || na->na_unit == NPE_C);
    258 }
    259 
    260 static void
    261 npe_attach(device_t parent, device_t self, void *arg)
    262 {
    263 	struct npe_softc *sc = device_private(self);
    264 	struct ixpnpe_softc *isc = device_private(parent);
    265 	struct ixpnpe_attach_args *na = arg;
    266 	struct ifnet *ifp;
    267 	struct mii_data * const mii = &sc->sc_mii;
    268 
    269 	aprint_naive("\n");
    270 	aprint_normal(": Ethernet co-processor\n");
    271 
    272 	sc->sc_dev = self;
    273 	sc->sc_iot = na->na_iot;
    274 	sc->sc_dt = na->na_dt;
    275 	sc->sc_npe = na->na_npe;
    276 	sc->sc_unit = (na->na_unit == NPE_B) ? 0 : 1;
    277 	sc->sc_phy = na->na_phy;
    278 
    279 	memset(&sc->sc_ethercom, 0, sizeof(sc->sc_ethercom));
    280 	memset(mii, 0, sizeof(*mii));
    281 
    282 	callout_init(&sc->sc_tick_ch, 0);
    283 
    284 	if (npe_activate(sc)) {
    285 		aprint_error_dev(sc->sc_dev,
    286 		    "Failed to activate NPE (missing microcode?)\n");
    287 		return;
    288 	}
    289 
    290 	npe_getmac(sc);
    291 	npeinit_macreg(sc);
    292 
    293 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    294 	    ether_sprintf(sc->sc_enaddr));
    295 
    296 	ifp = &sc->sc_ethercom.ec_if;
    297 	mii->mii_ifp = ifp;
    298 	mii->mii_readreg = npe_miibus_readreg;
    299 	mii->mii_writereg = npe_miibus_writereg;
    300 	mii->mii_statchg = npe_miibus_statchg;
    301 	sc->sc_ethercom.ec_mii = mii;
    302 
    303 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    304 	    npe_ifmedia_status);
    305 
    306 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
    307 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
    308 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    309 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
    310 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
    311 	} else
    312 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    313 
    314 	ifp->if_softc = sc;
    315 	strcpy(ifp->if_xname, device_xname(sc->sc_dev));
    316 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    317 	ifp->if_start = npestart;
    318 	ifp->if_ioctl = npeioctl;
    319 	ifp->if_watchdog = npewatchdog;
    320 	ifp->if_init = npeinit;
    321 	ifp->if_stop = npestop;
    322 	IFQ_SET_READY(&ifp->if_snd);
    323 
    324 	/* VLAN capable */
    325 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    326 
    327 	if_attach(ifp);
    328 	if_deferred_start_init(ifp, NULL);
    329 	ether_ifattach(ifp, sc->sc_enaddr);
    330 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    331 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    332 
    333 	/* callback function to reset MAC */
    334 	isc->macresetcbfunc = npeinit_resetcb;
    335 	isc->macresetcbarg = sc;
    336 }
    337 
    338 /*
    339  * Compute and install the multicast filter.
    340  */
    341 static void
    342 npe_setmcast(struct npe_softc *sc)
    343 {
    344 	struct ethercom *ec = &sc->sc_ethercom;
    345 	struct ifnet *ifp = &ec->ec_if;
    346 	uint8_t mask[ETHER_ADDR_LEN], addr[ETHER_ADDR_LEN];
    347 	uint32_t reg;
    348 	uint32_t msg[2];
    349 	int i;
    350 
    351 	/* Always use filter. Is here a correct position? */
    352 	reg = RD4(sc, NPE_MAC_RX_CNTRL1);
    353 	WR4(sc, NPE_MAC_RX_CNTRL1, reg | NPE_RX_CNTRL1_ADDR_FLTR_EN);
    354 
    355 	if (ifp->if_flags & IFF_PROMISC) {
    356 		memset(mask, 0, ETHER_ADDR_LEN);
    357 		memset(addr, 0, ETHER_ADDR_LEN);
    358 	} else if (ifp->if_flags & IFF_ALLMULTI) {
    359 		static const uint8_t allmulti[ETHER_ADDR_LEN] =
    360 		    { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
    361  all_multi:
    362 		memcpy(mask, allmulti, ETHER_ADDR_LEN);
    363 		memcpy(addr, allmulti, ETHER_ADDR_LEN);
    364 	} else {
    365 		uint8_t clr[ETHER_ADDR_LEN], set[ETHER_ADDR_LEN];
    366 		struct ether_multistep step;
    367 		struct ether_multi *enm;
    368 
    369 		memset(clr, 0, ETHER_ADDR_LEN);
    370 		memset(set, 0xff, ETHER_ADDR_LEN);
    371 
    372 		ETHER_FIRST_MULTI(step, ec, enm);
    373 		while (enm != NULL) {
    374 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    375 			    ETHER_ADDR_LEN)) {
    376 				ifp->if_flags |= IFF_ALLMULTI;
    377 				goto all_multi;
    378 			}
    379 
    380 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
    381 				clr[i] |= enm->enm_addrlo[i];
    382 				set[i] &= enm->enm_addrlo[i];
    383 			}
    384 
    385 			ETHER_NEXT_MULTI(step, enm);
    386 		}
    387 
    388 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
    389 			mask[i] = set[i] | ~clr[i];
    390 			addr[i] = set[i];
    391 		}
    392 	}
    393 
    394 	/*
    395 	 * Write the mask and address registers.
    396 	 */
    397 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
    398 		WR4(sc, NPE_MAC_ADDR_MASK(i), mask[i]);
    399 		WR4(sc, NPE_MAC_ADDR(i), addr[i]);
    400 	}
    401 
    402 	msg[0] = NPE_ADDRESSFILTERCONFIG << NPE_MAC_MSGID_SHL
    403 	    | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL);
    404 	msg[1] = ((ifp->if_flags & IFF_PROMISC) ? 1 : 0) << 24
    405 	    | ((RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff) << 16)
    406 	    | (addr[5] << 8) | mask[5];
    407 	ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
    408 }
    409 
    410 static int
    411 npe_dma_setup(struct npe_softc *sc, struct npedma *dma,
    412 	const char *name, int nbuf, int maxseg)
    413 {
    414 	bus_dma_segment_t seg;
    415 	int rseg, error, i;
    416 	void *hwbuf;
    417 	size_t size;
    418 
    419 	memset(dma, 0, sizeof(*dma));
    420 
    421 	dma->name = name;
    422 	dma->nbuf = nbuf;
    423 
    424 	size = nbuf * sizeof(struct npehwbuf);
    425 
    426 	/* XXX COHERENT for now */
    427 	error = bus_dmamem_alloc(sc->sc_dt, size, sizeof(uint32_t), 0, &seg,
    428 	    1, &rseg, BUS_DMA_NOWAIT);
    429 	if (error) {
    430 		aprint_error_dev(sc->sc_dev,
    431 		    "unable to %s for %s %s buffers, error %u\n",
    432 		    "allocate memory", dma->name, "h/w", error);
    433 	}
    434 
    435 	error = bus_dmamem_map(sc->sc_dt, &seg, 1, size, &hwbuf,
    436 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_NOCACHE);
    437 	if (error) {
    438 		aprint_error_dev(sc->sc_dev,
    439 		    "unable to %s for %s %s buffers, error %u\n",
    440 		    "map memory", dma->name, "h/w", error);
    441  free_dmamem:
    442 		bus_dmamem_free(sc->sc_dt, &seg, rseg);
    443 		return error;
    444 	}
    445 	dma->hwbuf = (void *)hwbuf;
    446 
    447 	error = bus_dmamap_create(sc->sc_dt, size, 1, size, 0,
    448 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &dma->buf_map);
    449 	if (error) {
    450 		aprint_error_dev(sc->sc_dev,
    451 		    "unable to %s for %s %s buffers, error %u\n",
    452 		    "create map", dma->name, "h/w", error);
    453  unmap_dmamem:
    454 		dma->hwbuf = NULL;
    455 		bus_dmamem_unmap(sc->sc_dt, hwbuf, size);
    456 		goto free_dmamem;
    457 	}
    458 
    459 	error = bus_dmamap_load(sc->sc_dt, dma->buf_map, hwbuf, size, NULL,
    460 	    BUS_DMA_NOWAIT);
    461 	if (error) {
    462 		aprint_error_dev(sc->sc_dev,
    463 		    "unable to %s for %s %s buffers, error %u\n",
    464 		    "load map", dma->name, "h/w", error);
    465  destroy_dmamap:
    466 		bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
    467 		goto unmap_dmamem;
    468 	}
    469 
    470 	/* XXX M_TEMP */
    471 	dma->buf = malloc(nbuf * sizeof(struct npebuf), M_TEMP,
    472 	    M_NOWAIT | M_ZERO);
    473 	if (dma->buf == NULL) {
    474 		aprint_error_dev(sc->sc_dev,
    475 		    "unable to %s for %s %s buffers, error %u\n",
    476 		    "allocate memory", dma->name, "h/w", error);
    477 		bus_dmamap_unload(sc->sc_dt, dma->buf_map);
    478 		error = ENOMEM;
    479 		goto destroy_dmamap;
    480 	}
    481 
    482 	dma->buf_phys = dma->buf_map->dm_segs[0].ds_addr;
    483 	for (i = 0; i < dma->nbuf; i++) {
    484 		struct npebuf *npe = &dma->buf[i];
    485 		struct npehwbuf *hw = &dma->hwbuf[i];
    486 
    487 		/* Calculate offset to shared area */
    488 		npe->ix_neaddr = dma->buf_phys +
    489 			((uintptr_t)hw - (uintptr_t)dma->hwbuf);
    490 		KASSERT((npe->ix_neaddr & 0x1f) == 0);
    491 		error = bus_dmamap_create(sc->sc_dt, MCLBYTES, maxseg,
    492 		    MCLBYTES, 0, 0, &npe->ix_map);
    493 		if (error != 0) {
    494 			aprint_error_dev(sc->sc_dev,
    495 			    "unable to %s for %s buffer %u, error %u\n",
    496 			    "create dmamap", dma->name, i, error);
    497 			/* XXXSCW: Free up maps... */
    498 			return error;
    499 		}
    500 		npe->ix_hw = hw;
    501 	}
    502 	bus_dmamap_sync(sc->sc_dt, dma->buf_map, 0, dma->buf_map->dm_mapsize,
    503 	    BUS_DMASYNC_PREWRITE);
    504 	return 0;
    505 }
    506 
    507 #if 0
    508 static void
    509 npe_dma_destroy(struct npe_softc *sc, struct npedma *dma)
    510 {
    511 	int i;
    512 
    513 /* XXXSCW: Clean this up */
    514 
    515 	if (dma->hwbuf != NULL) {
    516 		for (i = 0; i < dma->nbuf; i++) {
    517 			struct npebuf *npe = &dma->buf[i];
    518 			bus_dmamap_destroy(sc->sc_dt, npe->ix_map);
    519 		}
    520 		bus_dmamap_unload(sc->sc_dt, dma->buf_map);
    521 		bus_dmamem_free(sc->sc_dt, (void *)dma->hwbuf, dma->buf_map);
    522 		bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
    523 	}
    524 	if (dma->buf != NULL)
    525 		free(dma->buf, M_TEMP);
    526 	memset(dma, 0, sizeof(*dma));
    527 }
    528 #endif
    529 
    530 static int
    531 npe_activate(struct npe_softc *sc)
    532 {
    533 	bus_dma_segment_t seg;
    534 	int unit = sc->sc_unit;
    535 	int error, i, rseg;
    536 	void *statbuf;
    537 
    538 	/* load NPE firmware and start it running */
    539 	error = ixpnpe_init(sc->sc_npe, "npe_fw", npeconfig[unit].imageid);
    540 	if (error != 0)
    541 		return error;
    542 
    543 	if (bus_space_map(sc->sc_iot, npeconfig[unit].regbase,
    544 	    npeconfig[unit].regsize, 0, &sc->sc_ioh)) {
    545 		aprint_error_dev(sc->sc_dev, "Cannot map registers 0x%x:0x%x\n",
    546 		    npeconfig[unit].regbase, npeconfig[unit].regsize);
    547 		return ENOMEM;
    548 	}
    549 
    550 	if (npeconfig[unit].miibase != npeconfig[unit].regbase) {
    551 		/*
    552 		 * The PHY's are only accessible from one MAC (it appears)
    553 		 * so for other MAC's setup an additional mapping for
    554 		 * frobbing the PHY registers.
    555 		 */
    556 		if (bus_space_map(sc->sc_iot, npeconfig[unit].miibase,
    557 		    npeconfig[unit].miisize, 0, &sc->sc_miih)) {
    558 			aprint_error_dev(sc->sc_dev,
    559 			    "Cannot map MII registers 0x%x:0x%x\n",
    560 			    npeconfig[unit].miibase, npeconfig[unit].miisize);
    561 			return ENOMEM;
    562 		}
    563 	} else
    564 		sc->sc_miih = sc->sc_ioh;
    565 	error = npe_dma_setup(sc, &sc->txdma, "tx", NPE_TXBUF, NPE_MAXSEG);
    566 	if (error != 0)
    567 		return error;
    568 	error = npe_dma_setup(sc, &sc->rxdma, "rx", NPE_RXBUF, 1);
    569 	if (error != 0)
    570 		return error;
    571 
    572 	/* setup statistics block */
    573 	error = bus_dmamem_alloc(sc->sc_dt, sizeof(struct npestats),
    574 	    sizeof(uint32_t), 0, &seg, 1, &rseg, BUS_DMA_NOWAIT);
    575 	if (error) {
    576 		aprint_error_dev(sc->sc_dev,
    577 		    "unable to %s for %s, error %u\n",
    578 		    "allocate memory", "stats block", error);
    579 		return error;
    580 	}
    581 
    582 	error = bus_dmamem_map(sc->sc_dt, &seg, 1, sizeof(struct npestats),
    583 	    &statbuf, BUS_DMA_NOWAIT);
    584 	if (error) {
    585 		aprint_error_dev(sc->sc_dev,
    586 		    "unable to %s for %s, error %u\n",
    587 		    "map memory", "stats block", error);
    588 		return error;
    589 	}
    590 	sc->sc_stats = (void *)statbuf;
    591 
    592 	error = bus_dmamap_create(sc->sc_dt, sizeof(struct npestats), 1,
    593 	    sizeof(struct npestats), 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    594 	    &sc->sc_stats_map);
    595 	if (error) {
    596 		aprint_error_dev(sc->sc_dev,
    597 		    "unable to %s for %s, error %u\n",
    598 		    "create map", "stats block", error);
    599 		return error;
    600 	}
    601 
    602 	error = bus_dmamap_load(sc->sc_dt, sc->sc_stats_map, sc->sc_stats,
    603 	    sizeof(struct npestats), NULL, BUS_DMA_NOWAIT);
    604 	if (error) {
    605 		aprint_error_dev(sc->sc_dev,
    606 		    "unable to %s for %s, error %u\n",
    607 		    "load map", "stats block", error);
    608 		return error;
    609 	}
    610 	sc->sc_stats_phys = sc->sc_stats_map->dm_segs[0].ds_addr;
    611 
    612 	/* XXX disable half-bridge LEARNING+FILTERING feature */
    613 
    614 	/*
    615 	 * Setup h/w rx/tx queues.  There are four q's:
    616 	 *   rx		inbound q of rx'd frames
    617 	 *   rx_free	pool of ixpbuf's for receiving frames
    618 	 *   tx		outbound q of frames to send
    619 	 *   tx_done	q of tx frames that have been processed
    620 	 *
    621 	 * The NPE handles the actual tx/rx process and the q manager
    622 	 * handles the queues.  The driver just writes entries to the
    623 	 * q manager mailbox's and gets callbacks when there are rx'd
    624 	 * frames to process or tx'd frames to reap.  These callbacks
    625 	 * are controlled by the q configurations; e.g. we get a
    626 	 * callback when tx_done has 2 or more frames to process and
    627 	 * when the rx q has at least one frame.  These setings can
    628 	 * changed at the time the q is configured.
    629 	 */
    630 	sc->rx_qid = npeconfig[unit].rx_qid;
    631 	ixpqmgr_qconfig(sc->rx_qid, NPE_RXBUF, 0,  1,
    632 		IX_QMGR_Q_SOURCE_ID_NOT_E, npe_rxdone, sc);
    633 	sc->rx_freeqid = npeconfig[unit].rx_freeqid;
    634 	ixpqmgr_qconfig(sc->rx_freeqid,	NPE_RXBUF, 0, NPE_RXBUF/2, 0, NULL, sc);
    635 	/* tell the NPE to direct all traffic to rx_qid */
    636 #if 0
    637 	for (i = 0; i < 8; i++)
    638 #else
    639 printf("%s: remember to fix rx q setup\n", device_xname(sc->sc_dev));
    640 	for (i = 0; i < 4; i++)
    641 #endif
    642 		npe_setrxqosentry(sc, i, 0, sc->rx_qid);
    643 
    644 	sc->tx_qid = npeconfig[unit].tx_qid;
    645 	sc->tx_doneqid = npeconfig[unit].tx_doneqid;
    646 	ixpqmgr_qconfig(sc->tx_qid, NPE_TXBUF, 0, NPE_TXBUF, 0, NULL, sc);
    647 	if (tx_doneqid == -1) {
    648 		ixpqmgr_qconfig(sc->tx_doneqid,	NPE_TXBUF, 0,  2,
    649 			IX_QMGR_Q_SOURCE_ID_NOT_E, npe_txdone, sc);
    650 		tx_doneqid = sc->tx_doneqid;
    651 	}
    652 
    653 	KASSERT(npes[npeconfig[unit].npeid] == NULL);
    654 	npes[npeconfig[unit].npeid] = sc;
    655 
    656 	return 0;
    657 }
    658 
    659 #if 0
    660 static void
    661 npe_deactivate(struct npe_softc *sc);
    662 {
    663 	int unit = sc->sc_unit;
    664 
    665 	npes[npeconfig[unit].npeid] = NULL;
    666 
    667 	/* XXX disable q's */
    668 	if (sc->sc_npe != NULL)
    669 		ixpnpe_stop(sc->sc_npe);
    670 	if (sc->sc_stats != NULL) {
    671 		bus_dmamap_unload(sc->sc_stats_tag, sc->sc_stats_map);
    672 		bus_dmamem_free(sc->sc_stats_tag, sc->sc_stats,
    673 			sc->sc_stats_map);
    674 		bus_dmamap_destroy(sc->sc_stats_tag, sc->sc_stats_map);
    675 	}
    676 	if (sc->sc_stats_tag != NULL)
    677 		bus_dma_tag_destroy(sc->sc_stats_tag);
    678 	npe_dma_destroy(sc, &sc->txdma);
    679 	npe_dma_destroy(sc, &sc->rxdma);
    680 	bus_generic_detach(sc->sc_dev);
    681 	if (sc->sc_mii)
    682 		device_delete_child(sc->sc_dev, sc->sc_mii);
    683 #if 0
    684 	/* XXX sc_ioh and sc_miih */
    685 	if (sc->mem_res)
    686 		bus_release_resource(dev, SYS_RES_IOPORT,
    687 		    rman_get_rid(sc->mem_res), sc->mem_res);
    688 	sc->mem_res = 0;
    689 #endif
    690 }
    691 #endif
    692 
    693 /*
    694  * Notify the world which media we're using.
    695  */
    696 static void
    697 npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
    698 {
    699 	struct npe_softc *sc = ifp->if_softc;
    700 
    701 	mii_pollstat(&sc->sc_mii);
    702 
    703 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
    704 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
    705 }
    706 
    707 static void
    708 npe_addstats(struct npe_softc *sc)
    709 {
    710 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    711 	struct npestats *ns = sc->sc_stats;
    712 
    713 	ifp->if_oerrors +=
    714 		  be32toh(ns->dot3StatsInternalMacTransmitErrors)
    715 		+ be32toh(ns->dot3StatsCarrierSenseErrors)
    716 		+ be32toh(ns->TxVLANIdFilterDiscards)
    717 		;
    718 	ifp->if_ierrors += be32toh(ns->dot3StatsFCSErrors)
    719 		+ be32toh(ns->dot3StatsInternalMacReceiveErrors)
    720 		+ be32toh(ns->RxOverrunDiscards)
    721 		+ be32toh(ns->RxUnderflowEntryDiscards)
    722 		;
    723 	ifp->if_collisions +=
    724 		  be32toh(ns->dot3StatsSingleCollisionFrames)
    725 		+ be32toh(ns->dot3StatsMultipleCollisionFrames)
    726 		;
    727 }
    728 
    729 static void
    730 npe_tick(void *xsc)
    731 {
    732 #define	ACK	(NPE_RESETSTATS << NPE_MAC_MSGID_SHL)
    733 	struct npe_softc *sc = xsc;
    734 	uint32_t msg[2];
    735 
    736 	/*
    737 	 * NB: to avoid sleeping with the softc lock held we
    738 	 * split the NPE msg processing into two parts.  The
    739 	 * request for statistics is sent w/o waiting for a
    740 	 * reply and then on the next tick we retrieve the
    741 	 * results.  This works because npe_tick is the only
    742 	 * code that talks via the mailbox's (except at setup).
    743 	 * This likely can be handled better.
    744 	 */
    745 	if (ixpnpe_recvmsg(sc->sc_npe, msg) == 0 && msg[0] == ACK) {
    746 		bus_dmamap_sync(sc->sc_dt, sc->sc_stats_map, 0,
    747 		    sizeof(struct npestats), BUS_DMASYNC_POSTREAD);
    748 		npe_addstats(sc);
    749 	}
    750 	npe_updatestats(sc);
    751 	mii_tick(&sc->sc_mii);
    752 
    753 	/* Schedule next poll */
    754 	callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
    755 #undef ACK
    756 }
    757 
    758 static void
    759 npe_setmac(struct npe_softc *sc, const u_char *eaddr)
    760 {
    761 
    762 	WR4(sc, NPE_MAC_UNI_ADDR_1, eaddr[0]);
    763 	WR4(sc, NPE_MAC_UNI_ADDR_2, eaddr[1]);
    764 	WR4(sc, NPE_MAC_UNI_ADDR_3, eaddr[2]);
    765 	WR4(sc, NPE_MAC_UNI_ADDR_4, eaddr[3]);
    766 	WR4(sc, NPE_MAC_UNI_ADDR_5, eaddr[4]);
    767 	WR4(sc, NPE_MAC_UNI_ADDR_6, eaddr[5]);
    768 }
    769 
    770 static void
    771 npe_getmac(struct npe_softc *sc)
    772 {
    773 	uint8_t *eaddr = sc->sc_enaddr;
    774 
    775 	if (npe_getmac_md != NULL) {
    776 		(*npe_getmac_md)(device_unit(sc->sc_dev), eaddr);
    777 	} else {
    778 		/*
    779 		 * Some system's unicast address appears to be loaded from
    780 		 * EEPROM on reset
    781 		 */
    782 		eaddr[0] = RD4(sc, NPE_MAC_UNI_ADDR_1) & 0xff;
    783 		eaddr[1] = RD4(sc, NPE_MAC_UNI_ADDR_2) & 0xff;
    784 		eaddr[2] = RD4(sc, NPE_MAC_UNI_ADDR_3) & 0xff;
    785 		eaddr[3] = RD4(sc, NPE_MAC_UNI_ADDR_4) & 0xff;
    786 		eaddr[4] = RD4(sc, NPE_MAC_UNI_ADDR_5) & 0xff;
    787 		eaddr[5] = RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff;
    788 	}
    789 }
    790 
    791 struct txdone {
    792 	struct npebuf *head;
    793 	struct npebuf **tail;
    794 	int count;
    795 };
    796 
    797 static __inline void
    798 npe_txdone_finish(struct npe_softc *sc, const struct txdone *td)
    799 {
    800 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    801 
    802 	*td->tail = sc->tx_free;
    803 	sc->tx_free = td->head;
    804 	/*
    805 	 * We're no longer busy, so clear the busy flag and call the
    806 	 * start routine to xmit more packets.
    807 	 */
    808 	ifp->if_opackets += td->count;
    809 	ifp->if_flags &= ~IFF_OACTIVE;
    810 	ifp->if_timer = 0;
    811 	if_schedule_deferred_start(ifp);
    812 }
    813 
    814 /*
    815  * Q manager callback on tx done queue.  Reap mbufs
    816  * and return tx buffers to the free list.  Finally
    817  * restart output.  Note the microcode has only one
    818  * txdone q wired into it so we must use the NPE ID
    819  * returned with each npehwbuf to decide where to
    820  * send buffers.
    821  */
    822 static void
    823 npe_txdone(int qid, void *arg)
    824 {
    825 #define	P2V(a, dma) \
    826 	&(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
    827 	struct npe_softc *sc;
    828 	struct npebuf *npe;
    829 	struct txdone *td, q[NPE_MAX];
    830 	uint32_t entry;
    831 
    832 	/* XXX no NPE-A support */
    833 	q[NPE_B].tail = &q[NPE_B].head; q[NPE_B].count = 0;
    834 	q[NPE_C].tail = &q[NPE_C].head; q[NPE_C].count = 0;
    835 	/* XXX max # at a time? */
    836 	while (ixpqmgr_qread(qid, &entry) == 0) {
    837 		sc = npes[NPE_QM_Q_NPE(entry)];
    838 		DPRINTF(sc, "%s: entry 0x%x NPE %u port %u\n",
    839 		    __func__, entry, NPE_QM_Q_NPE(entry), NPE_QM_Q_PORT(entry));
    840 		rnd_add_uint32(&sc->rnd_source, entry);
    841 
    842 		npe = P2V(NPE_QM_Q_ADDR(entry), &sc->txdma);
    843 		m_freem(npe->ix_m);
    844 		npe->ix_m = NULL;
    845 
    846 		td = &q[NPE_QM_Q_NPE(entry)];
    847 		*td->tail = npe;
    848 		td->tail = &npe->ix_next;
    849 		td->count++;
    850 	}
    851 
    852 	if (q[NPE_B].count)
    853 		npe_txdone_finish(npes[NPE_B], &q[NPE_B]);
    854 	if (q[NPE_C].count)
    855 		npe_txdone_finish(npes[NPE_C], &q[NPE_C]);
    856 #undef P2V
    857 }
    858 
    859 static __inline struct mbuf *
    860 npe_getcl(void)
    861 {
    862 	struct mbuf *m;
    863 
    864 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    865 	if (m != NULL) {
    866 		MCLGET(m, M_DONTWAIT);
    867 		if ((m->m_flags & M_EXT) == 0) {
    868 			m_freem(m);
    869 			m = NULL;
    870 		}
    871 	}
    872 	return m;
    873 }
    874 
    875 static int
    876 npe_rxbuf_init(struct npe_softc *sc, struct npebuf *npe, struct mbuf *m)
    877 {
    878 	struct npehwbuf *hw;
    879 	int error;
    880 
    881 	if (m == NULL) {
    882 		m = npe_getcl();
    883 		if (m == NULL)
    884 			return ENOBUFS;
    885 	}
    886 	KASSERT(m->m_ext.ext_size >= (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
    887 	m->m_pkthdr.len = m->m_len = NPE_FRAME_SIZE_DEFAULT;
    888 	/* backload payload and align ip hdr */
    889 	m->m_data = m->m_ext.ext_buf + (m->m_ext.ext_size
    890 	    - (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
    891 	error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
    892 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
    893 	if (error != 0) {
    894 		m_freem(m);
    895 		return error;
    896 	}
    897 	hw = npe->ix_hw;
    898 	hw->ix_ne[0].data = htobe32(npe->ix_map->dm_segs[0].ds_addr);
    899 	/* NB: NPE requires length be a multiple of 64 */
    900 	/* NB: buffer length is shifted in word */
    901 	hw->ix_ne[0].len = htobe32(npe->ix_map->dm_segs[0].ds_len << 16);
    902 	hw->ix_ne[0].next = 0;
    903 	npe->ix_m = m;
    904 	/* Flush the memory in the mbuf */
    905 	bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0, npe->ix_map->dm_mapsize,
    906 	    BUS_DMASYNC_PREREAD);
    907 	return 0;
    908 }
    909 
    910 /*
    911  * RX q processing for a specific NPE.  Claim entries
    912  * from the hardware queue and pass the frames up the
    913  * stack. Pass the rx buffers to the free list.
    914  */
    915 static void
    916 npe_rxdone(int qid, void *arg)
    917 {
    918 #define	P2V(a, dma) \
    919 	&(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
    920 	struct npe_softc *sc = arg;
    921 	struct npedma *dma = &sc->rxdma;
    922 	uint32_t entry;
    923 
    924 	while (ixpqmgr_qread(qid, &entry) == 0) {
    925 		struct npebuf *npe = P2V(NPE_QM_Q_ADDR(entry), dma);
    926 		struct mbuf *m;
    927 
    928 		DPRINTF(sc, "%s: entry 0x%x neaddr 0x%x ne_len 0x%x\n",
    929 		    __func__, entry, npe->ix_neaddr, npe->ix_hw->ix_ne[0].len);
    930 		rnd_add_uint32(&sc->rnd_source, entry);
    931 		/*
    932 		 * Allocate a new mbuf to replenish the rx buffer.
    933 		 * If doing so fails we drop the rx'd frame so we
    934 		 * can reuse the previous mbuf.  When we're able to
    935 		 * allocate a new mbuf dispatch the mbuf w/ rx'd
    936 		 * data up the stack and replace it with the newly
    937 		 * allocated one.
    938 		 */
    939 		m = npe_getcl();
    940 		if (m != NULL) {
    941 			struct mbuf *mrx = npe->ix_m;
    942 			struct npehwbuf *hw = npe->ix_hw;
    943 			struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    944 
    945 			/* Flush mbuf memory for rx'd data */
    946 			bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
    947 			    npe->ix_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
    948 
    949 			/* XXX flush hw buffer; works now 'cuz coherent */
    950 			/* set m_len etc. per rx frame size */
    951 			mrx->m_len = be32toh(hw->ix_ne[0].len) & 0xffff;
    952 			mrx->m_pkthdr.len = mrx->m_len;
    953 			m_set_rcvif(mrx, ifp);
    954 			/* Don't add M_HASFCS. See below */
    955 
    956 #if 1
    957 			if (mrx->m_pkthdr.len < sizeof(struct ether_header)) {
    958 				log(LOG_INFO, "%s: too short frame (len=%d)\n",
    959 				    device_xname(sc->sc_dev),
    960 				    mrx->m_pkthdr.len);
    961 				/* Back out "newly allocated" mbuf. */
    962 				m_freem(m);
    963 				ifp->if_ierrors++;
    964 				goto fail;
    965 			}
    966 			if ((ifp->if_flags & IFF_PROMISC) == 0) {
    967 				struct ether_header *eh;
    968 
    969 				/*
    970 				 * Workaround for "Non-Intel XScale Technology
    971 				 * Eratta" No. 29. AA:BB:CC:DD:EE:xF's packet
    972 				 * matches the filter (both unicast and
    973 				 * multicast).
    974 				 */
    975 				eh = mtod(mrx, struct ether_header *);
    976 				if (ETHER_IS_MULTICAST(eh->ether_dhost) == 0) {
    977 					/* Unicast */
    978 
    979 					if (sc->sc_enaddr[5] != eh->ether_dhost[5]) {
    980 						/* Discard it */
    981 #if 0
    982 						printf("discard it\n");
    983 #endif
    984 						/*
    985 						 * Back out "newly allocated"
    986 						 * mbuf.
    987 						 */
    988 						m_freem(m);
    989 						goto fail;
    990 					}
    991 				} else if (memcmp(eh->ether_dhost,
    992 					etherbroadcastaddr, 6) == 0) {
    993 					/* Always accept broadcast packet*/
    994 				} else {
    995 					struct ethercom *ec = &sc->sc_ethercom;
    996 					struct ether_multi *enm;
    997 					struct ether_multistep step;
    998 					int match = 0;
    999 
   1000 					/* Multicast */
   1001 
   1002 					ETHER_FIRST_MULTI(step, ec, enm);
   1003 					while (enm != NULL) {
   1004 						uint64_t lowint, highint, dest;
   1005 
   1006 						lowint = MAC2UINT64(enm->enm_addrlo);
   1007 						highint = MAC2UINT64(enm->enm_addrhi);
   1008 						dest = MAC2UINT64(eh->ether_dhost);
   1009 #if 0
   1010 						printf("%llx\n", lowint);
   1011 						printf("%llx\n", dest);
   1012 						printf("%llx\n", highint);
   1013 #endif
   1014 						if ((lowint <= dest) && (dest <= highint)) {
   1015 							match = 1;
   1016 							break;
   1017 						}
   1018 						ETHER_NEXT_MULTI(step, enm);
   1019 					}
   1020 					if (match == 0) {
   1021 						/* Discard it */
   1022 #if 0
   1023 						printf("discard it(M)\n");
   1024 #endif
   1025 						/*
   1026 						 * Back out "newly allocated"
   1027 						 * mbuf.
   1028 						 */
   1029 						m_freem(m);
   1030 						goto fail;
   1031 					}
   1032 				}
   1033 			}
   1034 			if (mrx->m_pkthdr.len > NPE_FRAME_SIZE_DEFAULT) {
   1035 				log(LOG_INFO, "%s: oversized frame (len=%d)\n",
   1036 				    device_xname(sc->sc_dev), mrx->m_pkthdr.len);
   1037 				/* Back out "newly allocated" mbuf. */
   1038 				m_freem(m);
   1039 				ifp->if_ierrors++;
   1040 				goto fail;
   1041 			}
   1042 #endif
   1043 
   1044 			/*
   1045 			 * Trim FCS!
   1046 			 * NPE always adds the FCS by this driver's setting,
   1047 			 * so we always trim it here and not add M_HASFCS.
   1048 			 */
   1049 			m_adj(mrx, -ETHER_CRC_LEN);
   1050 
   1051 			/*
   1052 			 * Tap off here if there is a bpf listener.
   1053 			 */
   1054 
   1055 			if_percpuq_enqueue(ifp->if_percpuq, mrx);
   1056 		} else {
   1057 fail:
   1058 			/* discard frame and re-use mbuf */
   1059 			m = npe->ix_m;
   1060 		}
   1061 		if (npe_rxbuf_init(sc, npe, m) == 0) {
   1062 			/* return npe buf to rx free list */
   1063 			ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
   1064 		} else {
   1065 			/* XXX should not happen */
   1066 		}
   1067 	}
   1068 #undef P2V
   1069 }
   1070 
   1071 static void
   1072 npe_startxmit(struct npe_softc *sc)
   1073 {
   1074 	struct npedma *dma = &sc->txdma;
   1075 	int i;
   1076 
   1077 	sc->tx_free = NULL;
   1078 	for (i = 0; i < dma->nbuf; i++) {
   1079 		struct npebuf *npe = &dma->buf[i];
   1080 		if (npe->ix_m != NULL) {
   1081 			/* NB: should not happen */
   1082 			printf("%s: %s: free mbuf at entry %u\n",
   1083 			    device_xname(sc->sc_dev), __func__, i);
   1084 			m_freem(npe->ix_m);
   1085 		}
   1086 		npe->ix_m = NULL;
   1087 		npe->ix_next = sc->tx_free;
   1088 		sc->tx_free = npe;
   1089 	}
   1090 }
   1091 
   1092 static void
   1093 npe_startrecv(struct npe_softc *sc)
   1094 {
   1095 	struct npedma *dma = &sc->rxdma;
   1096 	struct npebuf *npe;
   1097 	int i;
   1098 
   1099 	for (i = 0; i < dma->nbuf; i++) {
   1100 		npe = &dma->buf[i];
   1101 		npe_rxbuf_init(sc, npe, npe->ix_m);
   1102 		/* Set npe buf on rx free list */
   1103 		ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
   1104 	}
   1105 }
   1106 
   1107 static void
   1108 npeinit_macreg(struct npe_softc *sc)
   1109 {
   1110 
   1111 	/*
   1112 	 * Reset MAC core.
   1113 	 */
   1114 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
   1115 	DELAY(NPE_MAC_RESET_DELAY);
   1116 	/* Configure MAC to generate MDC clock */
   1117 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
   1118 
   1119 	/* Disable transmitter and reciver in the MAC */
   1120 	WR4(sc, NPE_MAC_RX_CNTRL1,
   1121 	    RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
   1122 	WR4(sc, NPE_MAC_TX_CNTRL1,
   1123 	    RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
   1124 
   1125 	/*
   1126 	 * Set the MAC core registers.
   1127 	 */
   1128 	WR4(sc, NPE_MAC_INT_CLK_THRESH, 0x1);	/* clock ratio: for ipx4xx */
   1129 	WR4(sc, NPE_MAC_TX_CNTRL2,	0xf);	/* max retries */
   1130 	WR4(sc, NPE_MAC_RANDOM_SEED,	0x8);	/* LFSR back-off seed */
   1131 	/* Thresholds determined by NPE firmware FS */
   1132 	WR4(sc, NPE_MAC_THRESH_P_EMPTY,	0x12);
   1133 	WR4(sc, NPE_MAC_THRESH_P_FULL,	0x30);
   1134 	WR4(sc, NPE_MAC_BUF_SIZE_TX, NPE_MAC_BUF_SIZE_TX_DEFAULT);
   1135 						/* tx fifo threshold (bytes) */
   1136 	WR4(sc, NPE_MAC_TX_DEFER,	0x15);	/* for single deferral */
   1137 	WR4(sc, NPE_MAC_RX_DEFER,	0x16);	/* deferral on inter-frame gap*/
   1138 	WR4(sc, NPE_MAC_TX_TWO_DEFER_1,	0x8);	/* for 2-part deferral */
   1139 	WR4(sc, NPE_MAC_TX_TWO_DEFER_2,	0x7);	/* for 2-part deferral */
   1140 	WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
   1141 						/* assumes MII mode */
   1142 	WR4(sc, NPE_MAC_TX_CNTRL1,
   1143 		  NPE_TX_CNTRL1_RETRY		/* retry failed xmits */
   1144 		| NPE_TX_CNTRL1_FCS_EN		/* append FCS */
   1145 		| NPE_TX_CNTRL1_2DEFER		/* 2-part deferal */
   1146 		| NPE_TX_CNTRL1_PAD_EN);	/* pad runt frames */
   1147 	/* XXX pad strip? */
   1148 	WR4(sc, NPE_MAC_RX_CNTRL1,
   1149 		  NPE_RX_CNTRL1_CRC_EN		/* include CRC/FCS */
   1150 		| NPE_RX_CNTRL1_PAUSE_EN);	/* ena pause frame handling */
   1151 	WR4(sc, NPE_MAC_RX_CNTRL2, 0);
   1152 }
   1153 
   1154 static void
   1155 npeinit_resetcb(void *xsc)
   1156 {
   1157 	struct npe_softc *sc = xsc;
   1158 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1159 	uint32_t msg[2];
   1160 
   1161 	ifp->if_oerrors++;
   1162 	npeinit_locked(sc);
   1163 
   1164 	msg[0] = NPE_NOTIFYMACRECOVERYDONE << NPE_MAC_MSGID_SHL
   1165 	    | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL);
   1166 	msg[1] = 0;
   1167 	ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
   1168 }
   1169 
   1170 /*
   1171  * Reset and initialize the chip
   1172  */
   1173 static void
   1174 npeinit_locked(void *xsc)
   1175 {
   1176 	struct npe_softc *sc = xsc;
   1177 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1178 
   1179 	/* Cancel any pending I/O. */
   1180 	npestop(ifp, 0);
   1181 
   1182 	/* Reset the chip to a known state. */
   1183 	npeinit_macreg(sc);
   1184 	npe_setmac(sc, CLLADDR(ifp->if_sadl));
   1185 	ether_mediachange(ifp);
   1186 	npe_setmcast(sc);
   1187 
   1188 	npe_startxmit(sc);
   1189 	npe_startrecv(sc);
   1190 
   1191 	ifp->if_flags |= IFF_RUNNING;
   1192 	ifp->if_flags &= ~IFF_OACTIVE;
   1193 	ifp->if_timer = 0;		/* just in case */
   1194 
   1195 	/* Enable transmitter and reciver in the MAC */
   1196 	WR4(sc, NPE_MAC_RX_CNTRL1,
   1197 	    RD4(sc, NPE_MAC_RX_CNTRL1) | NPE_RX_CNTRL1_RX_EN);
   1198 	WR4(sc, NPE_MAC_TX_CNTRL1,
   1199 	    RD4(sc, NPE_MAC_TX_CNTRL1) | NPE_TX_CNTRL1_TX_EN);
   1200 
   1201 	callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
   1202 }
   1203 
   1204 static int
   1205 npeinit(struct ifnet *ifp)
   1206 {
   1207 	struct npe_softc *sc = ifp->if_softc;
   1208 	int s;
   1209 
   1210 	s = splnet();
   1211 	npeinit_locked(sc);
   1212 	splx(s);
   1213 
   1214 	return 0;
   1215 }
   1216 
   1217 /*
   1218  * Defragment an mbuf chain, returning at most maxfrags separate
   1219  * mbufs+clusters.  If this is not possible NULL is returned and
   1220  * the original mbuf chain is left in its present (potentially
   1221  * modified) state.  We use two techniques: collapsing consecutive
   1222  * mbufs and replacing consecutive mbufs by a cluster.
   1223  */
   1224 static __inline struct mbuf *
   1225 npe_defrag(struct mbuf *m0)
   1226 {
   1227 	struct mbuf *m;
   1228 
   1229 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1230 	if (m == NULL)
   1231 		return NULL;
   1232 	m_copy_pkthdr(m, m0);
   1233 
   1234 	if ((m->m_len = m0->m_pkthdr.len) > MHLEN) {
   1235 		MCLGET(m, M_DONTWAIT);
   1236 		if ((m->m_flags & M_EXT) == 0) {
   1237 			m_freem(m);
   1238 			return NULL;
   1239 		}
   1240 	}
   1241 
   1242 	m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1243 	m_freem(m0);
   1244 
   1245 	return m;
   1246 }
   1247 
   1248 /*
   1249  * Dequeue packets and place on the h/w transmit queue.
   1250  */
   1251 static void
   1252 npestart(struct ifnet *ifp)
   1253 {
   1254 	struct npe_softc *sc = ifp->if_softc;
   1255 	struct npebuf *npe;
   1256 	struct npehwbuf *hw;
   1257 	struct mbuf *m, *n;
   1258 	bus_dma_segment_t *segs;
   1259 	int nseg, len, error, i;
   1260 	uint32_t next;
   1261 
   1262 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1263 		return;
   1264 
   1265 	while (sc->tx_free != NULL) {
   1266 		IFQ_DEQUEUE(&ifp->if_snd, m);
   1267 		if (m == NULL)
   1268 			break;
   1269 		npe = sc->tx_free;
   1270 		error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
   1271 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1272 		if (error == EFBIG) {
   1273 			n = npe_defrag(m);
   1274 			if (n == NULL) {
   1275 				printf("%s: %s: too many fragments\n",
   1276 				    device_xname(sc->sc_dev), __func__);
   1277 				m_freem(m);
   1278 				return;	/* XXX? */
   1279 			}
   1280 			m = n;
   1281 			error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map,
   1282 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1283 		}
   1284 		if (error != 0) {
   1285 			printf("%s: %s: error %u\n",
   1286 			    device_xname(sc->sc_dev), __func__, error);
   1287 			m_freem(m);
   1288 			return;	/* XXX? */
   1289 		}
   1290 		sc->tx_free = npe->ix_next;
   1291 
   1292 		/*
   1293 		 * Tap off here if there is a bpf listener.
   1294 		 */
   1295 		bpf_mtap(ifp, m, BPF_D_OUT);
   1296 
   1297 		bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
   1298 		    npe->ix_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1299 
   1300 		npe->ix_m = m;
   1301 		hw = npe->ix_hw;
   1302 		len = m->m_pkthdr.len;
   1303 		nseg = npe->ix_map->dm_nsegs;
   1304 		segs = npe->ix_map->dm_segs;
   1305 		next = npe->ix_neaddr + sizeof(hw->ix_ne[0]);
   1306 		for (i = 0; i < nseg; i++) {
   1307 			hw->ix_ne[i].data = htobe32(segs[i].ds_addr);
   1308 			hw->ix_ne[i].len = htobe32((segs[i].ds_len<<16) | len);
   1309 			hw->ix_ne[i].next = htobe32(next);
   1310 
   1311 			len = 0;		/* zero for segments > 1 */
   1312 			next += sizeof(hw->ix_ne[0]);
   1313 		}
   1314 		hw->ix_ne[i-1].next = 0;	/* zero last in chain */
   1315 		/* XXX flush descriptor instead of using uncached memory */
   1316 
   1317 		DPRINTF(sc, "%s: qwrite(%u, 0x%x) ne_data %x ne_len 0x%x\n",
   1318 		    __func__, sc->tx_qid, npe->ix_neaddr,
   1319 		    hw->ix_ne[0].data, hw->ix_ne[0].len);
   1320 		/* stick it on the tx q */
   1321 		/* XXX add vlan priority */
   1322 		ixpqmgr_qwrite(sc->tx_qid, npe->ix_neaddr);
   1323 
   1324 		ifp->if_timer = 5;
   1325 	}
   1326 	if (sc->tx_free == NULL)
   1327 		ifp->if_flags |= IFF_OACTIVE;
   1328 }
   1329 
   1330 static void
   1331 npe_stopxmit(struct npe_softc *sc)
   1332 {
   1333 	struct npedma *dma = &sc->txdma;
   1334 	int i;
   1335 
   1336 	/* XXX qmgr */
   1337 	for (i = 0; i < dma->nbuf; i++) {
   1338 		struct npebuf *npe = &dma->buf[i];
   1339 
   1340 		if (npe->ix_m != NULL) {
   1341 			bus_dmamap_unload(sc->sc_dt, npe->ix_map);
   1342 			m_freem(npe->ix_m);
   1343 			npe->ix_m = NULL;
   1344 		}
   1345 	}
   1346 }
   1347 
   1348 static void
   1349 npe_stoprecv(struct npe_softc *sc)
   1350 {
   1351 	struct npedma *dma = &sc->rxdma;
   1352 	int i;
   1353 
   1354 	/* XXX qmgr */
   1355 	for (i = 0; i < dma->nbuf; i++) {
   1356 		struct npebuf *npe = &dma->buf[i];
   1357 
   1358 		if (npe->ix_m != NULL) {
   1359 			bus_dmamap_unload(sc->sc_dt, npe->ix_map);
   1360 			m_freem(npe->ix_m);
   1361 			npe->ix_m = NULL;
   1362 		}
   1363 	}
   1364 }
   1365 
   1366 /*
   1367  * Turn off interrupts, and stop the nic.
   1368  */
   1369 void
   1370 npestop(struct ifnet *ifp, int disable)
   1371 {
   1372 	struct npe_softc *sc = ifp->if_softc;
   1373 
   1374 	/* Disable transmitter and reciver in the MAC */
   1375 	WR4(sc, NPE_MAC_RX_CNTRL1,
   1376 	    RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
   1377 	WR4(sc, NPE_MAC_TX_CNTRL1,
   1378 	    RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
   1379 
   1380 	callout_stop(&sc->sc_tick_ch);
   1381 
   1382 	npe_stopxmit(sc);
   1383 	npe_stoprecv(sc);
   1384 	/* XXX go into loopback & drain q's? */
   1385 	/* XXX but beware of disabling tx above */
   1386 
   1387 	/*
   1388 	 * The MAC core rx/tx disable may leave the MAC hardware in an
   1389 	 * unpredictable state. A hw reset is executed before resetting
   1390 	 * all the MAC parameters to a known value.
   1391 	 */
   1392 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
   1393 	DELAY(NPE_MAC_RESET_DELAY);
   1394 	WR4(sc, NPE_MAC_INT_CLK_THRESH, NPE_MAC_INT_CLK_THRESH_DEFAULT);
   1395 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
   1396 
   1397 	ifp->if_timer = 0;
   1398 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1399 }
   1400 
   1401 void
   1402 npewatchdog(struct ifnet *ifp)
   1403 {
   1404 	struct npe_softc *sc = ifp->if_softc;
   1405 	int s;
   1406 
   1407 	aprint_error_dev(sc->sc_dev, "device timeout\n");
   1408 	s = splnet();
   1409 	ifp->if_oerrors++;
   1410 	npeinit_locked(sc);
   1411 	splx(s);
   1412 }
   1413 
   1414 static int
   1415 npeioctl(struct ifnet *ifp, u_long cmd, void *data)
   1416 {
   1417 	struct npe_softc *sc = ifp->if_softc;
   1418 	struct ifreq *ifr = (struct ifreq *) data;
   1419 	int s, error = 0;
   1420 
   1421 	s = splnet();
   1422 
   1423 	switch (cmd) {
   1424 	case SIOCSIFMEDIA:
   1425 #if 0 /* not yet */
   1426 		/* Flow control requires full-duplex mode. */
   1427 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1428 		    (ifr->ifr_media & IFM_FDX) == 0)
   1429 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1430 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1431 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1432 				/* We can do both TXPAUSE and RXPAUSE. */
   1433 				ifr->ifr_media |=
   1434 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1435 			}
   1436 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1437 		}
   1438 #endif
   1439 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1440 		break;
   1441 	case SIOCSIFFLAGS:
   1442 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_RUNNING) {
   1443 			/*
   1444 			 * If interface is marked down and it is running,
   1445 			 * then stop and disable it.
   1446 			 */
   1447 			(*ifp->if_stop)(ifp, 1);
   1448 		} else if ((ifp->if_flags & (IFF_UP |IFF_RUNNING)) == IFF_UP) {
   1449 			/*
   1450 			 * If interface is marked up and it is stopped, then
   1451 			 * start it.
   1452 			 */
   1453 			error = (*ifp->if_init)(ifp);
   1454 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1455 			int diff;
   1456 
   1457 			/* Up (AND RUNNING). */
   1458 
   1459 			diff = (ifp->if_flags ^ sc->sc_if_flags)
   1460 			    & (IFF_PROMISC | IFF_ALLMULTI);
   1461 			if ((diff & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
   1462 				/*
   1463 				 * If the difference bettween last flag and
   1464 				 * new flag only IFF_PROMISC or IFF_ALLMULTI,
   1465 				 * set multicast filter only (don't reset to
   1466 				 * prevent link down).
   1467 				 */
   1468 				npe_setmcast(sc);
   1469 			} else {
   1470 				/*
   1471 				 * Reset the interface to pick up changes in
   1472 				 * any other flags that affect the hardware
   1473 				 * state.
   1474 				 */
   1475 				error = (*ifp->if_init)(ifp);
   1476 			}
   1477 		}
   1478 		sc->sc_if_flags = ifp->if_flags;
   1479 		break;
   1480 	default:
   1481 		error = ether_ioctl(ifp, cmd, data);
   1482 		if (error == ENETRESET) {
   1483 			/*
   1484 			 * Multicast list has changed; set the hardware filter
   1485 			 * accordingly.
   1486 			 */
   1487 			npe_setmcast(sc);
   1488 			error = 0;
   1489 		}
   1490 	}
   1491 
   1492 	npestart(ifp);
   1493 
   1494 	splx(s);
   1495 	return error;
   1496 }
   1497 
   1498 /*
   1499  * Setup a traffic class -> rx queue mapping.
   1500  */
   1501 static int
   1502 npe_setrxqosentry(struct npe_softc *sc, int classix, int trafclass, int qid)
   1503 {
   1504 	int npeid = npeconfig[sc->sc_unit].npeid;
   1505 	uint32_t msg[2];
   1506 
   1507 	msg[0] = (NPE_SETRXQOSENTRY << NPE_MAC_MSGID_SHL) | (npeid << 20)
   1508 	    | classix;
   1509 	msg[1] = (trafclass << 24) | (1 << 23) | (qid << 16) | (qid << 4);
   1510 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
   1511 }
   1512 
   1513 /*
   1514  * Update and reset the statistics in the NPE.
   1515  */
   1516 static int
   1517 npe_updatestats(struct npe_softc *sc)
   1518 {
   1519 	uint32_t msg[2];
   1520 
   1521 	msg[0] = NPE_RESETSTATS << NPE_MAC_MSGID_SHL;
   1522 	msg[1] = sc->sc_stats_phys;	/* physical address of stat block */
   1523 	return ixpnpe_sendmsg(sc->sc_npe, msg);		/* NB: no recv */
   1524 }
   1525 
   1526 #if 0
   1527 /*
   1528  * Get the current statistics block.
   1529  */
   1530 static int
   1531 npe_getstats(struct npe_softc *sc)
   1532 {
   1533 	uint32_t msg[2];
   1534 
   1535 	msg[0] = NPE_GETSTATS << NPE_MAC_MSGID_SHL;
   1536 	msg[1] = sc->sc_stats_phys;	/* physical address of stat block */
   1537 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
   1538 }
   1539 
   1540 /*
   1541  * Query the image id of the loaded firmware.
   1542  */
   1543 static uint32_t
   1544 npe_getimageid(struct npe_softc *sc)
   1545 {
   1546 	uint32_t msg[2];
   1547 
   1548 	msg[0] = NPE_GETSTATUS << NPE_MAC_MSGID_SHL;
   1549 	msg[1] = 0;
   1550 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg) == 0 ? msg[1] : 0;
   1551 }
   1552 
   1553 /*
   1554  * Enable/disable loopback.
   1555  */
   1556 static int
   1557 npe_setloopback(struct npe_softc *sc, int ena)
   1558 {
   1559 	uint32_t msg[2];
   1560 
   1561 	msg[0] = (NPE_SETLOOPBACK << NPE_MAC_MSGID_SHL) | (ena != 0);
   1562 	msg[1] = 0;
   1563 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
   1564 }
   1565 #endif
   1566 
   1567 /*
   1568  * MII bus support routines.
   1569  *
   1570  * NB: ixp425 has one PHY per NPE
   1571  */
   1572 static uint32_t
   1573 npe_mii_mdio_read(struct npe_softc *sc, int reg)
   1574 {
   1575 #define	MII_RD4(sc, reg)	bus_space_read_4(sc->sc_iot, sc->sc_miih, reg)
   1576 	uint32_t v;
   1577 
   1578 	/* NB: registers are known to be sequential */
   1579 	v =  (MII_RD4(sc, reg+0) & 0xff) << 0;
   1580 	v |= (MII_RD4(sc, reg+4) & 0xff) << 8;
   1581 	v |= (MII_RD4(sc, reg+8) & 0xff) << 16;
   1582 	v |= (MII_RD4(sc, reg+12) & 0xff) << 24;
   1583 	return v;
   1584 #undef MII_RD4
   1585 }
   1586 
   1587 static void
   1588 npe_mii_mdio_write(struct npe_softc *sc, int reg, uint32_t cmd)
   1589 {
   1590 #define	MII_WR4(sc, reg, v) \
   1591 	bus_space_write_4(sc->sc_iot, sc->sc_miih, reg, v)
   1592 
   1593 	/* NB: registers are known to be sequential */
   1594 	MII_WR4(sc, reg+0, cmd & 0xff);
   1595 	MII_WR4(sc, reg+4, (cmd >> 8) & 0xff);
   1596 	MII_WR4(sc, reg+8, (cmd >> 16) & 0xff);
   1597 	MII_WR4(sc, reg+12, (cmd >> 24) & 0xff);
   1598 #undef MII_WR4
   1599 }
   1600 
   1601 static int
   1602 npe_mii_mdio_wait(struct npe_softc *sc)
   1603 {
   1604 #define	MAXTRIES	100	/* XXX */
   1605 	uint32_t v;
   1606 	int i;
   1607 
   1608 	for (i = 0; i < MAXTRIES; i++) {
   1609 		v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_CMD);
   1610 		if ((v & NPE_MII_GO) == 0)
   1611 			return 0;
   1612 	}
   1613 	return ETIMEDOUT;
   1614 #undef MAXTRIES
   1615 }
   1616 
   1617 static int
   1618 npe_miibus_readreg(device_t self, int phy, int reg, uint16_t *val)
   1619 {
   1620 	struct npe_softc *sc = device_private(self);
   1621 	uint32_t v;
   1622 
   1623 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
   1624 		return -1;
   1625 	v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
   1626 	  | NPE_MII_GO;
   1627 	npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
   1628 	if (npe_mii_mdio_wait(sc) == 0)
   1629 		v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_STS);
   1630 	else
   1631 		v = 0xffff | NPE_MII_READ_FAIL;
   1632 
   1633 	if ((v & NPE_MII_READ_FAIL) != 0)
   1634 		return -1;
   1635 
   1636 	*val = v & 0xffff;
   1637 	return 0;
   1638 #undef MAXTRIES
   1639 }
   1640 
   1641 static int
   1642 npe_miibus_writereg(device_t self, int phy, int reg, uint16_t val)
   1643 {
   1644 	struct npe_softc *sc = device_private(self);
   1645 	uint32_t v;
   1646 
   1647 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
   1648 		return -1;
   1649 	v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
   1650 	  | val | NPE_MII_WRITE
   1651 	  | NPE_MII_GO;
   1652 	npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
   1653 
   1654 	return npe_mii_mdio_wait(sc);
   1655 }
   1656 
   1657 static void
   1658 npe_miibus_statchg(struct ifnet *ifp)
   1659 {
   1660 	struct npe_softc *sc = ifp->if_softc;
   1661 	uint32_t tx1, rx1;
   1662 	uint32_t randoff;
   1663 
   1664 	/* Sync MAC duplex state */
   1665 	tx1 = RD4(sc, NPE_MAC_TX_CNTRL1);
   1666 	rx1 = RD4(sc, NPE_MAC_RX_CNTRL1);
   1667 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1668 		WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
   1669 		tx1 &= ~NPE_TX_CNTRL1_DUPLEX;
   1670 		rx1 |= NPE_RX_CNTRL1_PAUSE_EN;
   1671 	} else {
   1672 		struct timeval now;
   1673 		getmicrotime(&now);
   1674 		randoff = (RD4(sc, NPE_MAC_UNI_ADDR_6) ^ now.tv_usec)
   1675 		    & 0x7f;
   1676 		WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT
   1677 		    + randoff);
   1678 		tx1 |= NPE_TX_CNTRL1_DUPLEX;
   1679 		rx1 &= ~NPE_RX_CNTRL1_PAUSE_EN;
   1680 	}
   1681 	WR4(sc, NPE_MAC_RX_CNTRL1, rx1);
   1682 	WR4(sc, NPE_MAC_TX_CNTRL1, tx1);
   1683 }
   1684