ixp425_if_npe.c revision 1.45 1 /* $NetBSD: ixp425_if_npe.c,v 1.45 2020/01/29 06:05:31 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2006 Sam Leffler. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #include <sys/cdefs.h>
28 #if 0
29 __FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/if_npe.c,v 1.1 2006/11/19 23:55:23 sam Exp $");
30 #endif
31 __KERNEL_RCSID(0, "$NetBSD: ixp425_if_npe.c,v 1.45 2020/01/29 06:05:31 thorpej Exp $");
32
33 /*
34 * Intel XScale NPE Ethernet driver.
35 *
36 * This driver handles the two ports present on the IXP425.
37 * Packet processing is done by the Network Processing Engines
38 * (NPE's) that work together with a MAC and PHY. The MAC
39 * is also mapped to the XScale cpu; the PHY is accessed via
40 * the MAC. NPE-XScale communication happens through h/w
41 * queues managed by the Q Manager block.
42 *
43 * The code here replaces the ethAcc, ethMii, and ethDB classes
44 * in the Intel Access Library (IAL) and the OS-specific driver.
45 *
46 * XXX add vlan support
47 * XXX NPE-C port doesn't work yet
48 */
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/device.h>
54 #include <sys/callout.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/socket.h>
58 #include <sys/endian.h>
59 #include <sys/ioctl.h>
60 #include <sys/syslog.h>
61 #include <sys/bus.h>
62 #include <sys/rndsource.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68 #include <net/bpf.h>
69
70 #include <arm/xscale/ixp425reg.h>
71 #include <arm/xscale/ixp425var.h>
72 #include <arm/xscale/ixp425_qmgr.h>
73 #include <arm/xscale/ixp425_npevar.h>
74 #include <arm/xscale/ixp425_if_npereg.h>
75
76 #include <dev/mii/miivar.h>
77
78 #include "locators.h"
79
80 struct npebuf {
81 struct npebuf *ix_next; /* chain to next buffer */
82 void *ix_m; /* backpointer to mbuf */
83 bus_dmamap_t ix_map; /* bus dma map for associated data */
84 struct npehwbuf *ix_hw; /* associated h/w block */
85 uint32_t ix_neaddr; /* phys address of ix_hw */
86 };
87
88 struct npedma {
89 const char* name;
90 int nbuf; /* # npebuf's allocated */
91 bus_dmamap_t m_map;
92 struct npehwbuf *hwbuf; /* NPE h/w buffers */
93 bus_dmamap_t buf_map;
94 bus_addr_t buf_phys; /* phys addr of buffers */
95 struct npebuf *buf; /* s/w buffers (1-1 w/ h/w) */
96 };
97
98 struct npe_softc {
99 device_t sc_dev;
100 struct ethercom sc_ethercom;
101 uint8_t sc_enaddr[ETHER_ADDR_LEN];
102 struct mii_data sc_mii;
103 bus_space_tag_t sc_iot;
104 bus_dma_tag_t sc_dt;
105 bus_space_handle_t sc_ioh; /* MAC register window */
106 bus_space_handle_t sc_miih; /* MII register window */
107 struct ixpnpe_softc *sc_npe; /* NPE support */
108 int sc_unit;
109 int sc_phy;
110 struct callout sc_tick_ch; /* Tick callout */
111 struct npedma txdma;
112 struct npebuf *tx_free; /* list of free tx buffers */
113 struct npedma rxdma;
114 int rx_qid; /* rx qid */
115 int rx_freeqid; /* rx free buffers qid */
116 int tx_qid; /* tx qid */
117 int tx_doneqid; /* tx completed qid */
118 struct npestats *sc_stats;
119 bus_dmamap_t sc_stats_map;
120 bus_addr_t sc_stats_phys; /* phys addr of sc_stats */
121 u_short sc_if_flags; /* keep last if_flags */
122 krndsource_t rnd_source; /* random source */
123 };
124
125 /*
126 * Per-unit static configuration for IXP425. The tx and
127 * rx free Q id's are fixed by the NPE microcode. The
128 * rx Q id's are programmed to be separate to simplify
129 * multi-port processing. It may be better to handle
130 * all traffic through one Q (as done by the Intel drivers).
131 *
132 * Note that the PHY's are accessible only from MAC A
133 * on the IXP425. This and other platform-specific
134 * assumptions probably need to be handled through hints.
135 */
136 static const struct {
137 const char *desc; /* device description */
138 int npeid; /* NPE assignment */
139 int macport; /* Port number of the MAC */
140 uint32_t imageid; /* NPE firmware image id */
141 uint32_t regbase;
142 int regsize;
143 uint32_t miibase;
144 int miisize;
145 uint8_t rx_qid;
146 uint8_t rx_freeqid;
147 uint8_t tx_qid;
148 uint8_t tx_doneqid;
149 } npeconfig[NPE_PORTS_MAX] = {
150 { .desc = "IXP NPE-B",
151 .npeid = NPE_B,
152 .macport = 0x10,
153 .imageid = IXP425_NPE_B_IMAGEID,
154 .regbase = IXP425_MAC_A_HWBASE,
155 .regsize = IXP425_MAC_A_SIZE,
156 .miibase = IXP425_MAC_A_HWBASE,
157 .miisize = IXP425_MAC_A_SIZE,
158 .rx_qid = 4,
159 .rx_freeqid = 27,
160 .tx_qid = 24,
161 .tx_doneqid = 31
162 },
163 { .desc = "IXP NPE-C",
164 .npeid = NPE_C,
165 .macport = 0x20,
166 .imageid = IXP425_NPE_C_IMAGEID,
167 .regbase = IXP425_MAC_B_HWBASE,
168 .regsize = IXP425_MAC_B_SIZE,
169 .miibase = IXP425_MAC_A_HWBASE,
170 .miisize = IXP425_MAC_A_SIZE,
171 .rx_qid = 12,
172 .rx_freeqid = 28,
173 .tx_qid = 25,
174 .tx_doneqid = 31
175 },
176 };
177 static struct npe_softc *npes[NPE_MAX]; /* NB: indexed by npeid */
178
179 static __inline uint32_t
180 RD4(struct npe_softc *sc, bus_size_t off)
181 {
182 return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
183 }
184
185 static __inline void
186 WR4(struct npe_softc *sc, bus_size_t off, uint32_t val)
187 {
188 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
189 }
190
191 static int npe_activate(struct npe_softc *);
192 #if 0
193 static void npe_deactivate(struct npe_softc *);
194 #endif
195 static void npe_ifmedia_status(struct ifnet *, struct ifmediareq *);
196 static void npe_setmac(struct npe_softc *, const u_char *);
197 static void npe_getmac(struct npe_softc *);
198 static void npe_txdone(int, void *);
199 static int npe_rxbuf_init(struct npe_softc *, struct npebuf *,
200 struct mbuf *);
201 static void npe_rxdone(int, void *);
202 static void npeinit_macreg(struct npe_softc *);
203 static int npeinit(struct ifnet *);
204 static void npeinit_resetcb(void *);
205 static void npeinit_locked(void *);
206 static void npestart(struct ifnet *);
207 static void npestop(struct ifnet *, int);
208 static void npewatchdog(struct ifnet *);
209 static int npeioctl(struct ifnet *, u_long, void *);
210
211 static int npe_setrxqosentry(struct npe_softc *, int, int, int);
212 static int npe_updatestats(struct npe_softc *);
213 #if 0
214 static int npe_getstats(struct npe_softc *);
215 static uint32_t npe_getimageid(struct npe_softc *);
216 static int npe_setloopback(struct npe_softc *, int);
217 #endif
218
219 static int npe_miibus_readreg(device_t, int, int, uint16_t *);
220 static int npe_miibus_writereg(device_t, int, int, uint16_t);
221 static void npe_miibus_statchg(struct ifnet *);
222
223 static int npe_debug;
224 #define DPRINTF(sc, fmt, ...) do { \
225 if (npe_debug) printf(fmt, __VA_ARGS__); \
226 } while (0)
227 #define DPRINTFn(n, sc, fmt, ...) do { \
228 if (npe_debug >= n) printf(fmt, __VA_ARGS__); \
229 } while (0)
230
231 #define NPE_TXBUF 128
232 #define NPE_RXBUF 64
233
234 #define MAC2UINT64(addr) (((uint64_t)addr[0] << 40) \
235 + ((uint64_t)addr[1] << 32) \
236 + ((uint64_t)addr[2] << 24) \
237 + ((uint64_t)addr[3] << 16) \
238 + ((uint64_t)addr[4] << 8) \
239 + (uint64_t)addr[5])
240
241 /* NB: all tx done processing goes through one queue */
242 static int tx_doneqid = -1;
243
244 void (*npe_getmac_md)(int, uint8_t *);
245
246 static int npe_match(device_t, cfdata_t, void *);
247 static void npe_attach(device_t, device_t, void *);
248
249 CFATTACH_DECL_NEW(npe, sizeof(struct npe_softc),
250 npe_match, npe_attach, NULL, NULL);
251
252 static int
253 npe_match(device_t parent, cfdata_t cf, void *arg)
254 {
255 struct ixpnpe_attach_args *na = arg;
256
257 return (na->na_unit == NPE_B || na->na_unit == NPE_C);
258 }
259
260 static void
261 npe_attach(device_t parent, device_t self, void *arg)
262 {
263 struct npe_softc *sc = device_private(self);
264 struct ixpnpe_softc *isc = device_private(parent);
265 struct ixpnpe_attach_args *na = arg;
266 struct ifnet *ifp;
267 struct mii_data * const mii = &sc->sc_mii;
268
269 aprint_naive("\n");
270 aprint_normal(": Ethernet co-processor\n");
271
272 sc->sc_dev = self;
273 sc->sc_iot = na->na_iot;
274 sc->sc_dt = na->na_dt;
275 sc->sc_npe = na->na_npe;
276 sc->sc_unit = (na->na_unit == NPE_B) ? 0 : 1;
277 sc->sc_phy = na->na_phy;
278
279 memset(&sc->sc_ethercom, 0, sizeof(sc->sc_ethercom));
280 memset(mii, 0, sizeof(*mii));
281
282 callout_init(&sc->sc_tick_ch, 0);
283
284 if (npe_activate(sc)) {
285 aprint_error_dev(sc->sc_dev,
286 "Failed to activate NPE (missing microcode?)\n");
287 return;
288 }
289
290 npe_getmac(sc);
291 npeinit_macreg(sc);
292
293 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
294 ether_sprintf(sc->sc_enaddr));
295
296 ifp = &sc->sc_ethercom.ec_if;
297 mii->mii_ifp = ifp;
298 mii->mii_readreg = npe_miibus_readreg;
299 mii->mii_writereg = npe_miibus_writereg;
300 mii->mii_statchg = npe_miibus_statchg;
301 sc->sc_ethercom.ec_mii = mii;
302
303 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
304 npe_ifmedia_status);
305
306 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
307 MII_OFFSET_ANY, MIIF_DOPAUSE);
308 if (LIST_FIRST(&mii->mii_phys) == NULL) {
309 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
310 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
311 } else
312 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
313
314 ifp->if_softc = sc;
315 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
316 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
317 ifp->if_start = npestart;
318 ifp->if_ioctl = npeioctl;
319 ifp->if_watchdog = npewatchdog;
320 ifp->if_init = npeinit;
321 ifp->if_stop = npestop;
322 IFQ_SET_READY(&ifp->if_snd);
323
324 /* VLAN capable */
325 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
326
327 if_attach(ifp);
328 if_deferred_start_init(ifp, NULL);
329 ether_ifattach(ifp, sc->sc_enaddr);
330 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
331 RND_TYPE_NET, RND_FLAG_DEFAULT);
332
333 /* callback function to reset MAC */
334 isc->macresetcbfunc = npeinit_resetcb;
335 isc->macresetcbarg = sc;
336 }
337
338 /*
339 * Compute and install the multicast filter.
340 */
341 static void
342 npe_setmcast(struct npe_softc *sc)
343 {
344 struct ethercom *ec = &sc->sc_ethercom;
345 struct ifnet *ifp = &ec->ec_if;
346 uint8_t mask[ETHER_ADDR_LEN], addr[ETHER_ADDR_LEN];
347 uint32_t reg;
348 uint32_t msg[2];
349 int i;
350
351 /* Always use filter. Is here a correct position? */
352 reg = RD4(sc, NPE_MAC_RX_CNTRL1);
353 WR4(sc, NPE_MAC_RX_CNTRL1, reg | NPE_RX_CNTRL1_ADDR_FLTR_EN);
354
355 if (ifp->if_flags & IFF_PROMISC) {
356 memset(mask, 0, ETHER_ADDR_LEN);
357 memset(addr, 0, ETHER_ADDR_LEN);
358 } else if (ifp->if_flags & IFF_ALLMULTI) {
359 static const uint8_t allmulti[ETHER_ADDR_LEN] =
360 { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
361 all_multi:
362 memcpy(mask, allmulti, ETHER_ADDR_LEN);
363 memcpy(addr, allmulti, ETHER_ADDR_LEN);
364 } else {
365 uint8_t clr[ETHER_ADDR_LEN], set[ETHER_ADDR_LEN];
366 struct ether_multistep step;
367 struct ether_multi *enm;
368
369 memset(clr, 0, ETHER_ADDR_LEN);
370 memset(set, 0xff, ETHER_ADDR_LEN);
371
372 ETHER_LOCK(ec);
373 ETHER_FIRST_MULTI(step, ec, enm);
374 while (enm != NULL) {
375 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
376 ETHER_ADDR_LEN)) {
377 ifp->if_flags |= IFF_ALLMULTI;
378 ETHER_UNLOCK(ec);
379 goto all_multi;
380 }
381
382 for (i = 0; i < ETHER_ADDR_LEN; i++) {
383 clr[i] |= enm->enm_addrlo[i];
384 set[i] &= enm->enm_addrlo[i];
385 }
386
387 ETHER_NEXT_MULTI(step, enm);
388 }
389 ETHER_UNLOCK(ec);
390
391 for (i = 0; i < ETHER_ADDR_LEN; i++) {
392 mask[i] = set[i] | ~clr[i];
393 addr[i] = set[i];
394 }
395 }
396
397 /*
398 * Write the mask and address registers.
399 */
400 for (i = 0; i < ETHER_ADDR_LEN; i++) {
401 WR4(sc, NPE_MAC_ADDR_MASK(i), mask[i]);
402 WR4(sc, NPE_MAC_ADDR(i), addr[i]);
403 }
404
405 msg[0] = NPE_ADDRESSFILTERCONFIG << NPE_MAC_MSGID_SHL
406 | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL);
407 msg[1] = ((ifp->if_flags & IFF_PROMISC) ? 1 : 0) << 24
408 | ((RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff) << 16)
409 | (addr[5] << 8) | mask[5];
410 ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
411 }
412
413 static int
414 npe_dma_setup(struct npe_softc *sc, struct npedma *dma,
415 const char *name, int nbuf, int maxseg)
416 {
417 bus_dma_segment_t seg;
418 int rseg, error, i;
419 void *hwbuf;
420 size_t size;
421
422 memset(dma, 0, sizeof(*dma));
423
424 dma->name = name;
425 dma->nbuf = nbuf;
426
427 size = nbuf * sizeof(struct npehwbuf);
428
429 /* XXX COHERENT for now */
430 error = bus_dmamem_alloc(sc->sc_dt, size, sizeof(uint32_t), 0, &seg,
431 1, &rseg, BUS_DMA_NOWAIT);
432 if (error) {
433 aprint_error_dev(sc->sc_dev,
434 "unable to %s for %s %s buffers, error %u\n",
435 "allocate memory", dma->name, "h/w", error);
436 }
437
438 error = bus_dmamem_map(sc->sc_dt, &seg, 1, size, &hwbuf,
439 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_NOCACHE);
440 if (error) {
441 aprint_error_dev(sc->sc_dev,
442 "unable to %s for %s %s buffers, error %u\n",
443 "map memory", dma->name, "h/w", error);
444 free_dmamem:
445 bus_dmamem_free(sc->sc_dt, &seg, rseg);
446 return error;
447 }
448 dma->hwbuf = (void *)hwbuf;
449
450 error = bus_dmamap_create(sc->sc_dt, size, 1, size, 0,
451 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &dma->buf_map);
452 if (error) {
453 aprint_error_dev(sc->sc_dev,
454 "unable to %s for %s %s buffers, error %u\n",
455 "create map", dma->name, "h/w", error);
456 unmap_dmamem:
457 dma->hwbuf = NULL;
458 bus_dmamem_unmap(sc->sc_dt, hwbuf, size);
459 goto free_dmamem;
460 }
461
462 error = bus_dmamap_load(sc->sc_dt, dma->buf_map, hwbuf, size, NULL,
463 BUS_DMA_NOWAIT);
464 if (error) {
465 aprint_error_dev(sc->sc_dev,
466 "unable to %s for %s %s buffers, error %u\n",
467 "load map", dma->name, "h/w", error);
468 bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
469 goto unmap_dmamem;
470 }
471
472 /* XXX M_TEMP */
473 dma->buf = malloc(nbuf * sizeof(struct npebuf), M_TEMP,
474 M_WAITOK | M_ZERO);
475 dma->buf_phys = dma->buf_map->dm_segs[0].ds_addr;
476 for (i = 0; i < dma->nbuf; i++) {
477 struct npebuf *npe = &dma->buf[i];
478 struct npehwbuf *hw = &dma->hwbuf[i];
479
480 /* Calculate offset to shared area */
481 npe->ix_neaddr = dma->buf_phys +
482 ((uintptr_t)hw - (uintptr_t)dma->hwbuf);
483 KASSERT((npe->ix_neaddr & 0x1f) == 0);
484 error = bus_dmamap_create(sc->sc_dt, MCLBYTES, maxseg,
485 MCLBYTES, 0, 0, &npe->ix_map);
486 if (error != 0) {
487 aprint_error_dev(sc->sc_dev,
488 "unable to %s for %s buffer %u, error %u\n",
489 "create dmamap", dma->name, i, error);
490 /* XXXSCW: Free up maps... */
491 return error;
492 }
493 npe->ix_hw = hw;
494 }
495 bus_dmamap_sync(sc->sc_dt, dma->buf_map, 0, dma->buf_map->dm_mapsize,
496 BUS_DMASYNC_PREWRITE);
497 return 0;
498 }
499
500 #if 0
501 static void
502 npe_dma_destroy(struct npe_softc *sc, struct npedma *dma)
503 {
504 int i;
505
506 /* XXXSCW: Clean this up */
507
508 if (dma->hwbuf != NULL) {
509 for (i = 0; i < dma->nbuf; i++) {
510 struct npebuf *npe = &dma->buf[i];
511 bus_dmamap_destroy(sc->sc_dt, npe->ix_map);
512 }
513 bus_dmamap_unload(sc->sc_dt, dma->buf_map);
514 bus_dmamem_free(sc->sc_dt, (void *)dma->hwbuf, dma->buf_map);
515 bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
516 }
517 if (dma->buf != NULL)
518 free(dma->buf, M_TEMP);
519 memset(dma, 0, sizeof(*dma));
520 }
521 #endif
522
523 static int
524 npe_activate(struct npe_softc *sc)
525 {
526 bus_dma_segment_t seg;
527 int unit = sc->sc_unit;
528 int error, i, rseg;
529 void *statbuf;
530
531 /* load NPE firmware and start it running */
532 error = ixpnpe_init(sc->sc_npe, "npe_fw", npeconfig[unit].imageid);
533 if (error != 0)
534 return error;
535
536 if (bus_space_map(sc->sc_iot, npeconfig[unit].regbase,
537 npeconfig[unit].regsize, 0, &sc->sc_ioh)) {
538 aprint_error_dev(sc->sc_dev, "Cannot map registers 0x%x:0x%x\n",
539 npeconfig[unit].regbase, npeconfig[unit].regsize);
540 return ENOMEM;
541 }
542
543 if (npeconfig[unit].miibase != npeconfig[unit].regbase) {
544 /*
545 * The PHY's are only accessible from one MAC (it appears)
546 * so for other MAC's setup an additional mapping for
547 * frobbing the PHY registers.
548 */
549 if (bus_space_map(sc->sc_iot, npeconfig[unit].miibase,
550 npeconfig[unit].miisize, 0, &sc->sc_miih)) {
551 aprint_error_dev(sc->sc_dev,
552 "Cannot map MII registers 0x%x:0x%x\n",
553 npeconfig[unit].miibase, npeconfig[unit].miisize);
554 return ENOMEM;
555 }
556 } else
557 sc->sc_miih = sc->sc_ioh;
558 error = npe_dma_setup(sc, &sc->txdma, "tx", NPE_TXBUF, NPE_MAXSEG);
559 if (error != 0)
560 return error;
561 error = npe_dma_setup(sc, &sc->rxdma, "rx", NPE_RXBUF, 1);
562 if (error != 0)
563 return error;
564
565 /* setup statistics block */
566 error = bus_dmamem_alloc(sc->sc_dt, sizeof(struct npestats),
567 sizeof(uint32_t), 0, &seg, 1, &rseg, BUS_DMA_NOWAIT);
568 if (error) {
569 aprint_error_dev(sc->sc_dev,
570 "unable to %s for %s, error %u\n",
571 "allocate memory", "stats block", error);
572 return error;
573 }
574
575 error = bus_dmamem_map(sc->sc_dt, &seg, 1, sizeof(struct npestats),
576 &statbuf, BUS_DMA_NOWAIT);
577 if (error) {
578 aprint_error_dev(sc->sc_dev,
579 "unable to %s for %s, error %u\n",
580 "map memory", "stats block", error);
581 return error;
582 }
583 sc->sc_stats = (void *)statbuf;
584
585 error = bus_dmamap_create(sc->sc_dt, sizeof(struct npestats), 1,
586 sizeof(struct npestats), 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
587 &sc->sc_stats_map);
588 if (error) {
589 aprint_error_dev(sc->sc_dev,
590 "unable to %s for %s, error %u\n",
591 "create map", "stats block", error);
592 return error;
593 }
594
595 error = bus_dmamap_load(sc->sc_dt, sc->sc_stats_map, sc->sc_stats,
596 sizeof(struct npestats), NULL, BUS_DMA_NOWAIT);
597 if (error) {
598 aprint_error_dev(sc->sc_dev,
599 "unable to %s for %s, error %u\n",
600 "load map", "stats block", error);
601 return error;
602 }
603 sc->sc_stats_phys = sc->sc_stats_map->dm_segs[0].ds_addr;
604
605 /* XXX disable half-bridge LEARNING+FILTERING feature */
606
607 /*
608 * Setup h/w rx/tx queues. There are four q's:
609 * rx inbound q of rx'd frames
610 * rx_free pool of ixpbuf's for receiving frames
611 * tx outbound q of frames to send
612 * tx_done q of tx frames that have been processed
613 *
614 * The NPE handles the actual tx/rx process and the q manager
615 * handles the queues. The driver just writes entries to the
616 * q manager mailbox's and gets callbacks when there are rx'd
617 * frames to process or tx'd frames to reap. These callbacks
618 * are controlled by the q configurations; e.g. we get a
619 * callback when tx_done has 2 or more frames to process and
620 * when the rx q has at least one frame. These setings can
621 * changed at the time the q is configured.
622 */
623 sc->rx_qid = npeconfig[unit].rx_qid;
624 ixpqmgr_qconfig(sc->rx_qid, NPE_RXBUF, 0, 1,
625 IX_QMGR_Q_SOURCE_ID_NOT_E, npe_rxdone, sc);
626 sc->rx_freeqid = npeconfig[unit].rx_freeqid;
627 ixpqmgr_qconfig(sc->rx_freeqid, NPE_RXBUF, 0, NPE_RXBUF/2, 0, NULL, sc);
628 /* tell the NPE to direct all traffic to rx_qid */
629 #if 0
630 for (i = 0; i < 8; i++)
631 #else
632 printf("%s: remember to fix rx q setup\n", device_xname(sc->sc_dev));
633 for (i = 0; i < 4; i++)
634 #endif
635 npe_setrxqosentry(sc, i, 0, sc->rx_qid);
636
637 sc->tx_qid = npeconfig[unit].tx_qid;
638 sc->tx_doneqid = npeconfig[unit].tx_doneqid;
639 ixpqmgr_qconfig(sc->tx_qid, NPE_TXBUF, 0, NPE_TXBUF, 0, NULL, sc);
640 if (tx_doneqid == -1) {
641 ixpqmgr_qconfig(sc->tx_doneqid, NPE_TXBUF, 0, 2,
642 IX_QMGR_Q_SOURCE_ID_NOT_E, npe_txdone, sc);
643 tx_doneqid = sc->tx_doneqid;
644 }
645
646 KASSERT(npes[npeconfig[unit].npeid] == NULL);
647 npes[npeconfig[unit].npeid] = sc;
648
649 return 0;
650 }
651
652 #if 0
653 static void
654 npe_deactivate(struct npe_softc *sc);
655 {
656 int unit = sc->sc_unit;
657
658 npes[npeconfig[unit].npeid] = NULL;
659
660 /* XXX disable q's */
661 if (sc->sc_npe != NULL)
662 ixpnpe_stop(sc->sc_npe);
663 if (sc->sc_stats != NULL) {
664 bus_dmamap_unload(sc->sc_stats_tag, sc->sc_stats_map);
665 bus_dmamem_free(sc->sc_stats_tag, sc->sc_stats,
666 sc->sc_stats_map);
667 bus_dmamap_destroy(sc->sc_stats_tag, sc->sc_stats_map);
668 }
669 if (sc->sc_stats_tag != NULL)
670 bus_dma_tag_destroy(sc->sc_stats_tag);
671 npe_dma_destroy(sc, &sc->txdma);
672 npe_dma_destroy(sc, &sc->rxdma);
673 bus_generic_detach(sc->sc_dev);
674 if (sc->sc_mii)
675 device_delete_child(sc->sc_dev, sc->sc_mii);
676 #if 0
677 /* XXX sc_ioh and sc_miih */
678 if (sc->mem_res)
679 bus_release_resource(dev, SYS_RES_IOPORT,
680 rman_get_rid(sc->mem_res), sc->mem_res);
681 sc->mem_res = 0;
682 #endif
683 }
684 #endif
685
686 /*
687 * Notify the world which media we're using.
688 */
689 static void
690 npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
691 {
692 struct npe_softc *sc = ifp->if_softc;
693
694 mii_pollstat(&sc->sc_mii);
695
696 ifmr->ifm_active = sc->sc_mii.mii_media_active;
697 ifmr->ifm_status = sc->sc_mii.mii_media_status;
698 }
699
700 static void
701 npe_addstats(struct npe_softc *sc)
702 {
703 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
704 struct npestats *ns = sc->sc_stats;
705
706 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
707 if_statadd_ref(nsr, if_oerrors,
708 be32toh(ns->dot3StatsInternalMacTransmitErrors)
709 + be32toh(ns->dot3StatsCarrierSenseErrors)
710 + be32toh(ns->TxVLANIdFilterDiscards)
711 );
712 if_statadd_ref(nsr, if_ierrors,
713 be32toh(ns->dot3StatsFCSErrors)
714 + be32toh(ns->dot3StatsInternalMacReceiveErrors)
715 + be32toh(ns->RxOverrunDiscards)
716 + be32toh(ns->RxUnderflowEntryDiscards)
717 );
718 if_statadd_ref(nsr, if_collisions,
719 be32toh(ns->dot3StatsSingleCollisionFrames)
720 + be32toh(ns->dot3StatsMultipleCollisionFrames)
721 );
722 IF_STAT_PUTREF(ifp);
723 }
724
725 static void
726 npe_tick(void *xsc)
727 {
728 #define ACK (NPE_RESETSTATS << NPE_MAC_MSGID_SHL)
729 struct npe_softc *sc = xsc;
730 uint32_t msg[2];
731
732 /*
733 * NB: to avoid sleeping with the softc lock held we
734 * split the NPE msg processing into two parts. The
735 * request for statistics is sent w/o waiting for a
736 * reply and then on the next tick we retrieve the
737 * results. This works because npe_tick is the only
738 * code that talks via the mailbox's (except at setup).
739 * This likely can be handled better.
740 */
741 if (ixpnpe_recvmsg(sc->sc_npe, msg) == 0 && msg[0] == ACK) {
742 bus_dmamap_sync(sc->sc_dt, sc->sc_stats_map, 0,
743 sizeof(struct npestats), BUS_DMASYNC_POSTREAD);
744 npe_addstats(sc);
745 }
746 npe_updatestats(sc);
747 mii_tick(&sc->sc_mii);
748
749 /* Schedule next poll */
750 callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
751 #undef ACK
752 }
753
754 static void
755 npe_setmac(struct npe_softc *sc, const u_char *eaddr)
756 {
757
758 WR4(sc, NPE_MAC_UNI_ADDR_1, eaddr[0]);
759 WR4(sc, NPE_MAC_UNI_ADDR_2, eaddr[1]);
760 WR4(sc, NPE_MAC_UNI_ADDR_3, eaddr[2]);
761 WR4(sc, NPE_MAC_UNI_ADDR_4, eaddr[3]);
762 WR4(sc, NPE_MAC_UNI_ADDR_5, eaddr[4]);
763 WR4(sc, NPE_MAC_UNI_ADDR_6, eaddr[5]);
764 }
765
766 static void
767 npe_getmac(struct npe_softc *sc)
768 {
769 uint8_t *eaddr = sc->sc_enaddr;
770
771 if (npe_getmac_md != NULL) {
772 (*npe_getmac_md)(device_unit(sc->sc_dev), eaddr);
773 } else {
774 /*
775 * Some system's unicast address appears to be loaded from
776 * EEPROM on reset
777 */
778 eaddr[0] = RD4(sc, NPE_MAC_UNI_ADDR_1) & 0xff;
779 eaddr[1] = RD4(sc, NPE_MAC_UNI_ADDR_2) & 0xff;
780 eaddr[2] = RD4(sc, NPE_MAC_UNI_ADDR_3) & 0xff;
781 eaddr[3] = RD4(sc, NPE_MAC_UNI_ADDR_4) & 0xff;
782 eaddr[4] = RD4(sc, NPE_MAC_UNI_ADDR_5) & 0xff;
783 eaddr[5] = RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff;
784 }
785 }
786
787 struct txdone {
788 struct npebuf *head;
789 struct npebuf **tail;
790 int count;
791 };
792
793 static __inline void
794 npe_txdone_finish(struct npe_softc *sc, const struct txdone *td)
795 {
796 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
797
798 *td->tail = sc->tx_free;
799 sc->tx_free = td->head;
800 /*
801 * We're no longer busy, so clear the busy flag and call the
802 * start routine to xmit more packets.
803 */
804 if_statadd(ifp, if_opackets, td->count);
805 ifp->if_flags &= ~IFF_OACTIVE;
806 ifp->if_timer = 0;
807 if_schedule_deferred_start(ifp);
808 }
809
810 /*
811 * Q manager callback on tx done queue. Reap mbufs
812 * and return tx buffers to the free list. Finally
813 * restart output. Note the microcode has only one
814 * txdone q wired into it so we must use the NPE ID
815 * returned with each npehwbuf to decide where to
816 * send buffers.
817 */
818 static void
819 npe_txdone(int qid, void *arg)
820 {
821 #define P2V(a, dma) \
822 &(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
823 struct npe_softc *sc;
824 struct npebuf *npe;
825 struct txdone *td, q[NPE_MAX];
826 uint32_t entry;
827
828 /* XXX no NPE-A support */
829 q[NPE_B].tail = &q[NPE_B].head; q[NPE_B].count = 0;
830 q[NPE_C].tail = &q[NPE_C].head; q[NPE_C].count = 0;
831 /* XXX max # at a time? */
832 while (ixpqmgr_qread(qid, &entry) == 0) {
833 sc = npes[NPE_QM_Q_NPE(entry)];
834 DPRINTF(sc, "%s: entry 0x%x NPE %u port %u\n",
835 __func__, entry, NPE_QM_Q_NPE(entry), NPE_QM_Q_PORT(entry));
836 rnd_add_uint32(&sc->rnd_source, entry);
837
838 npe = P2V(NPE_QM_Q_ADDR(entry), &sc->txdma);
839 m_freem(npe->ix_m);
840 npe->ix_m = NULL;
841
842 td = &q[NPE_QM_Q_NPE(entry)];
843 *td->tail = npe;
844 td->tail = &npe->ix_next;
845 td->count++;
846 }
847
848 if (q[NPE_B].count)
849 npe_txdone_finish(npes[NPE_B], &q[NPE_B]);
850 if (q[NPE_C].count)
851 npe_txdone_finish(npes[NPE_C], &q[NPE_C]);
852 #undef P2V
853 }
854
855 static __inline struct mbuf *
856 npe_getcl(void)
857 {
858 struct mbuf *m;
859
860 MGETHDR(m, M_DONTWAIT, MT_DATA);
861 if (m != NULL) {
862 MCLGET(m, M_DONTWAIT);
863 if ((m->m_flags & M_EXT) == 0) {
864 m_freem(m);
865 m = NULL;
866 }
867 }
868 return m;
869 }
870
871 static int
872 npe_rxbuf_init(struct npe_softc *sc, struct npebuf *npe, struct mbuf *m)
873 {
874 struct npehwbuf *hw;
875 int error;
876
877 if (m == NULL) {
878 m = npe_getcl();
879 if (m == NULL)
880 return ENOBUFS;
881 }
882 KASSERT(m->m_ext.ext_size >= (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
883 m->m_pkthdr.len = m->m_len = NPE_FRAME_SIZE_DEFAULT;
884 /* backload payload and align ip hdr */
885 m->m_data = m->m_ext.ext_buf + (m->m_ext.ext_size
886 - (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
887 error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
888 BUS_DMA_READ | BUS_DMA_NOWAIT);
889 if (error != 0) {
890 m_freem(m);
891 return error;
892 }
893 hw = npe->ix_hw;
894 hw->ix_ne[0].data = htobe32(npe->ix_map->dm_segs[0].ds_addr);
895 /* NB: NPE requires length be a multiple of 64 */
896 /* NB: buffer length is shifted in word */
897 hw->ix_ne[0].len = htobe32(npe->ix_map->dm_segs[0].ds_len << 16);
898 hw->ix_ne[0].next = 0;
899 npe->ix_m = m;
900 /* Flush the memory in the mbuf */
901 bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0, npe->ix_map->dm_mapsize,
902 BUS_DMASYNC_PREREAD);
903 return 0;
904 }
905
906 /*
907 * RX q processing for a specific NPE. Claim entries
908 * from the hardware queue and pass the frames up the
909 * stack. Pass the rx buffers to the free list.
910 */
911 static void
912 npe_rxdone(int qid, void *arg)
913 {
914 #define P2V(a, dma) \
915 &(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
916 struct npe_softc *sc = arg;
917 struct npedma *dma = &sc->rxdma;
918 uint32_t entry;
919
920 while (ixpqmgr_qread(qid, &entry) == 0) {
921 struct npebuf *npe = P2V(NPE_QM_Q_ADDR(entry), dma);
922 struct mbuf *m;
923
924 DPRINTF(sc, "%s: entry 0x%x neaddr 0x%x ne_len 0x%x\n",
925 __func__, entry, npe->ix_neaddr, npe->ix_hw->ix_ne[0].len);
926 rnd_add_uint32(&sc->rnd_source, entry);
927 /*
928 * Allocate a new mbuf to replenish the rx buffer.
929 * If doing so fails we drop the rx'd frame so we
930 * can reuse the previous mbuf. When we're able to
931 * allocate a new mbuf dispatch the mbuf w/ rx'd
932 * data up the stack and replace it with the newly
933 * allocated one.
934 */
935 m = npe_getcl();
936 if (m != NULL) {
937 struct mbuf *mrx = npe->ix_m;
938 struct npehwbuf *hw = npe->ix_hw;
939 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
940
941 /* Flush mbuf memory for rx'd data */
942 bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
943 npe->ix_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
944
945 /* XXX flush hw buffer; works now 'cuz coherent */
946 /* set m_len etc. per rx frame size */
947 mrx->m_len = be32toh(hw->ix_ne[0].len) & 0xffff;
948 mrx->m_pkthdr.len = mrx->m_len;
949 m_set_rcvif(mrx, ifp);
950 /* Don't add M_HASFCS. See below */
951
952 #if 1
953 if (mrx->m_pkthdr.len < sizeof(struct ether_header)) {
954 log(LOG_INFO, "%s: too short frame (len=%d)\n",
955 device_xname(sc->sc_dev),
956 mrx->m_pkthdr.len);
957 /* Back out "newly allocated" mbuf. */
958 m_freem(m);
959 if_statinc(ifp, if_ierrors);
960 goto fail;
961 }
962 if ((ifp->if_flags & IFF_PROMISC) == 0) {
963 struct ether_header *eh;
964
965 /*
966 * Workaround for "Non-Intel XScale Technology
967 * Eratta" No. 29. AA:BB:CC:DD:EE:xF's packet
968 * matches the filter (both unicast and
969 * multicast).
970 */
971 eh = mtod(mrx, struct ether_header *);
972 if (ETHER_IS_MULTICAST(eh->ether_dhost) == 0) {
973 /* Unicast */
974
975 if (sc->sc_enaddr[5] != eh->ether_dhost[5]) {
976 /* Discard it */
977 #if 0
978 printf("discard it\n");
979 #endif
980 /*
981 * Back out "newly allocated"
982 * mbuf.
983 */
984 m_freem(m);
985 goto fail;
986 }
987 } else if (memcmp(eh->ether_dhost,
988 etherbroadcastaddr, 6) == 0) {
989 /* Always accept broadcast packet*/
990 } else {
991 struct ethercom *ec = &sc->sc_ethercom;
992 struct ether_multi *enm;
993 struct ether_multistep step;
994 int match = 0;
995
996 /* Multicast */
997
998 ETHER_LOCK(ec);
999 ETHER_FIRST_MULTI(step, ec, enm);
1000 while (enm != NULL) {
1001 uint64_t lowint, highint, dest;
1002
1003 lowint = MAC2UINT64(enm->enm_addrlo);
1004 highint = MAC2UINT64(enm->enm_addrhi);
1005 dest = MAC2UINT64(eh->ether_dhost);
1006 #if 0
1007 printf("%llx\n", lowint);
1008 printf("%llx\n", dest);
1009 printf("%llx\n", highint);
1010 #endif
1011 if ((lowint <= dest) && (dest <= highint)) {
1012 match = 1;
1013 break;
1014 }
1015 ETHER_NEXT_MULTI(step, enm);
1016 }
1017 ETHER_UNLOCK(ec);
1018
1019 if (match == 0) {
1020 /* Discard it */
1021 #if 0
1022 printf("discard it(M)\n");
1023 #endif
1024 /*
1025 * Back out "newly allocated"
1026 * mbuf.
1027 */
1028 m_freem(m);
1029 goto fail;
1030 }
1031 }
1032 }
1033 if (mrx->m_pkthdr.len > NPE_FRAME_SIZE_DEFAULT) {
1034 log(LOG_INFO, "%s: oversized frame (len=%d)\n",
1035 device_xname(sc->sc_dev), mrx->m_pkthdr.len);
1036 /* Back out "newly allocated" mbuf. */
1037 m_freem(m);
1038 if_statinc(ifp, if_ierrors);
1039 goto fail;
1040 }
1041 #endif
1042
1043 /*
1044 * Trim FCS!
1045 * NPE always adds the FCS by this driver's setting,
1046 * so we always trim it here and not add M_HASFCS.
1047 */
1048 m_adj(mrx, -ETHER_CRC_LEN);
1049
1050 /*
1051 * Tap off here if there is a bpf listener.
1052 */
1053
1054 if_percpuq_enqueue(ifp->if_percpuq, mrx);
1055 } else {
1056 fail:
1057 /* discard frame and re-use mbuf */
1058 m = npe->ix_m;
1059 }
1060 if (npe_rxbuf_init(sc, npe, m) == 0) {
1061 /* return npe buf to rx free list */
1062 ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
1063 } else {
1064 /* XXX should not happen */
1065 }
1066 }
1067 #undef P2V
1068 }
1069
1070 static void
1071 npe_startxmit(struct npe_softc *sc)
1072 {
1073 struct npedma *dma = &sc->txdma;
1074 int i;
1075
1076 sc->tx_free = NULL;
1077 for (i = 0; i < dma->nbuf; i++) {
1078 struct npebuf *npe = &dma->buf[i];
1079 if (npe->ix_m != NULL) {
1080 /* NB: should not happen */
1081 printf("%s: %s: free mbuf at entry %u\n",
1082 device_xname(sc->sc_dev), __func__, i);
1083 m_freem(npe->ix_m);
1084 }
1085 npe->ix_m = NULL;
1086 npe->ix_next = sc->tx_free;
1087 sc->tx_free = npe;
1088 }
1089 }
1090
1091 static void
1092 npe_startrecv(struct npe_softc *sc)
1093 {
1094 struct npedma *dma = &sc->rxdma;
1095 struct npebuf *npe;
1096 int i;
1097
1098 for (i = 0; i < dma->nbuf; i++) {
1099 npe = &dma->buf[i];
1100 npe_rxbuf_init(sc, npe, npe->ix_m);
1101 /* Set npe buf on rx free list */
1102 ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
1103 }
1104 }
1105
1106 static void
1107 npeinit_macreg(struct npe_softc *sc)
1108 {
1109
1110 /*
1111 * Reset MAC core.
1112 */
1113 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
1114 DELAY(NPE_MAC_RESET_DELAY);
1115 /* Configure MAC to generate MDC clock */
1116 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
1117
1118 /* Disable transmitter and receiver in the MAC */
1119 WR4(sc, NPE_MAC_RX_CNTRL1,
1120 RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
1121 WR4(sc, NPE_MAC_TX_CNTRL1,
1122 RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
1123
1124 /*
1125 * Set the MAC core registers.
1126 */
1127 WR4(sc, NPE_MAC_INT_CLK_THRESH, 0x1); /* clock ratio: for ipx4xx */
1128 WR4(sc, NPE_MAC_TX_CNTRL2, 0xf); /* max retries */
1129 WR4(sc, NPE_MAC_RANDOM_SEED, 0x8); /* LFSR back-off seed */
1130 /* Thresholds determined by NPE firmware FS */
1131 WR4(sc, NPE_MAC_THRESH_P_EMPTY, 0x12);
1132 WR4(sc, NPE_MAC_THRESH_P_FULL, 0x30);
1133 WR4(sc, NPE_MAC_BUF_SIZE_TX, NPE_MAC_BUF_SIZE_TX_DEFAULT);
1134 /* tx fifo threshold (bytes) */
1135 WR4(sc, NPE_MAC_TX_DEFER, 0x15); /* for single deferral */
1136 WR4(sc, NPE_MAC_RX_DEFER, 0x16); /* deferral on inter-frame gap*/
1137 WR4(sc, NPE_MAC_TX_TWO_DEFER_1, 0x8); /* for 2-part deferral */
1138 WR4(sc, NPE_MAC_TX_TWO_DEFER_2, 0x7); /* for 2-part deferral */
1139 WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
1140 /* assumes MII mode */
1141 WR4(sc, NPE_MAC_TX_CNTRL1,
1142 NPE_TX_CNTRL1_RETRY /* retry failed xmits */
1143 | NPE_TX_CNTRL1_FCS_EN /* append FCS */
1144 | NPE_TX_CNTRL1_2DEFER /* 2-part deferal */
1145 | NPE_TX_CNTRL1_PAD_EN); /* pad runt frames */
1146 /* XXX pad strip? */
1147 WR4(sc, NPE_MAC_RX_CNTRL1,
1148 NPE_RX_CNTRL1_CRC_EN /* include CRC/FCS */
1149 | NPE_RX_CNTRL1_PAUSE_EN); /* ena pause frame handling */
1150 WR4(sc, NPE_MAC_RX_CNTRL2, 0);
1151 }
1152
1153 static void
1154 npeinit_resetcb(void *xsc)
1155 {
1156 struct npe_softc *sc = xsc;
1157 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1158 uint32_t msg[2];
1159
1160 if_statinc(ifp, if_oerrors);
1161 npeinit_locked(sc);
1162
1163 msg[0] = NPE_NOTIFYMACRECOVERYDONE << NPE_MAC_MSGID_SHL
1164 | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL);
1165 msg[1] = 0;
1166 ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1167 }
1168
1169 /*
1170 * Reset and initialize the chip
1171 */
1172 static void
1173 npeinit_locked(void *xsc)
1174 {
1175 struct npe_softc *sc = xsc;
1176 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1177
1178 /* Cancel any pending I/O. */
1179 npestop(ifp, 0);
1180
1181 /* Reset the chip to a known state. */
1182 npeinit_macreg(sc);
1183 npe_setmac(sc, CLLADDR(ifp->if_sadl));
1184 ether_mediachange(ifp);
1185 npe_setmcast(sc);
1186
1187 npe_startxmit(sc);
1188 npe_startrecv(sc);
1189
1190 ifp->if_flags |= IFF_RUNNING;
1191 ifp->if_flags &= ~IFF_OACTIVE;
1192 ifp->if_timer = 0; /* just in case */
1193
1194 /* Enable transmitter and receiver in the MAC */
1195 WR4(sc, NPE_MAC_RX_CNTRL1,
1196 RD4(sc, NPE_MAC_RX_CNTRL1) | NPE_RX_CNTRL1_RX_EN);
1197 WR4(sc, NPE_MAC_TX_CNTRL1,
1198 RD4(sc, NPE_MAC_TX_CNTRL1) | NPE_TX_CNTRL1_TX_EN);
1199
1200 callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
1201 }
1202
1203 static int
1204 npeinit(struct ifnet *ifp)
1205 {
1206 struct npe_softc *sc = ifp->if_softc;
1207 int s;
1208
1209 s = splnet();
1210 npeinit_locked(sc);
1211 splx(s);
1212
1213 return 0;
1214 }
1215
1216 /*
1217 * Defragment an mbuf chain, returning at most maxfrags separate
1218 * mbufs+clusters. If this is not possible NULL is returned and
1219 * the original mbuf chain is left in its present (potentially
1220 * modified) state. We use two techniques: collapsing consecutive
1221 * mbufs and replacing consecutive mbufs by a cluster.
1222 */
1223 static __inline struct mbuf *
1224 npe_defrag(struct mbuf *m0)
1225 {
1226 struct mbuf *m;
1227
1228 MGETHDR(m, M_DONTWAIT, MT_DATA);
1229 if (m == NULL)
1230 return NULL;
1231 m_copy_pkthdr(m, m0);
1232
1233 if ((m->m_len = m0->m_pkthdr.len) > MHLEN) {
1234 MCLGET(m, M_DONTWAIT);
1235 if ((m->m_flags & M_EXT) == 0) {
1236 m_freem(m);
1237 return NULL;
1238 }
1239 }
1240
1241 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1242 m_freem(m0);
1243
1244 return m;
1245 }
1246
1247 /*
1248 * Dequeue packets and place on the h/w transmit queue.
1249 */
1250 static void
1251 npestart(struct ifnet *ifp)
1252 {
1253 struct npe_softc *sc = ifp->if_softc;
1254 struct npebuf *npe;
1255 struct npehwbuf *hw;
1256 struct mbuf *m, *n;
1257 bus_dma_segment_t *segs;
1258 int nseg, len, error, i;
1259 uint32_t next;
1260
1261 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1262 return;
1263
1264 while (sc->tx_free != NULL) {
1265 IFQ_DEQUEUE(&ifp->if_snd, m);
1266 if (m == NULL)
1267 break;
1268 npe = sc->tx_free;
1269 error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
1270 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1271 if (error == EFBIG) {
1272 n = npe_defrag(m);
1273 if (n == NULL) {
1274 printf("%s: %s: too many fragments\n",
1275 device_xname(sc->sc_dev), __func__);
1276 m_freem(m);
1277 return; /* XXX? */
1278 }
1279 m = n;
1280 error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map,
1281 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1282 }
1283 if (error != 0) {
1284 printf("%s: %s: error %u\n",
1285 device_xname(sc->sc_dev), __func__, error);
1286 m_freem(m);
1287 return; /* XXX? */
1288 }
1289 sc->tx_free = npe->ix_next;
1290
1291 /*
1292 * Tap off here if there is a bpf listener.
1293 */
1294 bpf_mtap(ifp, m, BPF_D_OUT);
1295
1296 bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
1297 npe->ix_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1298
1299 npe->ix_m = m;
1300 hw = npe->ix_hw;
1301 len = m->m_pkthdr.len;
1302 nseg = npe->ix_map->dm_nsegs;
1303 segs = npe->ix_map->dm_segs;
1304 next = npe->ix_neaddr + sizeof(hw->ix_ne[0]);
1305 for (i = 0; i < nseg; i++) {
1306 hw->ix_ne[i].data = htobe32(segs[i].ds_addr);
1307 hw->ix_ne[i].len = htobe32((segs[i].ds_len<<16) | len);
1308 hw->ix_ne[i].next = htobe32(next);
1309
1310 len = 0; /* zero for segments > 1 */
1311 next += sizeof(hw->ix_ne[0]);
1312 }
1313 hw->ix_ne[i-1].next = 0; /* zero last in chain */
1314 /* XXX flush descriptor instead of using uncached memory */
1315
1316 DPRINTF(sc, "%s: qwrite(%u, 0x%x) ne_data %x ne_len 0x%x\n",
1317 __func__, sc->tx_qid, npe->ix_neaddr,
1318 hw->ix_ne[0].data, hw->ix_ne[0].len);
1319 /* stick it on the tx q */
1320 /* XXX add vlan priority */
1321 ixpqmgr_qwrite(sc->tx_qid, npe->ix_neaddr);
1322
1323 ifp->if_timer = 5;
1324 }
1325 if (sc->tx_free == NULL)
1326 ifp->if_flags |= IFF_OACTIVE;
1327 }
1328
1329 static void
1330 npe_stopxmit(struct npe_softc *sc)
1331 {
1332 struct npedma *dma = &sc->txdma;
1333 int i;
1334
1335 /* XXX qmgr */
1336 for (i = 0; i < dma->nbuf; i++) {
1337 struct npebuf *npe = &dma->buf[i];
1338
1339 if (npe->ix_m != NULL) {
1340 bus_dmamap_unload(sc->sc_dt, npe->ix_map);
1341 m_freem(npe->ix_m);
1342 npe->ix_m = NULL;
1343 }
1344 }
1345 }
1346
1347 static void
1348 npe_stoprecv(struct npe_softc *sc)
1349 {
1350 struct npedma *dma = &sc->rxdma;
1351 int i;
1352
1353 /* XXX qmgr */
1354 for (i = 0; i < dma->nbuf; i++) {
1355 struct npebuf *npe = &dma->buf[i];
1356
1357 if (npe->ix_m != NULL) {
1358 bus_dmamap_unload(sc->sc_dt, npe->ix_map);
1359 m_freem(npe->ix_m);
1360 npe->ix_m = NULL;
1361 }
1362 }
1363 }
1364
1365 /*
1366 * Turn off interrupts, and stop the nic.
1367 */
1368 void
1369 npestop(struct ifnet *ifp, int disable)
1370 {
1371 struct npe_softc *sc = ifp->if_softc;
1372
1373 /* Disable transmitter and receiver in the MAC */
1374 WR4(sc, NPE_MAC_RX_CNTRL1,
1375 RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
1376 WR4(sc, NPE_MAC_TX_CNTRL1,
1377 RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
1378
1379 callout_stop(&sc->sc_tick_ch);
1380
1381 npe_stopxmit(sc);
1382 npe_stoprecv(sc);
1383 /* XXX go into loopback & drain q's? */
1384 /* XXX but beware of disabling tx above */
1385
1386 /*
1387 * The MAC core rx/tx disable may leave the MAC hardware in an
1388 * unpredictable state. A hw reset is executed before resetting
1389 * all the MAC parameters to a known value.
1390 */
1391 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
1392 DELAY(NPE_MAC_RESET_DELAY);
1393 WR4(sc, NPE_MAC_INT_CLK_THRESH, NPE_MAC_INT_CLK_THRESH_DEFAULT);
1394 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
1395
1396 ifp->if_timer = 0;
1397 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1398 }
1399
1400 void
1401 npewatchdog(struct ifnet *ifp)
1402 {
1403 struct npe_softc *sc = ifp->if_softc;
1404 int s;
1405
1406 aprint_error_dev(sc->sc_dev, "device timeout\n");
1407 s = splnet();
1408 if_statinc(ifp, if_oerrors);
1409 npeinit_locked(sc);
1410 splx(s);
1411 }
1412
1413 static int
1414 npeioctl(struct ifnet *ifp, u_long cmd, void *data)
1415 {
1416 struct npe_softc *sc = ifp->if_softc;
1417 struct ifreq *ifr = (struct ifreq *) data;
1418 int s, error = 0;
1419
1420 s = splnet();
1421
1422 switch (cmd) {
1423 case SIOCSIFMEDIA:
1424 #if 0 /* not yet */
1425 /* Flow control requires full-duplex mode. */
1426 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1427 (ifr->ifr_media & IFM_FDX) == 0)
1428 ifr->ifr_media &= ~IFM_ETH_FMASK;
1429 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1430 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1431 /* We can do both TXPAUSE and RXPAUSE. */
1432 ifr->ifr_media |=
1433 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1434 }
1435 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1436 }
1437 #endif
1438 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1439 break;
1440 case SIOCSIFFLAGS:
1441 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_RUNNING) {
1442 /*
1443 * If interface is marked down and it is running,
1444 * then stop and disable it.
1445 */
1446 (*ifp->if_stop)(ifp, 1);
1447 } else if ((ifp->if_flags & (IFF_UP |IFF_RUNNING)) == IFF_UP) {
1448 /*
1449 * If interface is marked up and it is stopped, then
1450 * start it.
1451 */
1452 error = (*ifp->if_init)(ifp);
1453 } else if ((ifp->if_flags & IFF_UP) != 0) {
1454 u_short diff;
1455
1456 /* Up (AND RUNNING). */
1457
1458 diff = (ifp->if_flags ^ sc->sc_if_flags)
1459 & (IFF_PROMISC | IFF_ALLMULTI);
1460 if ((diff & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1461 /*
1462 * If the difference bettween last flag and
1463 * new flag only IFF_PROMISC or IFF_ALLMULTI,
1464 * set multicast filter only (don't reset to
1465 * prevent link down).
1466 */
1467 npe_setmcast(sc);
1468 } else {
1469 /*
1470 * Reset the interface to pick up changes in
1471 * any other flags that affect the hardware
1472 * state.
1473 */
1474 error = (*ifp->if_init)(ifp);
1475 }
1476 }
1477 sc->sc_if_flags = ifp->if_flags;
1478 break;
1479 default:
1480 error = ether_ioctl(ifp, cmd, data);
1481 if (error == ENETRESET) {
1482 /*
1483 * Multicast list has changed; set the hardware filter
1484 * accordingly.
1485 */
1486 npe_setmcast(sc);
1487 error = 0;
1488 }
1489 }
1490
1491 npestart(ifp);
1492
1493 splx(s);
1494 return error;
1495 }
1496
1497 /*
1498 * Setup a traffic class -> rx queue mapping.
1499 */
1500 static int
1501 npe_setrxqosentry(struct npe_softc *sc, int classix, int trafclass, int qid)
1502 {
1503 int npeid = npeconfig[sc->sc_unit].npeid;
1504 uint32_t msg[2];
1505
1506 msg[0] = (NPE_SETRXQOSENTRY << NPE_MAC_MSGID_SHL) | (npeid << 20)
1507 | classix;
1508 msg[1] = (trafclass << 24) | (1 << 23) | (qid << 16) | (qid << 4);
1509 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1510 }
1511
1512 /*
1513 * Update and reset the statistics in the NPE.
1514 */
1515 static int
1516 npe_updatestats(struct npe_softc *sc)
1517 {
1518 uint32_t msg[2];
1519
1520 msg[0] = NPE_RESETSTATS << NPE_MAC_MSGID_SHL;
1521 msg[1] = sc->sc_stats_phys; /* physical address of stat block */
1522 return ixpnpe_sendmsg(sc->sc_npe, msg); /* NB: no recv */
1523 }
1524
1525 #if 0
1526 /*
1527 * Get the current statistics block.
1528 */
1529 static int
1530 npe_getstats(struct npe_softc *sc)
1531 {
1532 uint32_t msg[2];
1533
1534 msg[0] = NPE_GETSTATS << NPE_MAC_MSGID_SHL;
1535 msg[1] = sc->sc_stats_phys; /* physical address of stat block */
1536 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1537 }
1538
1539 /*
1540 * Query the image id of the loaded firmware.
1541 */
1542 static uint32_t
1543 npe_getimageid(struct npe_softc *sc)
1544 {
1545 uint32_t msg[2];
1546
1547 msg[0] = NPE_GETSTATUS << NPE_MAC_MSGID_SHL;
1548 msg[1] = 0;
1549 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg) == 0 ? msg[1] : 0;
1550 }
1551
1552 /*
1553 * Enable/disable loopback.
1554 */
1555 static int
1556 npe_setloopback(struct npe_softc *sc, int ena)
1557 {
1558 uint32_t msg[2];
1559
1560 msg[0] = (NPE_SETLOOPBACK << NPE_MAC_MSGID_SHL) | (ena != 0);
1561 msg[1] = 0;
1562 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1563 }
1564 #endif
1565
1566 /*
1567 * MII bus support routines.
1568 *
1569 * NB: ixp425 has one PHY per NPE
1570 */
1571 static uint32_t
1572 npe_mii_mdio_read(struct npe_softc *sc, int reg)
1573 {
1574 #define MII_RD4(sc, reg) bus_space_read_4(sc->sc_iot, sc->sc_miih, reg)
1575 uint32_t v;
1576
1577 /* NB: registers are known to be sequential */
1578 v = (MII_RD4(sc, reg+0) & 0xff) << 0;
1579 v |= (MII_RD4(sc, reg+4) & 0xff) << 8;
1580 v |= (MII_RD4(sc, reg+8) & 0xff) << 16;
1581 v |= (MII_RD4(sc, reg+12) & 0xff) << 24;
1582 return v;
1583 #undef MII_RD4
1584 }
1585
1586 static void
1587 npe_mii_mdio_write(struct npe_softc *sc, int reg, uint32_t cmd)
1588 {
1589 #define MII_WR4(sc, reg, v) \
1590 bus_space_write_4(sc->sc_iot, sc->sc_miih, reg, v)
1591
1592 /* NB: registers are known to be sequential */
1593 MII_WR4(sc, reg+0, cmd & 0xff);
1594 MII_WR4(sc, reg+4, (cmd >> 8) & 0xff);
1595 MII_WR4(sc, reg+8, (cmd >> 16) & 0xff);
1596 MII_WR4(sc, reg+12, (cmd >> 24) & 0xff);
1597 #undef MII_WR4
1598 }
1599
1600 static int
1601 npe_mii_mdio_wait(struct npe_softc *sc)
1602 {
1603 #define MAXTRIES 100 /* XXX */
1604 uint32_t v;
1605 int i;
1606
1607 for (i = 0; i < MAXTRIES; i++) {
1608 v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_CMD);
1609 if ((v & NPE_MII_GO) == 0)
1610 return 0;
1611 }
1612 return ETIMEDOUT;
1613 #undef MAXTRIES
1614 }
1615
1616 static int
1617 npe_miibus_readreg(device_t self, int phy, int reg, uint16_t *val)
1618 {
1619 struct npe_softc *sc = device_private(self);
1620 uint32_t v;
1621
1622 if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
1623 return -1;
1624 v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
1625 | NPE_MII_GO;
1626 npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
1627 if (npe_mii_mdio_wait(sc) == 0)
1628 v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_STS);
1629 else
1630 v = 0xffff | NPE_MII_READ_FAIL;
1631
1632 if ((v & NPE_MII_READ_FAIL) != 0)
1633 return -1;
1634
1635 *val = v & 0xffff;
1636 return 0;
1637 #undef MAXTRIES
1638 }
1639
1640 static int
1641 npe_miibus_writereg(device_t self, int phy, int reg, uint16_t val)
1642 {
1643 struct npe_softc *sc = device_private(self);
1644 uint32_t v;
1645
1646 if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
1647 return -1;
1648 v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
1649 | val | NPE_MII_WRITE
1650 | NPE_MII_GO;
1651 npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
1652
1653 return npe_mii_mdio_wait(sc);
1654 }
1655
1656 static void
1657 npe_miibus_statchg(struct ifnet *ifp)
1658 {
1659 struct npe_softc *sc = ifp->if_softc;
1660 uint32_t tx1, rx1;
1661 uint32_t randoff;
1662
1663 /* Sync MAC duplex state */
1664 tx1 = RD4(sc, NPE_MAC_TX_CNTRL1);
1665 rx1 = RD4(sc, NPE_MAC_RX_CNTRL1);
1666 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1667 WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
1668 tx1 &= ~NPE_TX_CNTRL1_DUPLEX;
1669 rx1 |= NPE_RX_CNTRL1_PAUSE_EN;
1670 } else {
1671 struct timeval now;
1672 getmicrotime(&now);
1673 randoff = (RD4(sc, NPE_MAC_UNI_ADDR_6) ^ now.tv_usec)
1674 & 0x7f;
1675 WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT
1676 + randoff);
1677 tx1 |= NPE_TX_CNTRL1_DUPLEX;
1678 rx1 &= ~NPE_RX_CNTRL1_PAUSE_EN;
1679 }
1680 WR4(sc, NPE_MAC_RX_CNTRL1, rx1);
1681 WR4(sc, NPE_MAC_TX_CNTRL1, tx1);
1682 }
1683