Home | History | Annotate | Line # | Download | only in xscale
ixp425_if_npe.c revision 1.54
      1 /*	$NetBSD: ixp425_if_npe.c,v 1.54 2024/06/29 12:11:10 riastradh Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2006 Sam Leffler.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     25  */
     26 
     27 #include <sys/cdefs.h>
     28 #if 0
     29 __FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/if_npe.c,v 1.1 2006/11/19 23:55:23 sam Exp $");
     30 #endif
     31 __KERNEL_RCSID(0, "$NetBSD: ixp425_if_npe.c,v 1.54 2024/06/29 12:11:10 riastradh Exp $");
     32 
     33 /*
     34  * Intel XScale NPE Ethernet driver.
     35  *
     36  * This driver handles the two ports present on the IXP425.
     37  * Packet processing is done by the Network Processing Engines
     38  * (NPE's) that work together with a MAC and PHY. The MAC
     39  * is also mapped to the XScale cpu; the PHY is accessed via
     40  * the MAC. NPE-XScale communication happens through h/w
     41  * queues managed by the Q Manager block.
     42  *
     43  * The code here replaces the ethAcc, ethMii, and ethDB classes
     44  * in the Intel Access Library (IAL) and the OS-specific driver.
     45  *
     46  * XXX add vlan support
     47  * XXX NPE-C port doesn't work yet
     48  */
     49 
     50 #include <sys/param.h>
     51 #include <sys/systm.h>
     52 #include <sys/kernel.h>
     53 #include <sys/device.h>
     54 #include <sys/callout.h>
     55 #include <sys/kmem.h>
     56 #include <sys/mbuf.h>
     57 #include <sys/socket.h>
     58 #include <sys/endian.h>
     59 #include <sys/ioctl.h>
     60 #include <sys/syslog.h>
     61 #include <sys/bus.h>
     62 #include <sys/rndsource.h>
     63 
     64 #include <net/if.h>
     65 #include <net/if_dl.h>
     66 #include <net/if_media.h>
     67 #include <net/if_ether.h>
     68 #include <net/bpf.h>
     69 
     70 #include <arm/xscale/ixp425reg.h>
     71 #include <arm/xscale/ixp425var.h>
     72 #include <arm/xscale/ixp425_qmgr.h>
     73 #include <arm/xscale/ixp425_npevar.h>
     74 #include <arm/xscale/ixp425_if_npereg.h>
     75 
     76 #include <dev/mii/miivar.h>
     77 
     78 #include "locators.h"
     79 
     80 struct npebuf {
     81 	struct npebuf	*ix_next;	/* chain to next buffer */
     82 	void		*ix_m;		/* backpointer to mbuf */
     83 	bus_dmamap_t	ix_map;		/* bus dma map for associated data */
     84 	struct npehwbuf	*ix_hw;		/* associated h/w block */
     85 	uint32_t	ix_neaddr;	/* phys address of ix_hw */
     86 };
     87 
     88 struct npedma {
     89 	const char*	name;
     90 	int		nbuf;		/* # npebuf's allocated */
     91 	bus_dmamap_t	m_map;
     92 	struct npehwbuf	*hwbuf;		/* NPE h/w buffers */
     93 	bus_dmamap_t	buf_map;
     94 	bus_addr_t	buf_phys;	/* phys addr of buffers */
     95 	struct npebuf	*buf;		/* s/w buffers (1-1 w/ h/w) */
     96 };
     97 
     98 struct npe_softc {
     99 	device_t	sc_dev;
    100 	struct ethercom	sc_ethercom;
    101 	uint8_t		sc_enaddr[ETHER_ADDR_LEN];
    102 	struct mii_data	sc_mii;
    103 	bus_space_tag_t	sc_iot;
    104 	bus_dma_tag_t	sc_dt;
    105 	bus_space_handle_t sc_ioh;	/* MAC register window */
    106 	bus_space_handle_t sc_miih;	/* MII register window */
    107 	struct ixpnpe_softc *sc_npe;	/* NPE support */
    108 	int		sc_unit;
    109 	int		sc_phy;
    110 	struct callout	sc_tick_ch;	/* Tick callout */
    111 	struct npedma	txdma;
    112 	struct npebuf	*tx_free;	/* list of free tx buffers */
    113 	struct npedma	rxdma;
    114 	int		rx_qid;		/* rx qid */
    115 	int		rx_freeqid;	/* rx free buffers qid */
    116 	int		tx_qid;		/* tx qid */
    117 	int		tx_doneqid;	/* tx completed qid */
    118 	struct npestats	*sc_stats;
    119 	bus_dmamap_t	sc_stats_map;
    120 	bus_addr_t	sc_stats_phys;	/* phys addr of sc_stats */
    121 	u_short		sc_if_flags;	/* keep last if_flags */
    122 	krndsource_t rnd_source; /* random source */
    123 };
    124 
    125 /*
    126  * Per-unit static configuration for IXP425.  The tx and
    127  * rx free Q id's are fixed by the NPE microcode.  The
    128  * rx Q id's are programmed to be separate to simplify
    129  * multi-port processing.  It may be better to handle
    130  * all traffic through one Q (as done by the Intel drivers).
    131  *
    132  * Note that the PHY's are accessible only from MAC A
    133  * on the IXP425.  This and other platform-specific
    134  * assumptions probably need to be handled through hints.
    135  */
    136 static const struct {
    137 	const char	*desc;		/* device description */
    138 	int		npeid;		/* NPE assignment */
    139 	int		macport;	/* Port number of the MAC */
    140 	uint32_t	imageid;	/* NPE firmware image id */
    141 	uint32_t	regbase;
    142 	int		regsize;
    143 	uint32_t	miibase;
    144 	int		miisize;
    145 	uint8_t		rx_qid;
    146 	uint8_t		rx_freeqid;
    147 	uint8_t		tx_qid;
    148 	uint8_t		tx_doneqid;
    149 } npeconfig[NPE_PORTS_MAX] = {
    150 	{ .desc		= "IXP NPE-B",
    151 	  .npeid	= NPE_B,
    152 	  .macport	= 0x10,
    153 	  .imageid	= IXP425_NPE_B_IMAGEID,
    154 	  .regbase	= IXP425_MAC_A_HWBASE,
    155 	  .regsize	= IXP425_MAC_A_SIZE,
    156 	  .miibase	= IXP425_MAC_A_HWBASE,
    157 	  .miisize	= IXP425_MAC_A_SIZE,
    158 	  .rx_qid	= 4,
    159 	  .rx_freeqid	= 27,
    160 	  .tx_qid	= 24,
    161 	  .tx_doneqid	= 31
    162 	},
    163 	{ .desc		= "IXP NPE-C",
    164 	  .npeid	= NPE_C,
    165 	  .macport	= 0x20,
    166 	  .imageid	= IXP425_NPE_C_IMAGEID,
    167 	  .regbase	= IXP425_MAC_B_HWBASE,
    168 	  .regsize	= IXP425_MAC_B_SIZE,
    169 	  .miibase	= IXP425_MAC_A_HWBASE,
    170 	  .miisize	= IXP425_MAC_A_SIZE,
    171 	  .rx_qid	= 12,
    172 	  .rx_freeqid	= 28,
    173 	  .tx_qid	= 25,
    174 	  .tx_doneqid	= 31
    175 	},
    176 };
    177 static struct npe_softc *npes[NPE_MAX];	/* NB: indexed by npeid */
    178 
    179 static __inline uint32_t
    180 RD4(struct npe_softc *sc, bus_size_t off)
    181 {
    182 	return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
    183 }
    184 
    185 static __inline void
    186 WR4(struct npe_softc *sc, bus_size_t off, uint32_t val)
    187 {
    188 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
    189 }
    190 
    191 static int	npe_activate(struct npe_softc *);
    192 #if 0
    193 static void	npe_deactivate(struct npe_softc *);
    194 #endif
    195 static void	npe_setmac(struct npe_softc *, const u_char *);
    196 static void	npe_getmac(struct npe_softc *);
    197 static void	npe_txdone(int, void *);
    198 static int	npe_rxbuf_init(struct npe_softc *, struct npebuf *,
    199 			struct mbuf *);
    200 static void	npe_rxdone(int, void *);
    201 static void	npeinit_macreg(struct npe_softc *);
    202 static int	npeinit(struct ifnet *);
    203 static void	npeinit_resetcb(void *);
    204 static void	npeinit_locked(void *);
    205 static void	npestart(struct ifnet *);
    206 static void	npestop(struct ifnet *, int);
    207 static void	npewatchdog(struct ifnet *);
    208 static int	npeioctl(struct ifnet *, u_long, void *);
    209 
    210 static int	npe_setrxqosentry(struct npe_softc *, int, int, int);
    211 static int	npe_updatestats(struct npe_softc *);
    212 #if 0
    213 static int	npe_getstats(struct npe_softc *);
    214 static uint32_t	npe_getimageid(struct npe_softc *);
    215 static int	npe_setloopback(struct npe_softc *, int);
    216 #endif
    217 
    218 static int	npe_miibus_readreg(device_t, int, int, uint16_t *);
    219 static int	npe_miibus_writereg(device_t, int, int, uint16_t);
    220 static void	npe_miibus_statchg(struct ifnet *);
    221 
    222 static int	npe_debug;
    223 #define DPRINTF(sc, fmt, ...) do {			\
    224 	if (npe_debug) printf(fmt, __VA_ARGS__);	\
    225 } while (0)
    226 #define DPRINTFn(n, sc, fmt, ...) do {			\
    227 	if (npe_debug >= n) printf(fmt, __VA_ARGS__);	\
    228 } while (0)
    229 
    230 #define	NPE_TXBUF	128
    231 #define	NPE_RXBUF	64
    232 
    233 #define MAC2UINT64(addr)	(((uint64_t)addr[0] << 40)	\
    234 				    + ((uint64_t)addr[1] << 32)	\
    235 				    + ((uint64_t)addr[2] << 24)	\
    236 				    + ((uint64_t)addr[3] << 16)	\
    237 				    + ((uint64_t)addr[4] << 8)	\
    238 				    + (uint64_t)addr[5])
    239 
    240 /* NB: all tx done processing goes through one queue */
    241 static int tx_doneqid = -1;
    242 
    243 void (*npe_getmac_md)(int, uint8_t *);
    244 
    245 static int npe_match(device_t, cfdata_t, void *);
    246 static void npe_attach(device_t, device_t, void *);
    247 
    248 CFATTACH_DECL_NEW(npe, sizeof(struct npe_softc),
    249     npe_match, npe_attach, NULL, NULL);
    250 
    251 static int
    252 npe_match(device_t parent, cfdata_t cf, void *arg)
    253 {
    254 	struct ixpnpe_attach_args *na = arg;
    255 
    256 	return (na->na_unit == NPE_B || na->na_unit == NPE_C);
    257 }
    258 
    259 static void
    260 npe_attach(device_t parent, device_t self, void *arg)
    261 {
    262 	struct npe_softc *sc = device_private(self);
    263 	struct ixpnpe_softc *isc = device_private(parent);
    264 	struct ixpnpe_attach_args *na = arg;
    265 	struct ifnet *ifp;
    266 	struct mii_data * const mii = &sc->sc_mii;
    267 
    268 	aprint_naive("\n");
    269 	aprint_normal(": Ethernet co-processor\n");
    270 
    271 	sc->sc_dev = self;
    272 	sc->sc_iot = na->na_iot;
    273 	sc->sc_dt = na->na_dt;
    274 	sc->sc_npe = na->na_npe;
    275 	sc->sc_unit = (na->na_unit == NPE_B) ? 0 : 1;
    276 	sc->sc_phy = na->na_phy;
    277 
    278 	memset(&sc->sc_ethercom, 0, sizeof(sc->sc_ethercom));
    279 	memset(mii, 0, sizeof(*mii));
    280 
    281 	callout_init(&sc->sc_tick_ch, 0);
    282 
    283 	if (npe_activate(sc)) {
    284 		aprint_error_dev(sc->sc_dev,
    285 		    "Failed to activate NPE (missing microcode?)\n");
    286 		return;
    287 	}
    288 
    289 	npe_getmac(sc);
    290 	npeinit_macreg(sc);
    291 
    292 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    293 	    ether_sprintf(sc->sc_enaddr));
    294 
    295 	ifp = &sc->sc_ethercom.ec_if;
    296 	mii->mii_ifp = ifp;
    297 	mii->mii_readreg = npe_miibus_readreg;
    298 	mii->mii_writereg = npe_miibus_writereg;
    299 	mii->mii_statchg = npe_miibus_statchg;
    300 	sc->sc_ethercom.ec_mii = mii;
    301 
    302 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    303 	    ether_mediastatus);
    304 
    305 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
    306 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
    307 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    308 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
    309 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
    310 	} else
    311 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    312 
    313 	ifp->if_softc = sc;
    314 	strcpy(ifp->if_xname, device_xname(sc->sc_dev));
    315 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    316 	ifp->if_start = npestart;
    317 	ifp->if_ioctl = npeioctl;
    318 	ifp->if_watchdog = npewatchdog;
    319 	ifp->if_init = npeinit;
    320 	ifp->if_stop = npestop;
    321 	IFQ_SET_READY(&ifp->if_snd);
    322 
    323 	/* VLAN capable */
    324 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    325 
    326 	if_attach(ifp);
    327 	if_deferred_start_init(ifp, NULL);
    328 	ether_ifattach(ifp, sc->sc_enaddr);
    329 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    330 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    331 
    332 	/* callback function to reset MAC */
    333 	isc->macresetcbfunc = npeinit_resetcb;
    334 	isc->macresetcbarg = sc;
    335 }
    336 
    337 /*
    338  * Compute and install the multicast filter.
    339  */
    340 static void
    341 npe_setmcast(struct npe_softc *sc)
    342 {
    343 	struct ethercom *ec = &sc->sc_ethercom;
    344 	struct ifnet *ifp = &ec->ec_if;
    345 	uint8_t mask[ETHER_ADDR_LEN], addr[ETHER_ADDR_LEN];
    346 	uint32_t reg;
    347 	uint32_t msg[2];
    348 	int i;
    349 
    350 	/* Always use filter. Is here a correct position? */
    351 	reg = RD4(sc, NPE_MAC_RX_CNTRL1);
    352 	WR4(sc, NPE_MAC_RX_CNTRL1, reg | NPE_RX_CNTRL1_ADDR_FLTR_EN);
    353 
    354 	if (ifp->if_flags & IFF_PROMISC) {
    355 		memset(mask, 0, ETHER_ADDR_LEN);
    356 		memset(addr, 0, ETHER_ADDR_LEN);
    357 	} else if (ifp->if_flags & IFF_ALLMULTI) {
    358 		static const uint8_t allmulti[ETHER_ADDR_LEN] =
    359 		    { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
    360  all_multi:
    361 		memcpy(mask, allmulti, ETHER_ADDR_LEN);
    362 		memcpy(addr, allmulti, ETHER_ADDR_LEN);
    363 	} else {
    364 		uint8_t clr[ETHER_ADDR_LEN], set[ETHER_ADDR_LEN];
    365 		struct ether_multistep step;
    366 		struct ether_multi *enm;
    367 
    368 		memset(clr, 0, ETHER_ADDR_LEN);
    369 		memset(set, 0xff, ETHER_ADDR_LEN);
    370 
    371 		ETHER_LOCK(ec);
    372 		ETHER_FIRST_MULTI(step, ec, enm);
    373 		while (enm != NULL) {
    374 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    375 			    ETHER_ADDR_LEN)) {
    376 				ifp->if_flags |= IFF_ALLMULTI;
    377 				ETHER_UNLOCK(ec);
    378 				goto all_multi;
    379 			}
    380 
    381 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
    382 				clr[i] |= enm->enm_addrlo[i];
    383 				set[i] &= enm->enm_addrlo[i];
    384 			}
    385 
    386 			ETHER_NEXT_MULTI(step, enm);
    387 		}
    388 		ETHER_UNLOCK(ec);
    389 
    390 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
    391 			mask[i] = set[i] | ~clr[i];
    392 			addr[i] = set[i];
    393 		}
    394 	}
    395 
    396 	/*
    397 	 * Write the mask and address registers.
    398 	 */
    399 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
    400 		WR4(sc, NPE_MAC_ADDR_MASK(i), mask[i]);
    401 		WR4(sc, NPE_MAC_ADDR(i), addr[i]);
    402 	}
    403 
    404 	msg[0] = NPE_ADDRESSFILTERCONFIG << NPE_MAC_MSGID_SHL
    405 	    | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL);
    406 	msg[1] = ((ifp->if_flags & IFF_PROMISC) ? 1 : 0) << 24
    407 	    | ((RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff) << 16)
    408 	    | (addr[5] << 8) | mask[5];
    409 	ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
    410 }
    411 
    412 static int
    413 npe_dma_setup(struct npe_softc *sc, struct npedma *dma,
    414 	const char *name, int nbuf, int maxseg)
    415 {
    416 	bus_dma_segment_t seg;
    417 	int rseg, error, i;
    418 	void *hwbuf;
    419 	size_t size;
    420 
    421 	memset(dma, 0, sizeof(*dma));
    422 
    423 	dma->name = name;
    424 	dma->nbuf = nbuf;
    425 
    426 	size = nbuf * sizeof(struct npehwbuf);
    427 
    428 	/* XXX COHERENT for now */
    429 	error = bus_dmamem_alloc(sc->sc_dt, size, sizeof(uint32_t), 0, &seg,
    430 	    1, &rseg, BUS_DMA_NOWAIT);
    431 	if (error) {
    432 		aprint_error_dev(sc->sc_dev,
    433 		    "unable to %s for %s %s buffers, error %u\n",
    434 		    "allocate memory", dma->name, "h/w", error);
    435 	}
    436 
    437 	error = bus_dmamem_map(sc->sc_dt, &seg, 1, size, &hwbuf,
    438 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_NOCACHE);
    439 	if (error) {
    440 		aprint_error_dev(sc->sc_dev,
    441 		    "unable to %s for %s %s buffers, error %u\n",
    442 		    "map memory", dma->name, "h/w", error);
    443  free_dmamem:
    444 		bus_dmamem_free(sc->sc_dt, &seg, rseg);
    445 		return error;
    446 	}
    447 	dma->hwbuf = (void *)hwbuf;
    448 
    449 	error = bus_dmamap_create(sc->sc_dt, size, 1, size, 0,
    450 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &dma->buf_map);
    451 	if (error) {
    452 		aprint_error_dev(sc->sc_dev,
    453 		    "unable to %s for %s %s buffers, error %u\n",
    454 		    "create map", dma->name, "h/w", error);
    455  unmap_dmamem:
    456 		dma->hwbuf = NULL;
    457 		bus_dmamem_unmap(sc->sc_dt, hwbuf, size);
    458 		goto free_dmamem;
    459 	}
    460 
    461 	error = bus_dmamap_load(sc->sc_dt, dma->buf_map, hwbuf, size, NULL,
    462 	    BUS_DMA_NOWAIT);
    463 	if (error) {
    464 		aprint_error_dev(sc->sc_dev,
    465 		    "unable to %s for %s %s buffers, error %u\n",
    466 		    "load map", dma->name, "h/w", error);
    467 		bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
    468 		goto unmap_dmamem;
    469 	}
    470 
    471 	dma->buf = kmem_zalloc(nbuf * sizeof(struct npebuf), KM_SLEEP);
    472 	dma->buf_phys = dma->buf_map->dm_segs[0].ds_addr;
    473 	for (i = 0; i < dma->nbuf; i++) {
    474 		struct npebuf *npe = &dma->buf[i];
    475 		struct npehwbuf *hw = &dma->hwbuf[i];
    476 
    477 		/* Calculate offset to shared area */
    478 		npe->ix_neaddr = dma->buf_phys +
    479 			((uintptr_t)hw - (uintptr_t)dma->hwbuf);
    480 		KASSERT((npe->ix_neaddr & 0x1f) == 0);
    481 		error = bus_dmamap_create(sc->sc_dt, MCLBYTES, maxseg,
    482 		    MCLBYTES, 0, 0, &npe->ix_map);
    483 		if (error != 0) {
    484 			aprint_error_dev(sc->sc_dev,
    485 			    "unable to %s for %s buffer %u, error %u\n",
    486 			    "create dmamap", dma->name, i, error);
    487 			/* XXXSCW: Free up maps... */
    488 			return error;
    489 		}
    490 		npe->ix_hw = hw;
    491 	}
    492 	bus_dmamap_sync(sc->sc_dt, dma->buf_map, 0, dma->buf_map->dm_mapsize,
    493 	    BUS_DMASYNC_PREWRITE);
    494 	return 0;
    495 }
    496 
    497 #if 0
    498 static void
    499 npe_dma_destroy(struct npe_softc *sc, struct npedma *dma)
    500 {
    501 	int i;
    502 
    503 /* XXXSCW: Clean this up */
    504 
    505 	if (dma->hwbuf != NULL) {
    506 		for (i = 0; i < dma->nbuf; i++) {
    507 			struct npebuf *npe = &dma->buf[i];
    508 			bus_dmamap_destroy(sc->sc_dt, npe->ix_map);
    509 		}
    510 		bus_dmamap_unload(sc->sc_dt, dma->buf_map);
    511 		bus_dmamem_free(sc->sc_dt, (void *)dma->hwbuf, dma->buf_map);
    512 		bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
    513 	}
    514 	if (dma->buf != NULL)
    515 		kmem_free(dma->buf, dma->nbuf * sizeof(struct npebuf));
    516 	memset(dma, 0, sizeof(*dma));
    517 }
    518 #endif
    519 
    520 static int
    521 npe_activate(struct npe_softc *sc)
    522 {
    523 	bus_dma_segment_t seg;
    524 	int unit = sc->sc_unit;
    525 	int error, i, rseg;
    526 	void *statbuf;
    527 
    528 	/* load NPE firmware and start it running */
    529 	error = ixpnpe_init(sc->sc_npe, "npe_fw", npeconfig[unit].imageid);
    530 	if (error != 0)
    531 		return error;
    532 
    533 	if (bus_space_map(sc->sc_iot, npeconfig[unit].regbase,
    534 	    npeconfig[unit].regsize, 0, &sc->sc_ioh)) {
    535 		aprint_error_dev(sc->sc_dev, "Cannot map registers 0x%x:0x%x\n",
    536 		    npeconfig[unit].regbase, npeconfig[unit].regsize);
    537 		return ENOMEM;
    538 	}
    539 
    540 	if (npeconfig[unit].miibase != npeconfig[unit].regbase) {
    541 		/*
    542 		 * The PHY's are only accessible from one MAC (it appears)
    543 		 * so for other MAC's setup an additional mapping for
    544 		 * frobbing the PHY registers.
    545 		 */
    546 		if (bus_space_map(sc->sc_iot, npeconfig[unit].miibase,
    547 		    npeconfig[unit].miisize, 0, &sc->sc_miih)) {
    548 			aprint_error_dev(sc->sc_dev,
    549 			    "Cannot map MII registers 0x%x:0x%x\n",
    550 			    npeconfig[unit].miibase, npeconfig[unit].miisize);
    551 			return ENOMEM;
    552 		}
    553 	} else
    554 		sc->sc_miih = sc->sc_ioh;
    555 	error = npe_dma_setup(sc, &sc->txdma, "tx", NPE_TXBUF, NPE_MAXSEG);
    556 	if (error != 0)
    557 		return error;
    558 	error = npe_dma_setup(sc, &sc->rxdma, "rx", NPE_RXBUF, 1);
    559 	if (error != 0)
    560 		return error;
    561 
    562 	/* setup statistics block */
    563 	error = bus_dmamem_alloc(sc->sc_dt, sizeof(struct npestats),
    564 	    sizeof(uint32_t), 0, &seg, 1, &rseg, BUS_DMA_NOWAIT);
    565 	if (error) {
    566 		aprint_error_dev(sc->sc_dev,
    567 		    "unable to %s for %s, error %u\n",
    568 		    "allocate memory", "stats block", error);
    569 		return error;
    570 	}
    571 
    572 	error = bus_dmamem_map(sc->sc_dt, &seg, 1, sizeof(struct npestats),
    573 	    &statbuf, BUS_DMA_NOWAIT);
    574 	if (error) {
    575 		aprint_error_dev(sc->sc_dev,
    576 		    "unable to %s for %s, error %u\n",
    577 		    "map memory", "stats block", error);
    578 		return error;
    579 	}
    580 	sc->sc_stats = (void *)statbuf;
    581 
    582 	error = bus_dmamap_create(sc->sc_dt, sizeof(struct npestats), 1,
    583 	    sizeof(struct npestats), 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    584 	    &sc->sc_stats_map);
    585 	if (error) {
    586 		aprint_error_dev(sc->sc_dev,
    587 		    "unable to %s for %s, error %u\n",
    588 		    "create map", "stats block", error);
    589 		return error;
    590 	}
    591 
    592 	error = bus_dmamap_load(sc->sc_dt, sc->sc_stats_map, sc->sc_stats,
    593 	    sizeof(struct npestats), NULL, BUS_DMA_NOWAIT);
    594 	if (error) {
    595 		aprint_error_dev(sc->sc_dev,
    596 		    "unable to %s for %s, error %u\n",
    597 		    "load map", "stats block", error);
    598 		return error;
    599 	}
    600 	sc->sc_stats_phys = sc->sc_stats_map->dm_segs[0].ds_addr;
    601 
    602 	/* XXX disable half-bridge LEARNING+FILTERING feature */
    603 
    604 	/*
    605 	 * Setup h/w rx/tx queues.  There are four q's:
    606 	 *   rx		inbound q of rx'd frames
    607 	 *   rx_free	pool of ixpbuf's for receiving frames
    608 	 *   tx		outbound q of frames to send
    609 	 *   tx_done	q of tx frames that have been processed
    610 	 *
    611 	 * The NPE handles the actual tx/rx process and the q manager
    612 	 * handles the queues.  The driver just writes entries to the
    613 	 * q manager mailbox's and gets callbacks when there are rx'd
    614 	 * frames to process or tx'd frames to reap.  These callbacks
    615 	 * are controlled by the q configurations; e.g. we get a
    616 	 * callback when tx_done has 2 or more frames to process and
    617 	 * when the rx q has at least one frame.  These settings can
    618 	 * changed at the time the q is configured.
    619 	 */
    620 	sc->rx_qid = npeconfig[unit].rx_qid;
    621 	ixpqmgr_qconfig(sc->rx_qid, NPE_RXBUF, 0,  1,
    622 		IX_QMGR_Q_SOURCE_ID_NOT_E, npe_rxdone, sc);
    623 	sc->rx_freeqid = npeconfig[unit].rx_freeqid;
    624 	ixpqmgr_qconfig(sc->rx_freeqid,	NPE_RXBUF, 0, NPE_RXBUF/2, 0, NULL, sc);
    625 	/* tell the NPE to direct all traffic to rx_qid */
    626 #if 0
    627 	for (i = 0; i < 8; i++)
    628 #else
    629 printf("%s: remember to fix rx q setup\n", device_xname(sc->sc_dev));
    630 	for (i = 0; i < 4; i++)
    631 #endif
    632 		npe_setrxqosentry(sc, i, 0, sc->rx_qid);
    633 
    634 	sc->tx_qid = npeconfig[unit].tx_qid;
    635 	sc->tx_doneqid = npeconfig[unit].tx_doneqid;
    636 	ixpqmgr_qconfig(sc->tx_qid, NPE_TXBUF, 0, NPE_TXBUF, 0, NULL, sc);
    637 	if (tx_doneqid == -1) {
    638 		ixpqmgr_qconfig(sc->tx_doneqid,	NPE_TXBUF, 0,  2,
    639 			IX_QMGR_Q_SOURCE_ID_NOT_E, npe_txdone, sc);
    640 		tx_doneqid = sc->tx_doneqid;
    641 	}
    642 
    643 	KASSERT(npes[npeconfig[unit].npeid] == NULL);
    644 	npes[npeconfig[unit].npeid] = sc;
    645 
    646 	return 0;
    647 }
    648 
    649 #if 0
    650 static void
    651 npe_deactivate(struct npe_softc *sc);
    652 {
    653 	int unit = sc->sc_unit;
    654 
    655 	npes[npeconfig[unit].npeid] = NULL;
    656 
    657 	/* XXX disable q's */
    658 	if (sc->sc_npe != NULL)
    659 		ixpnpe_stop(sc->sc_npe);
    660 	if (sc->sc_stats != NULL) {
    661 		bus_dmamap_unload(sc->sc_stats_tag, sc->sc_stats_map);
    662 		bus_dmamem_free(sc->sc_stats_tag, sc->sc_stats,
    663 			sc->sc_stats_map);
    664 		bus_dmamap_destroy(sc->sc_stats_tag, sc->sc_stats_map);
    665 	}
    666 	if (sc->sc_stats_tag != NULL)
    667 		bus_dma_tag_destroy(sc->sc_stats_tag);
    668 	npe_dma_destroy(sc, &sc->txdma);
    669 	npe_dma_destroy(sc, &sc->rxdma);
    670 	bus_generic_detach(sc->sc_dev);
    671 	XXX ifmedia_fini somewhere
    672 	if (sc->sc_mii)
    673 		device_delete_child(sc->sc_dev, sc->sc_mii);
    674 #if 0
    675 	/* XXX sc_ioh and sc_miih */
    676 	if (sc->mem_res)
    677 		bus_release_resource(dev, SYS_RES_IOPORT,
    678 		    rman_get_rid(sc->mem_res), sc->mem_res);
    679 	sc->mem_res = 0;
    680 #endif
    681 }
    682 #endif
    683 
    684 static void
    685 npe_addstats(struct npe_softc *sc)
    686 {
    687 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    688 	struct npestats *ns = sc->sc_stats;
    689 
    690 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
    691 	if_statadd_ref(ifp, nsr, if_oerrors,
    692 		  be32toh(ns->dot3StatsInternalMacTransmitErrors)
    693 		+ be32toh(ns->dot3StatsCarrierSenseErrors)
    694 		+ be32toh(ns->TxVLANIdFilterDiscards)
    695 		);
    696 	if_statadd_ref(ifp, nsr, if_ierrors,
    697 		  be32toh(ns->dot3StatsFCSErrors)
    698 		+ be32toh(ns->dot3StatsInternalMacReceiveErrors)
    699 		+ be32toh(ns->RxOverrunDiscards)
    700 		+ be32toh(ns->RxUnderflowEntryDiscards)
    701 		);
    702 	if_statadd_ref(ifp, nsr, if_collisions,
    703 		  be32toh(ns->dot3StatsSingleCollisionFrames)
    704 		+ be32toh(ns->dot3StatsMultipleCollisionFrames)
    705 		);
    706 	IF_STAT_PUTREF(ifp);
    707 }
    708 
    709 static void
    710 npe_tick(void *xsc)
    711 {
    712 #define	ACK	(NPE_RESETSTATS << NPE_MAC_MSGID_SHL)
    713 	struct npe_softc *sc = xsc;
    714 	uint32_t msg[2];
    715 
    716 	/*
    717 	 * NB: to avoid sleeping with the softc lock held we
    718 	 * split the NPE msg processing into two parts.  The
    719 	 * request for statistics is sent w/o waiting for a
    720 	 * reply and then on the next tick we retrieve the
    721 	 * results.  This works because npe_tick is the only
    722 	 * code that talks via the mailbox's (except at setup).
    723 	 * This likely can be handled better.
    724 	 */
    725 	if (ixpnpe_recvmsg(sc->sc_npe, msg) == 0 && msg[0] == ACK) {
    726 		bus_dmamap_sync(sc->sc_dt, sc->sc_stats_map, 0,
    727 		    sizeof(struct npestats), BUS_DMASYNC_POSTREAD);
    728 		npe_addstats(sc);
    729 	}
    730 	npe_updatestats(sc);
    731 	mii_tick(&sc->sc_mii);
    732 
    733 	/* Schedule next poll */
    734 	callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
    735 #undef ACK
    736 }
    737 
    738 static void
    739 npe_setmac(struct npe_softc *sc, const u_char *eaddr)
    740 {
    741 
    742 	WR4(sc, NPE_MAC_UNI_ADDR_1, eaddr[0]);
    743 	WR4(sc, NPE_MAC_UNI_ADDR_2, eaddr[1]);
    744 	WR4(sc, NPE_MAC_UNI_ADDR_3, eaddr[2]);
    745 	WR4(sc, NPE_MAC_UNI_ADDR_4, eaddr[3]);
    746 	WR4(sc, NPE_MAC_UNI_ADDR_5, eaddr[4]);
    747 	WR4(sc, NPE_MAC_UNI_ADDR_6, eaddr[5]);
    748 }
    749 
    750 static void
    751 npe_getmac(struct npe_softc *sc)
    752 {
    753 	uint8_t *eaddr = sc->sc_enaddr;
    754 
    755 	if (npe_getmac_md != NULL) {
    756 		(*npe_getmac_md)(device_unit(sc->sc_dev), eaddr);
    757 	} else {
    758 		/*
    759 		 * Some system's unicast address appears to be loaded from
    760 		 * EEPROM on reset
    761 		 */
    762 		eaddr[0] = RD4(sc, NPE_MAC_UNI_ADDR_1) & 0xff;
    763 		eaddr[1] = RD4(sc, NPE_MAC_UNI_ADDR_2) & 0xff;
    764 		eaddr[2] = RD4(sc, NPE_MAC_UNI_ADDR_3) & 0xff;
    765 		eaddr[3] = RD4(sc, NPE_MAC_UNI_ADDR_4) & 0xff;
    766 		eaddr[4] = RD4(sc, NPE_MAC_UNI_ADDR_5) & 0xff;
    767 		eaddr[5] = RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff;
    768 	}
    769 }
    770 
    771 struct txdone {
    772 	struct npebuf *head;
    773 	struct npebuf **tail;
    774 	int count;
    775 };
    776 
    777 static __inline void
    778 npe_txdone_finish(struct npe_softc *sc, const struct txdone *td)
    779 {
    780 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    781 
    782 	*td->tail = sc->tx_free;
    783 	sc->tx_free = td->head;
    784 	/*
    785 	 * We're no longer busy, so clear the busy flag and call the
    786 	 * start routine to xmit more packets.
    787 	 */
    788 	if_statadd(ifp, if_opackets, td->count);
    789 	ifp->if_timer = 0;
    790 	if_schedule_deferred_start(ifp);
    791 }
    792 
    793 /*
    794  * Q manager callback on tx done queue.  Reap mbufs
    795  * and return tx buffers to the free list.  Finally
    796  * restart output.  Note the microcode has only one
    797  * txdone q wired into it so we must use the NPE ID
    798  * returned with each npehwbuf to decide where to
    799  * send buffers.
    800  */
    801 static void
    802 npe_txdone(int qid, void *arg)
    803 {
    804 #define	P2V(a, dma) \
    805 	&(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
    806 	struct npe_softc *sc;
    807 	struct npebuf *npe;
    808 	struct txdone *td, q[NPE_MAX];
    809 	uint32_t entry;
    810 
    811 	/* XXX no NPE-A support */
    812 	q[NPE_B].tail = &q[NPE_B].head; q[NPE_B].count = 0;
    813 	q[NPE_C].tail = &q[NPE_C].head; q[NPE_C].count = 0;
    814 	/* XXX max # at a time? */
    815 	while (ixpqmgr_qread(qid, &entry) == 0) {
    816 		sc = npes[NPE_QM_Q_NPE(entry)];
    817 		DPRINTF(sc, "%s: entry 0x%x NPE %u port %u\n",
    818 		    __func__, entry, NPE_QM_Q_NPE(entry), NPE_QM_Q_PORT(entry));
    819 		rnd_add_uint32(&sc->rnd_source, entry);
    820 
    821 		npe = P2V(NPE_QM_Q_ADDR(entry), &sc->txdma);
    822 		m_freem(npe->ix_m);
    823 		npe->ix_m = NULL;
    824 
    825 		td = &q[NPE_QM_Q_NPE(entry)];
    826 		*td->tail = npe;
    827 		td->tail = &npe->ix_next;
    828 		td->count++;
    829 	}
    830 
    831 	if (q[NPE_B].count)
    832 		npe_txdone_finish(npes[NPE_B], &q[NPE_B]);
    833 	if (q[NPE_C].count)
    834 		npe_txdone_finish(npes[NPE_C], &q[NPE_C]);
    835 #undef P2V
    836 }
    837 
    838 static __inline struct mbuf *
    839 npe_getcl(void)
    840 {
    841 	struct mbuf *m;
    842 
    843 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    844 	if (m != NULL) {
    845 		MCLGET(m, M_DONTWAIT);
    846 		if ((m->m_flags & M_EXT) == 0) {
    847 			m_freem(m);
    848 			m = NULL;
    849 		}
    850 	}
    851 	return m;
    852 }
    853 
    854 static int
    855 npe_rxbuf_init(struct npe_softc *sc, struct npebuf *npe, struct mbuf *m)
    856 {
    857 	struct npehwbuf *hw;
    858 	int error;
    859 
    860 	if (m == NULL) {
    861 		m = npe_getcl();
    862 		if (m == NULL)
    863 			return ENOBUFS;
    864 	}
    865 	KASSERT(m->m_ext.ext_size >= (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
    866 	m->m_pkthdr.len = m->m_len = NPE_FRAME_SIZE_DEFAULT;
    867 	/* backload payload and align ip hdr */
    868 	m->m_data = m->m_ext.ext_buf + (m->m_ext.ext_size
    869 	    - (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
    870 	error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
    871 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
    872 	if (error != 0) {
    873 		m_freem(m);
    874 		return error;
    875 	}
    876 	hw = npe->ix_hw;
    877 	hw->ix_ne[0].data = htobe32(npe->ix_map->dm_segs[0].ds_addr);
    878 	/* NB: NPE requires length be a multiple of 64 */
    879 	/* NB: buffer length is shifted in word */
    880 	hw->ix_ne[0].len = htobe32(npe->ix_map->dm_segs[0].ds_len << 16);
    881 	hw->ix_ne[0].next = 0;
    882 	npe->ix_m = m;
    883 	/* Flush the memory in the mbuf */
    884 	bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0, npe->ix_map->dm_mapsize,
    885 	    BUS_DMASYNC_PREREAD);
    886 	return 0;
    887 }
    888 
    889 /*
    890  * RX q processing for a specific NPE.  Claim entries
    891  * from the hardware queue and pass the frames up the
    892  * stack. Pass the rx buffers to the free list.
    893  */
    894 static void
    895 npe_rxdone(int qid, void *arg)
    896 {
    897 #define	P2V(a, dma) \
    898 	&(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
    899 	struct npe_softc *sc = arg;
    900 	struct npedma *dma = &sc->rxdma;
    901 	uint32_t entry;
    902 
    903 	while (ixpqmgr_qread(qid, &entry) == 0) {
    904 		struct npebuf *npe = P2V(NPE_QM_Q_ADDR(entry), dma);
    905 		struct mbuf *m;
    906 
    907 		DPRINTF(sc, "%s: entry 0x%x neaddr 0x%x ne_len 0x%x\n",
    908 		    __func__, entry, npe->ix_neaddr, npe->ix_hw->ix_ne[0].len);
    909 		rnd_add_uint32(&sc->rnd_source, entry);
    910 		/*
    911 		 * Allocate a new mbuf to replenish the rx buffer.
    912 		 * If doing so fails we drop the rx'd frame so we
    913 		 * can reuse the previous mbuf.  When we're able to
    914 		 * allocate a new mbuf dispatch the mbuf w/ rx'd
    915 		 * data up the stack and replace it with the newly
    916 		 * allocated one.
    917 		 */
    918 		m = npe_getcl();
    919 		if (m != NULL) {
    920 			struct mbuf *mrx = npe->ix_m;
    921 			struct npehwbuf *hw = npe->ix_hw;
    922 			struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    923 
    924 			/* Flush mbuf memory for rx'd data */
    925 			bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
    926 			    npe->ix_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
    927 
    928 			/* XXX flush hw buffer; works now 'cuz coherent */
    929 			/* set m_len etc. per rx frame size */
    930 			mrx->m_len = be32toh(hw->ix_ne[0].len) & 0xffff;
    931 			mrx->m_pkthdr.len = mrx->m_len;
    932 			m_set_rcvif(mrx, ifp);
    933 			/* Don't add M_HASFCS. See below */
    934 
    935 #if 1
    936 			if (mrx->m_pkthdr.len < sizeof(struct ether_header)) {
    937 				log(LOG_INFO, "%s: too short frame (len=%d)\n",
    938 				    device_xname(sc->sc_dev),
    939 				    mrx->m_pkthdr.len);
    940 				/* Back out "newly allocated" mbuf. */
    941 				m_freem(m);
    942 				if_statinc(ifp, if_ierrors);
    943 				goto fail;
    944 			}
    945 			if ((ifp->if_flags & IFF_PROMISC) == 0) {
    946 				struct ether_header *eh;
    947 
    948 				/*
    949 				 * Workaround for "Non-Intel XScale Technology
    950 				 * Eratta" No. 29. AA:BB:CC:DD:EE:xF's packet
    951 				 * matches the filter (both unicast and
    952 				 * multicast).
    953 				 */
    954 				eh = mtod(mrx, struct ether_header *);
    955 				if (ETHER_IS_MULTICAST(eh->ether_dhost) == 0) {
    956 					/* Unicast */
    957 
    958 					if (sc->sc_enaddr[5] != eh->ether_dhost[5]) {
    959 						/* Discard it */
    960 #if 0
    961 						printf("discard it\n");
    962 #endif
    963 						/*
    964 						 * Back out "newly allocated"
    965 						 * mbuf.
    966 						 */
    967 						m_freem(m);
    968 						goto fail;
    969 					}
    970 				} else if (memcmp(eh->ether_dhost,
    971 					etherbroadcastaddr, 6) == 0) {
    972 					/* Always accept broadcast packet*/
    973 				} else {
    974 					struct ethercom *ec = &sc->sc_ethercom;
    975 					struct ether_multi *enm;
    976 					struct ether_multistep step;
    977 					int match = 0;
    978 
    979 					/* Multicast */
    980 
    981 					ETHER_LOCK(ec);
    982 					ETHER_FIRST_MULTI(step, ec, enm);
    983 					while (enm != NULL) {
    984 						uint64_t lowint, highint, dest;
    985 
    986 						lowint = MAC2UINT64(enm->enm_addrlo);
    987 						highint = MAC2UINT64(enm->enm_addrhi);
    988 						dest = MAC2UINT64(eh->ether_dhost);
    989 #if 0
    990 						printf("%llx\n", lowint);
    991 						printf("%llx\n", dest);
    992 						printf("%llx\n", highint);
    993 #endif
    994 						if ((lowint <= dest) && (dest <= highint)) {
    995 							match = 1;
    996 							break;
    997 						}
    998 						ETHER_NEXT_MULTI(step, enm);
    999 					}
   1000 					ETHER_UNLOCK(ec);
   1001 
   1002 					if (match == 0) {
   1003 						/* Discard it */
   1004 #if 0
   1005 						printf("discard it(M)\n");
   1006 #endif
   1007 						/*
   1008 						 * Back out "newly allocated"
   1009 						 * mbuf.
   1010 						 */
   1011 						m_freem(m);
   1012 						goto fail;
   1013 					}
   1014 				}
   1015 			}
   1016 			if (mrx->m_pkthdr.len > NPE_FRAME_SIZE_DEFAULT) {
   1017 				log(LOG_INFO, "%s: oversized frame (len=%d)\n",
   1018 				    device_xname(sc->sc_dev), mrx->m_pkthdr.len);
   1019 				/* Back out "newly allocated" mbuf. */
   1020 				m_freem(m);
   1021 				if_statinc(ifp, if_ierrors);
   1022 				goto fail;
   1023 			}
   1024 #endif
   1025 
   1026 			/*
   1027 			 * Trim FCS!
   1028 			 * NPE always adds the FCS by this driver's setting,
   1029 			 * so we always trim it here and not add M_HASFCS.
   1030 			 */
   1031 			m_adj(mrx, -ETHER_CRC_LEN);
   1032 
   1033 			/*
   1034 			 * Tap off here if there is a bpf listener.
   1035 			 */
   1036 
   1037 			if_percpuq_enqueue(ifp->if_percpuq, mrx);
   1038 		} else {
   1039 fail:
   1040 			/* discard frame and re-use mbuf */
   1041 			m = npe->ix_m;
   1042 		}
   1043 		if (npe_rxbuf_init(sc, npe, m) == 0) {
   1044 			/* return npe buf to rx free list */
   1045 			ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
   1046 		} else {
   1047 			/* XXX should not happen */
   1048 		}
   1049 	}
   1050 #undef P2V
   1051 }
   1052 
   1053 static void
   1054 npe_startxmit(struct npe_softc *sc)
   1055 {
   1056 	struct npedma *dma = &sc->txdma;
   1057 	int i;
   1058 
   1059 	sc->tx_free = NULL;
   1060 	for (i = 0; i < dma->nbuf; i++) {
   1061 		struct npebuf *npe = &dma->buf[i];
   1062 		if (npe->ix_m != NULL) {
   1063 			/* NB: should not happen */
   1064 			printf("%s: %s: free mbuf at entry %u\n",
   1065 			    device_xname(sc->sc_dev), __func__, i);
   1066 			m_freem(npe->ix_m);
   1067 		}
   1068 		npe->ix_m = NULL;
   1069 		npe->ix_next = sc->tx_free;
   1070 		sc->tx_free = npe;
   1071 	}
   1072 }
   1073 
   1074 static void
   1075 npe_startrecv(struct npe_softc *sc)
   1076 {
   1077 	struct npedma *dma = &sc->rxdma;
   1078 	struct npebuf *npe;
   1079 	int i;
   1080 
   1081 	for (i = 0; i < dma->nbuf; i++) {
   1082 		npe = &dma->buf[i];
   1083 		npe_rxbuf_init(sc, npe, npe->ix_m);
   1084 		/* Set npe buf on rx free list */
   1085 		ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
   1086 	}
   1087 }
   1088 
   1089 static void
   1090 npeinit_macreg(struct npe_softc *sc)
   1091 {
   1092 
   1093 	/*
   1094 	 * Reset MAC core.
   1095 	 */
   1096 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
   1097 	DELAY(NPE_MAC_RESET_DELAY);
   1098 	/* Configure MAC to generate MDC clock */
   1099 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
   1100 
   1101 	/* Disable transmitter and receiver in the MAC */
   1102 	WR4(sc, NPE_MAC_RX_CNTRL1,
   1103 	    RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
   1104 	WR4(sc, NPE_MAC_TX_CNTRL1,
   1105 	    RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
   1106 
   1107 	/*
   1108 	 * Set the MAC core registers.
   1109 	 */
   1110 	WR4(sc, NPE_MAC_INT_CLK_THRESH, 0x1);	/* clock ratio: for ipx4xx */
   1111 	WR4(sc, NPE_MAC_TX_CNTRL2,	0xf);	/* max retries */
   1112 	WR4(sc, NPE_MAC_RANDOM_SEED,	0x8);	/* LFSR back-off seed */
   1113 	/* Thresholds determined by NPE firmware FS */
   1114 	WR4(sc, NPE_MAC_THRESH_P_EMPTY,	0x12);
   1115 	WR4(sc, NPE_MAC_THRESH_P_FULL,	0x30);
   1116 	WR4(sc, NPE_MAC_BUF_SIZE_TX, NPE_MAC_BUF_SIZE_TX_DEFAULT);
   1117 						/* tx fifo threshold (bytes) */
   1118 	WR4(sc, NPE_MAC_TX_DEFER,	0x15);	/* for single deferral */
   1119 	WR4(sc, NPE_MAC_RX_DEFER,	0x16);	/* deferral on inter-frame gap*/
   1120 	WR4(sc, NPE_MAC_TX_TWO_DEFER_1,	0x8);	/* for 2-part deferral */
   1121 	WR4(sc, NPE_MAC_TX_TWO_DEFER_2,	0x7);	/* for 2-part deferral */
   1122 	WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
   1123 						/* assumes MII mode */
   1124 	WR4(sc, NPE_MAC_TX_CNTRL1,
   1125 		  NPE_TX_CNTRL1_RETRY		/* retry failed xmits */
   1126 		| NPE_TX_CNTRL1_FCS_EN		/* append FCS */
   1127 		| NPE_TX_CNTRL1_2DEFER		/* 2-part deferal */
   1128 		| NPE_TX_CNTRL1_PAD_EN);	/* pad runt frames */
   1129 	/* XXX pad strip? */
   1130 	WR4(sc, NPE_MAC_RX_CNTRL1,
   1131 		  NPE_RX_CNTRL1_CRC_EN		/* include CRC/FCS */
   1132 		| NPE_RX_CNTRL1_PAUSE_EN);	/* ena pause frame handling */
   1133 	WR4(sc, NPE_MAC_RX_CNTRL2, 0);
   1134 }
   1135 
   1136 static void
   1137 npeinit_resetcb(void *xsc)
   1138 {
   1139 	struct npe_softc *sc = xsc;
   1140 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1141 	uint32_t msg[2];
   1142 
   1143 	if_statinc(ifp, if_oerrors);
   1144 	npeinit_locked(sc);
   1145 
   1146 	msg[0] = NPE_NOTIFYMACRECOVERYDONE << NPE_MAC_MSGID_SHL
   1147 	    | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL);
   1148 	msg[1] = 0;
   1149 	ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
   1150 }
   1151 
   1152 /*
   1153  * Reset and initialize the chip
   1154  */
   1155 static void
   1156 npeinit_locked(void *xsc)
   1157 {
   1158 	struct npe_softc *sc = xsc;
   1159 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1160 
   1161 	/* Cancel any pending I/O. */
   1162 	npestop(ifp, 0);
   1163 
   1164 	/* Reset the chip to a known state. */
   1165 	npeinit_macreg(sc);
   1166 	npe_setmac(sc, CLLADDR(ifp->if_sadl));
   1167 	ether_mediachange(ifp);
   1168 	npe_setmcast(sc);
   1169 
   1170 	npe_startxmit(sc);
   1171 	npe_startrecv(sc);
   1172 
   1173 	ifp->if_flags |= IFF_RUNNING;
   1174 	ifp->if_timer = 0;		/* just in case */
   1175 
   1176 	/* Enable transmitter and receiver in the MAC */
   1177 	WR4(sc, NPE_MAC_RX_CNTRL1,
   1178 	    RD4(sc, NPE_MAC_RX_CNTRL1) | NPE_RX_CNTRL1_RX_EN);
   1179 	WR4(sc, NPE_MAC_TX_CNTRL1,
   1180 	    RD4(sc, NPE_MAC_TX_CNTRL1) | NPE_TX_CNTRL1_TX_EN);
   1181 
   1182 	callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
   1183 }
   1184 
   1185 static int
   1186 npeinit(struct ifnet *ifp)
   1187 {
   1188 	struct npe_softc *sc = ifp->if_softc;
   1189 	int s;
   1190 
   1191 	s = splnet();
   1192 	npeinit_locked(sc);
   1193 	splx(s);
   1194 
   1195 	return 0;
   1196 }
   1197 
   1198 /*
   1199  * Defragment an mbuf chain, returning at most maxfrags separate
   1200  * mbufs+clusters.  If this is not possible NULL is returned and
   1201  * the original mbuf chain is left in its present (potentially
   1202  * modified) state.  We use two techniques: collapsing consecutive
   1203  * mbufs and replacing consecutive mbufs by a cluster.
   1204  */
   1205 static __inline struct mbuf *
   1206 npe_defrag(struct mbuf *m0)
   1207 {
   1208 	struct mbuf *m;
   1209 
   1210 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1211 	if (m == NULL)
   1212 		return NULL;
   1213 	m_copy_pkthdr(m, m0);
   1214 
   1215 	if ((m->m_len = m0->m_pkthdr.len) > MHLEN) {
   1216 		MCLGET(m, M_DONTWAIT);
   1217 		if ((m->m_flags & M_EXT) == 0) {
   1218 			m_freem(m);
   1219 			return NULL;
   1220 		}
   1221 	}
   1222 
   1223 	m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1224 	m_freem(m0);
   1225 
   1226 	return m;
   1227 }
   1228 
   1229 /*
   1230  * Dequeue packets and place on the h/w transmit queue.
   1231  */
   1232 static void
   1233 npestart(struct ifnet *ifp)
   1234 {
   1235 	struct npe_softc *sc = ifp->if_softc;
   1236 	struct npebuf *npe;
   1237 	struct npehwbuf *hw;
   1238 	struct mbuf *m, *n;
   1239 	bus_dma_segment_t *segs;
   1240 	int nseg, len, error, i;
   1241 	uint32_t next;
   1242 
   1243 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   1244 		return;
   1245 
   1246 	while (sc->tx_free != NULL) {
   1247 		IFQ_DEQUEUE(&ifp->if_snd, m);
   1248 		if (m == NULL)
   1249 			break;
   1250 		npe = sc->tx_free;
   1251 		error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
   1252 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1253 		if (error == EFBIG) {
   1254 			n = npe_defrag(m);
   1255 			if (n == NULL) {
   1256 				printf("%s: %s: too many fragments\n",
   1257 				    device_xname(sc->sc_dev), __func__);
   1258 				m_freem(m);
   1259 				return;	/* XXX? */
   1260 			}
   1261 			m = n;
   1262 			error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map,
   1263 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1264 		}
   1265 		if (error != 0) {
   1266 			printf("%s: %s: error %u\n",
   1267 			    device_xname(sc->sc_dev), __func__, error);
   1268 			m_freem(m);
   1269 			return;	/* XXX? */
   1270 		}
   1271 		sc->tx_free = npe->ix_next;
   1272 
   1273 		/*
   1274 		 * Tap off here if there is a bpf listener.
   1275 		 */
   1276 		bpf_mtap(ifp, m, BPF_D_OUT);
   1277 
   1278 		bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
   1279 		    npe->ix_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1280 
   1281 		npe->ix_m = m;
   1282 		hw = npe->ix_hw;
   1283 		len = m->m_pkthdr.len;
   1284 		nseg = npe->ix_map->dm_nsegs;
   1285 		segs = npe->ix_map->dm_segs;
   1286 		next = npe->ix_neaddr + sizeof(hw->ix_ne[0]);
   1287 		for (i = 0; i < nseg; i++) {
   1288 			hw->ix_ne[i].data = htobe32(segs[i].ds_addr);
   1289 			hw->ix_ne[i].len = htobe32((segs[i].ds_len<<16) | len);
   1290 			hw->ix_ne[i].next = htobe32(next);
   1291 
   1292 			len = 0;		/* zero for segments > 1 */
   1293 			next += sizeof(hw->ix_ne[0]);
   1294 		}
   1295 		hw->ix_ne[i-1].next = 0;	/* zero last in chain */
   1296 		/* XXX flush descriptor instead of using uncached memory */
   1297 
   1298 		DPRINTF(sc, "%s: qwrite(%u, 0x%x) ne_data %x ne_len 0x%x\n",
   1299 		    __func__, sc->tx_qid, npe->ix_neaddr,
   1300 		    hw->ix_ne[0].data, hw->ix_ne[0].len);
   1301 		/* stick it on the tx q */
   1302 		/* XXX add vlan priority */
   1303 		ixpqmgr_qwrite(sc->tx_qid, npe->ix_neaddr);
   1304 
   1305 		ifp->if_timer = 5;
   1306 	}
   1307 }
   1308 
   1309 static void
   1310 npe_stopxmit(struct npe_softc *sc)
   1311 {
   1312 	struct npedma *dma = &sc->txdma;
   1313 	int i;
   1314 
   1315 	/* XXX qmgr */
   1316 	for (i = 0; i < dma->nbuf; i++) {
   1317 		struct npebuf *npe = &dma->buf[i];
   1318 
   1319 		if (npe->ix_m != NULL) {
   1320 			bus_dmamap_unload(sc->sc_dt, npe->ix_map);
   1321 			m_freem(npe->ix_m);
   1322 			npe->ix_m = NULL;
   1323 		}
   1324 	}
   1325 }
   1326 
   1327 static void
   1328 npe_stoprecv(struct npe_softc *sc)
   1329 {
   1330 	struct npedma *dma = &sc->rxdma;
   1331 	int i;
   1332 
   1333 	/* XXX qmgr */
   1334 	for (i = 0; i < dma->nbuf; i++) {
   1335 		struct npebuf *npe = &dma->buf[i];
   1336 
   1337 		if (npe->ix_m != NULL) {
   1338 			bus_dmamap_unload(sc->sc_dt, npe->ix_map);
   1339 			m_freem(npe->ix_m);
   1340 			npe->ix_m = NULL;
   1341 		}
   1342 	}
   1343 }
   1344 
   1345 /*
   1346  * Turn off interrupts, and stop the nic.
   1347  */
   1348 void
   1349 npestop(struct ifnet *ifp, int disable)
   1350 {
   1351 	struct npe_softc *sc = ifp->if_softc;
   1352 
   1353 	/* Disable transmitter and receiver in the MAC */
   1354 	WR4(sc, NPE_MAC_RX_CNTRL1,
   1355 	    RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
   1356 	WR4(sc, NPE_MAC_TX_CNTRL1,
   1357 	    RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
   1358 
   1359 	callout_stop(&sc->sc_tick_ch);
   1360 
   1361 	npe_stopxmit(sc);
   1362 	npe_stoprecv(sc);
   1363 	/* XXX go into loopback & drain q's? */
   1364 	/* XXX but beware of disabling tx above */
   1365 
   1366 	/*
   1367 	 * The MAC core rx/tx disable may leave the MAC hardware in an
   1368 	 * unpredictable state. A hw reset is executed before resetting
   1369 	 * all the MAC parameters to a known value.
   1370 	 */
   1371 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
   1372 	DELAY(NPE_MAC_RESET_DELAY);
   1373 	WR4(sc, NPE_MAC_INT_CLK_THRESH, NPE_MAC_INT_CLK_THRESH_DEFAULT);
   1374 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
   1375 
   1376 	ifp->if_timer = 0;
   1377 	ifp->if_flags &= ~IFF_RUNNING;
   1378 }
   1379 
   1380 void
   1381 npewatchdog(struct ifnet *ifp)
   1382 {
   1383 	struct npe_softc *sc = ifp->if_softc;
   1384 	int s;
   1385 
   1386 	aprint_error_dev(sc->sc_dev, "device timeout\n");
   1387 	s = splnet();
   1388 	if_statinc(ifp, if_oerrors);
   1389 	npeinit_locked(sc);
   1390 	splx(s);
   1391 }
   1392 
   1393 static int
   1394 npeioctl(struct ifnet *ifp, u_long cmd, void *data)
   1395 {
   1396 	struct npe_softc *sc = ifp->if_softc;
   1397 	struct ifreq *ifr = (struct ifreq *) data;
   1398 	int s, error = 0;
   1399 
   1400 	s = splnet();
   1401 
   1402 	switch (cmd) {
   1403 	case SIOCSIFMEDIA:
   1404 #if 0 /* not yet */
   1405 		/* Flow control requires full-duplex mode. */
   1406 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1407 		    (ifr->ifr_media & IFM_FDX) == 0)
   1408 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1409 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1410 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1411 				/* We can do both TXPAUSE and RXPAUSE. */
   1412 				ifr->ifr_media |=
   1413 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1414 			}
   1415 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1416 		}
   1417 #endif
   1418 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1419 		break;
   1420 	case SIOCSIFFLAGS:
   1421 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_RUNNING) {
   1422 			/*
   1423 			 * If interface is marked down and it is running,
   1424 			 * then stop and disable it.
   1425 			 */
   1426 			if_stop(ifp, 1);
   1427 		} else if ((ifp->if_flags & (IFF_UP |IFF_RUNNING)) == IFF_UP) {
   1428 			/*
   1429 			 * If interface is marked up and it is stopped, then
   1430 			 * start it.
   1431 			 */
   1432 			error = if_init(ifp);
   1433 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1434 			u_short diff;
   1435 
   1436 			/* Up (AND RUNNING). */
   1437 
   1438 			diff = (ifp->if_flags ^ sc->sc_if_flags)
   1439 			    & (IFF_PROMISC | IFF_ALLMULTI);
   1440 			if ((diff & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
   1441 				/*
   1442 				 * If the difference between last flag and
   1443 				 * new flag only IFF_PROMISC or IFF_ALLMULTI,
   1444 				 * set multicast filter only (don't reset to
   1445 				 * prevent link down).
   1446 				 */
   1447 				npe_setmcast(sc);
   1448 			} else {
   1449 				/*
   1450 				 * Reset the interface to pick up changes in
   1451 				 * any other flags that affect the hardware
   1452 				 * state.
   1453 				 */
   1454 				error = if_init(ifp);
   1455 			}
   1456 		}
   1457 		sc->sc_if_flags = ifp->if_flags;
   1458 		break;
   1459 	default:
   1460 		error = ether_ioctl(ifp, cmd, data);
   1461 		if (error == ENETRESET) {
   1462 			/*
   1463 			 * Multicast list has changed; set the hardware filter
   1464 			 * accordingly.
   1465 			 */
   1466 			npe_setmcast(sc);
   1467 			error = 0;
   1468 		}
   1469 	}
   1470 
   1471 	npestart(ifp);
   1472 
   1473 	splx(s);
   1474 	return error;
   1475 }
   1476 
   1477 /*
   1478  * Setup a traffic class -> rx queue mapping.
   1479  */
   1480 static int
   1481 npe_setrxqosentry(struct npe_softc *sc, int classix, int trafclass, int qid)
   1482 {
   1483 	int npeid = npeconfig[sc->sc_unit].npeid;
   1484 	uint32_t msg[2];
   1485 
   1486 	msg[0] = (NPE_SETRXQOSENTRY << NPE_MAC_MSGID_SHL) | (npeid << 20)
   1487 	    | classix;
   1488 	msg[1] = (trafclass << 24) | (1 << 23) | (qid << 16) | (qid << 4);
   1489 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
   1490 }
   1491 
   1492 /*
   1493  * Update and reset the statistics in the NPE.
   1494  */
   1495 static int
   1496 npe_updatestats(struct npe_softc *sc)
   1497 {
   1498 	uint32_t msg[2];
   1499 
   1500 	msg[0] = NPE_RESETSTATS << NPE_MAC_MSGID_SHL;
   1501 	msg[1] = sc->sc_stats_phys;	/* physical address of stat block */
   1502 	return ixpnpe_sendmsg(sc->sc_npe, msg);		/* NB: no recv */
   1503 }
   1504 
   1505 #if 0
   1506 /*
   1507  * Get the current statistics block.
   1508  */
   1509 static int
   1510 npe_getstats(struct npe_softc *sc)
   1511 {
   1512 	uint32_t msg[2];
   1513 
   1514 	msg[0] = NPE_GETSTATS << NPE_MAC_MSGID_SHL;
   1515 	msg[1] = sc->sc_stats_phys;	/* physical address of stat block */
   1516 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
   1517 }
   1518 
   1519 /*
   1520  * Query the image id of the loaded firmware.
   1521  */
   1522 static uint32_t
   1523 npe_getimageid(struct npe_softc *sc)
   1524 {
   1525 	uint32_t msg[2];
   1526 
   1527 	msg[0] = NPE_GETSTATUS << NPE_MAC_MSGID_SHL;
   1528 	msg[1] = 0;
   1529 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg) == 0 ? msg[1] : 0;
   1530 }
   1531 
   1532 /*
   1533  * Enable/disable loopback.
   1534  */
   1535 static int
   1536 npe_setloopback(struct npe_softc *sc, int ena)
   1537 {
   1538 	uint32_t msg[2];
   1539 
   1540 	msg[0] = (NPE_SETLOOPBACK << NPE_MAC_MSGID_SHL) | (ena != 0);
   1541 	msg[1] = 0;
   1542 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
   1543 }
   1544 #endif
   1545 
   1546 /*
   1547  * MII bus support routines.
   1548  *
   1549  * NB: ixp425 has one PHY per NPE
   1550  */
   1551 static uint32_t
   1552 npe_mii_mdio_read(struct npe_softc *sc, int reg)
   1553 {
   1554 #define	MII_RD4(sc, reg)	bus_space_read_4(sc->sc_iot, sc->sc_miih, reg)
   1555 	uint32_t v;
   1556 
   1557 	/* NB: registers are known to be sequential */
   1558 	v =  (MII_RD4(sc, reg+0) & 0xff) << 0;
   1559 	v |= (MII_RD4(sc, reg+4) & 0xff) << 8;
   1560 	v |= (MII_RD4(sc, reg+8) & 0xff) << 16;
   1561 	v |= (MII_RD4(sc, reg+12) & 0xff) << 24;
   1562 	return v;
   1563 #undef MII_RD4
   1564 }
   1565 
   1566 static void
   1567 npe_mii_mdio_write(struct npe_softc *sc, int reg, uint32_t cmd)
   1568 {
   1569 #define	MII_WR4(sc, reg, v) \
   1570 	bus_space_write_4(sc->sc_iot, sc->sc_miih, reg, v)
   1571 
   1572 	/* NB: registers are known to be sequential */
   1573 	MII_WR4(sc, reg+0, cmd & 0xff);
   1574 	MII_WR4(sc, reg+4, (cmd >> 8) & 0xff);
   1575 	MII_WR4(sc, reg+8, (cmd >> 16) & 0xff);
   1576 	MII_WR4(sc, reg+12, (cmd >> 24) & 0xff);
   1577 #undef MII_WR4
   1578 }
   1579 
   1580 static int
   1581 npe_mii_mdio_wait(struct npe_softc *sc)
   1582 {
   1583 #define	MAXTRIES	100	/* XXX */
   1584 	uint32_t v;
   1585 	int i;
   1586 
   1587 	for (i = 0; i < MAXTRIES; i++) {
   1588 		v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_CMD);
   1589 		if ((v & NPE_MII_GO) == 0)
   1590 			return 0;
   1591 	}
   1592 	return ETIMEDOUT;
   1593 #undef MAXTRIES
   1594 }
   1595 
   1596 static int
   1597 npe_miibus_readreg(device_t self, int phy, int reg, uint16_t *val)
   1598 {
   1599 	struct npe_softc *sc = device_private(self);
   1600 	uint32_t v;
   1601 
   1602 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
   1603 		return -1;
   1604 	v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
   1605 	  | NPE_MII_GO;
   1606 	npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
   1607 	if (npe_mii_mdio_wait(sc) == 0)
   1608 		v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_STS);
   1609 	else
   1610 		v = 0xffff | NPE_MII_READ_FAIL;
   1611 
   1612 	if ((v & NPE_MII_READ_FAIL) != 0)
   1613 		return -1;
   1614 
   1615 	*val = v & 0xffff;
   1616 	return 0;
   1617 #undef MAXTRIES
   1618 }
   1619 
   1620 static int
   1621 npe_miibus_writereg(device_t self, int phy, int reg, uint16_t val)
   1622 {
   1623 	struct npe_softc *sc = device_private(self);
   1624 	uint32_t v;
   1625 
   1626 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
   1627 		return -1;
   1628 	v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
   1629 	  | val | NPE_MII_WRITE
   1630 	  | NPE_MII_GO;
   1631 	npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
   1632 
   1633 	return npe_mii_mdio_wait(sc);
   1634 }
   1635 
   1636 static void
   1637 npe_miibus_statchg(struct ifnet *ifp)
   1638 {
   1639 	struct npe_softc *sc = ifp->if_softc;
   1640 	uint32_t tx1, rx1;
   1641 	uint32_t randoff;
   1642 
   1643 	/* Sync MAC duplex state */
   1644 	tx1 = RD4(sc, NPE_MAC_TX_CNTRL1);
   1645 	rx1 = RD4(sc, NPE_MAC_RX_CNTRL1);
   1646 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1647 		WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
   1648 		tx1 &= ~NPE_TX_CNTRL1_DUPLEX;
   1649 		rx1 |= NPE_RX_CNTRL1_PAUSE_EN;
   1650 	} else {
   1651 		struct timeval now;
   1652 		getmicrotime(&now);
   1653 		randoff = (RD4(sc, NPE_MAC_UNI_ADDR_6) ^ now.tv_usec)
   1654 		    & 0x7f;
   1655 		WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT
   1656 		    + randoff);
   1657 		tx1 |= NPE_TX_CNTRL1_DUPLEX;
   1658 		rx1 &= ~NPE_RX_CNTRL1_PAUSE_EN;
   1659 	}
   1660 	WR4(sc, NPE_MAC_RX_CNTRL1, rx1);
   1661 	WR4(sc, NPE_MAC_TX_CNTRL1, tx1);
   1662 }
   1663