ixp425_if_npe.c revision 1.7 1 /* $NetBSD: ixp425_if_npe.c,v 1.7 2008/01/19 22:10:14 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2006 Sam Leffler. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #include <sys/cdefs.h>
28 #if 0
29 __FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/if_npe.c,v 1.1 2006/11/19 23:55:23 sam Exp $");
30 #endif
31 __KERNEL_RCSID(0, "$NetBSD: ixp425_if_npe.c,v 1.7 2008/01/19 22:10:14 dyoung Exp $");
32
33 /*
34 * Intel XScale NPE Ethernet driver.
35 *
36 * This driver handles the two ports present on the IXP425.
37 * Packet processing is done by the Network Processing Engines
38 * (NPE's) that work together with a MAC and PHY. The MAC
39 * is also mapped to the XScale cpu; the PHY is accessed via
40 * the MAC. NPE-XScale communication happens through h/w
41 * queues managed by the Q Manager block.
42 *
43 * The code here replaces the ethAcc, ethMii, and ethDB classes
44 * in the Intel Access Library (IAL) and the OS-specific driver.
45 *
46 * XXX add vlan support
47 * XXX NPE-C port doesn't work yet
48 */
49
50 #include "bpfilter.h"
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/device.h>
56 #include <sys/callout.h>
57 #include <sys/mbuf.h>
58 #include <sys/malloc.h>
59 #include <sys/socket.h>
60 #include <sys/endian.h>
61 #include <sys/ioctl.h>
62
63 #include <machine/bus.h>
64
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_media.h>
68 #include <net/if_ether.h>
69
70 #if NBPFILTER > 0
71 #include <net/bpf.h>
72 #endif
73
74 #include <arm/xscale/ixp425reg.h>
75 #include <arm/xscale/ixp425var.h>
76 #include <arm/xscale/ixp425_qmgr.h>
77 #include <arm/xscale/ixp425_npevar.h>
78 #include <arm/xscale/ixp425_if_npereg.h>
79
80 #include <dev/mii/miivar.h>
81
82 #include "locators.h"
83
84 struct npebuf {
85 struct npebuf *ix_next; /* chain to next buffer */
86 void *ix_m; /* backpointer to mbuf */
87 bus_dmamap_t ix_map; /* bus dma map for associated data */
88 struct npehwbuf *ix_hw; /* associated h/w block */
89 uint32_t ix_neaddr; /* phys address of ix_hw */
90 };
91
92 struct npedma {
93 const char* name;
94 int nbuf; /* # npebuf's allocated */
95 bus_dmamap_t m_map;
96 struct npehwbuf *hwbuf; /* NPE h/w buffers */
97 bus_dmamap_t buf_map;
98 bus_addr_t buf_phys; /* phys addr of buffers */
99 struct npebuf *buf; /* s/w buffers (1-1 w/ h/w) */
100 };
101
102 struct npe_softc {
103 struct device sc_dev;
104 struct ethercom sc_ethercom;
105 struct mii_data sc_mii;
106 bus_space_tag_t sc_iot;
107 bus_dma_tag_t sc_dt;
108 bus_space_handle_t sc_ioh; /* MAC register window */
109 bus_space_handle_t sc_miih; /* MII register window */
110 struct ixpnpe_softc *sc_npe; /* NPE support */
111 int sc_unit;
112 int sc_phy;
113 struct callout sc_tick_ch; /* Tick callout */
114 struct npedma txdma;
115 struct npebuf *tx_free; /* list of free tx buffers */
116 struct npedma rxdma;
117 int rx_qid; /* rx qid */
118 int rx_freeqid; /* rx free buffers qid */
119 int tx_qid; /* tx qid */
120 int tx_doneqid; /* tx completed qid */
121 struct npestats *sc_stats;
122 bus_dmamap_t sc_stats_map;
123 bus_addr_t sc_stats_phys; /* phys addr of sc_stats */
124 };
125
126 /*
127 * Per-unit static configuration for IXP425. The tx and
128 * rx free Q id's are fixed by the NPE microcode. The
129 * rx Q id's are programmed to be separate to simplify
130 * multi-port processing. It may be better to handle
131 * all traffic through one Q (as done by the Intel drivers).
132 *
133 * Note that the PHY's are accessible only from MAC A
134 * on the IXP425. This and other platform-specific
135 * assumptions probably need to be handled through hints.
136 */
137 static const struct {
138 const char *desc; /* device description */
139 int npeid; /* NPE assignment */
140 uint32_t imageid; /* NPE firmware image id */
141 uint32_t regbase;
142 int regsize;
143 uint32_t miibase;
144 int miisize;
145 uint8_t rx_qid;
146 uint8_t rx_freeqid;
147 uint8_t tx_qid;
148 uint8_t tx_doneqid;
149 } npeconfig[NPE_PORTS_MAX] = {
150 { .desc = "IXP NPE-B",
151 .npeid = NPE_B,
152 .imageid = IXP425_NPE_B_IMAGEID,
153 .regbase = IXP425_MAC_A_HWBASE,
154 .regsize = IXP425_MAC_A_SIZE,
155 .miibase = IXP425_MAC_A_HWBASE,
156 .miisize = IXP425_MAC_A_SIZE,
157 .rx_qid = 4,
158 .rx_freeqid = 27,
159 .tx_qid = 24,
160 .tx_doneqid = 31
161 },
162 { .desc = "IXP NPE-C",
163 .npeid = NPE_C,
164 .imageid = IXP425_NPE_C_IMAGEID,
165 .regbase = IXP425_MAC_B_HWBASE,
166 .regsize = IXP425_MAC_B_SIZE,
167 .miibase = IXP425_MAC_A_HWBASE,
168 .miisize = IXP425_MAC_A_SIZE,
169 .rx_qid = 12,
170 .rx_freeqid = 28,
171 .tx_qid = 25,
172 .tx_doneqid = 31
173 },
174 };
175 static struct npe_softc *npes[NPE_MAX]; /* NB: indexed by npeid */
176
177 static __inline uint32_t
178 RD4(struct npe_softc *sc, bus_size_t off)
179 {
180 return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
181 }
182
183 static __inline void
184 WR4(struct npe_softc *sc, bus_size_t off, uint32_t val)
185 {
186 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
187 }
188
189 static int npe_activate(struct npe_softc *);
190 #if 0
191 static void npe_deactivate(struct npe_softc *);
192 #endif
193 static int npe_ifmedia_change(struct ifnet *ifp);
194 static void npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr);
195 static void npe_setmac(struct npe_softc *sc, const u_char *eaddr);
196 static void npe_getmac(struct npe_softc *sc, u_char *eaddr);
197 static void npe_txdone(int qid, void *arg);
198 static int npe_rxbuf_init(struct npe_softc *, struct npebuf *,
199 struct mbuf *);
200 static void npe_rxdone(int qid, void *arg);
201 static int npeinit(struct ifnet *);
202 static void npestart(struct ifnet *);
203 static void npestop(struct ifnet *, int);
204 static void npewatchdog(struct ifnet *);
205 static int npeioctl(struct ifnet * ifp, u_long, void *);
206
207 static int npe_setrxqosentry(struct npe_softc *, int classix,
208 int trafclass, int qid);
209 static int npe_updatestats(struct npe_softc *);
210 #if 0
211 static int npe_getstats(struct npe_softc *);
212 static uint32_t npe_getimageid(struct npe_softc *);
213 static int npe_setloopback(struct npe_softc *, int ena);
214 #endif
215
216 static int npe_miibus_readreg(struct device *, int, int);
217 static void npe_miibus_writereg(struct device *, int, int, int);
218 static void npe_miibus_statchg(struct device *);
219
220 static int npe_debug;
221 #define DPRINTF(sc, fmt, ...) do { \
222 if (npe_debug) printf(fmt, __VA_ARGS__); \
223 } while (0)
224 #define DPRINTFn(n, sc, fmt, ...) do { \
225 if (npe_debug >= n) printf(fmt, __VA_ARGS__); \
226 } while (0)
227
228 #define NPE_TXBUF 128
229 #define NPE_RXBUF 64
230
231 #ifndef ETHER_ALIGN
232 #define ETHER_ALIGN 2 /* XXX: Ditch this */
233 #endif
234
235 /* NB: all tx done processing goes through one queue */
236 static int tx_doneqid = -1;
237
238 static int npe_match(struct device *, struct cfdata *, void *);
239 static void npe_attach(struct device *, struct device *, void *);
240
241 CFATTACH_DECL(npe, sizeof(struct npe_softc),
242 npe_match, npe_attach, NULL, NULL);
243
244 static int
245 npe_match(struct device *parent, struct cfdata *cf, void *arg)
246 {
247 struct ixpnpe_attach_args *na = arg;
248
249 return (na->na_unit == NPE_B || na->na_unit == NPE_C);
250 }
251
252 static void
253 npe_attach(struct device *parent, struct device *self, void *arg)
254 {
255 struct npe_softc *sc = (void *)self;
256 struct ixpnpe_attach_args *na = arg;
257 struct ifnet *ifp;
258 u_char eaddr[6];
259
260 aprint_naive("\n");
261 aprint_normal(": Ethernet co-processor\n");
262
263 sc->sc_iot = na->na_iot;
264 sc->sc_dt = na->na_dt;
265 sc->sc_npe = na->na_npe;
266 sc->sc_unit = (na->na_unit == NPE_B) ? 0 : 1;
267 sc->sc_phy = na->na_phy;
268
269 memset(&sc->sc_ethercom, 0, sizeof(sc->sc_ethercom));
270 memset(&sc->sc_mii, 0, sizeof(sc->sc_mii));
271
272 callout_init(&sc->sc_tick_ch, 0);
273
274 if (npe_activate(sc)) {
275 aprint_error("%s: Failed to activate NPE (missing "
276 "microcode?)\n", sc->sc_dev.dv_xname);
277 return;
278 }
279
280 /*
281 * XXXSCW: This is bogus - the NPE may not have been configured for
282 * XXXSCW: Ethernet yet. We must check for a property set by
283 * XXXSCW: board-specific code.
284 */
285 npe_getmac(sc, eaddr);
286
287 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
288 ether_sprintf(eaddr));
289
290 ifp = &sc->sc_ethercom.ec_if;
291 ifmedia_init(&sc->sc_mii.mii_media, 0, npe_ifmedia_change,
292 npe_ifmedia_status);
293
294 if (sc->sc_phy != IXPNPECF_PHY_DEFAULT) {
295 sc->sc_mii.mii_ifp = ifp;
296 sc->sc_mii.mii_readreg = npe_miibus_readreg;
297 sc->sc_mii.mii_writereg = npe_miibus_writereg;
298 sc->sc_mii.mii_statchg = npe_miibus_statchg;
299 sc->sc_ethercom.ec_mii = &sc->sc_mii;
300
301 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
302 (sc->sc_phy > IXPNPECF_PHY_DEFAULT) ?
303 sc->sc_phy : MII_PHY_ANY,
304 MII_OFFSET_ANY, MIIF_NOISOLATE);
305 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
306 } else {
307 /* Assume direct connection to a 100mbit switch */
308 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_100_TX, 0,0);
309 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_100_TX);
310 }
311
312 ifp->if_softc = sc;
313 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
314 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
315 ifp->if_start = npestart;
316 ifp->if_ioctl = npeioctl;
317 ifp->if_watchdog = npewatchdog;
318 ifp->if_init = npeinit;
319 ifp->if_stop = npestop;
320 IFQ_SET_READY(&ifp->if_snd);
321
322 if_attach(ifp);
323 ether_ifattach(ifp, eaddr);
324 }
325
326 /*
327 * Compute and install the multicast filter.
328 */
329 static void
330 npe_setmcast(struct npe_softc *sc)
331 {
332 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
333 uint8_t mask[ETHER_ADDR_LEN], addr[ETHER_ADDR_LEN];
334 int i;
335
336 if (ifp->if_flags & IFF_PROMISC) {
337 memset(mask, 0, ETHER_ADDR_LEN);
338 memset(addr, 0, ETHER_ADDR_LEN);
339 } else if (ifp->if_flags & IFF_ALLMULTI) {
340 static const uint8_t allmulti[ETHER_ADDR_LEN] =
341 { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
342 all_multi:
343 memcpy(mask, allmulti, ETHER_ADDR_LEN);
344 memcpy(addr, allmulti, ETHER_ADDR_LEN);
345 } else {
346 uint8_t clr[ETHER_ADDR_LEN], set[ETHER_ADDR_LEN];
347 struct ether_multistep step;
348 struct ether_multi *enm;
349
350 memset(clr, 0, ETHER_ADDR_LEN);
351 memset(set, 0xff, ETHER_ADDR_LEN);
352
353 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
354 while (enm != NULL) {
355 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
356 ifp->if_flags |= IFF_ALLMULTI;
357 goto all_multi;
358 }
359
360 for (i = 0; i < ETHER_ADDR_LEN; i++) {
361 clr[i] |= enm->enm_addrlo[i];
362 set[i] &= enm->enm_addrlo[i];
363 }
364
365 ETHER_NEXT_MULTI(step, enm);
366 }
367
368 for (i = 0; i < ETHER_ADDR_LEN; i++) {
369 mask[i] = set[i] | ~clr[i];
370 addr[i] = set[i];
371 }
372 }
373
374 /*
375 * Write the mask and address registers.
376 */
377 for (i = 0; i < ETHER_ADDR_LEN; i++) {
378 WR4(sc, NPE_MAC_ADDR_MASK(i), mask[i]);
379 WR4(sc, NPE_MAC_ADDR(i), addr[i]);
380 }
381 }
382
383 static int
384 npe_dma_setup(struct npe_softc *sc, struct npedma *dma,
385 const char *name, int nbuf, int maxseg)
386 {
387 bus_dma_segment_t seg;
388 int rseg, error, i;
389 void *hwbuf;
390 size_t size;
391
392 memset(dma, 0, sizeof(dma));
393
394 dma->name = name;
395 dma->nbuf = nbuf;
396
397 size = nbuf * sizeof(struct npehwbuf);
398
399 /* XXX COHERENT for now */
400 error = bus_dmamem_alloc(sc->sc_dt, size, sizeof(uint32_t), 0, &seg,
401 1, &rseg, BUS_DMA_NOWAIT);
402 if (error) {
403 printf("%s: unable to allocate memory for %s h/w buffers, "
404 "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
405 }
406
407 error = bus_dmamem_map(sc->sc_dt, &seg, 1, size, &hwbuf,
408 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_NOCACHE);
409 if (error) {
410 printf("%s: unable to map memory for %s h/w buffers, "
411 "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
412 free_dmamem:
413 bus_dmamem_free(sc->sc_dt, &seg, rseg);
414 return error;
415 }
416 dma->hwbuf = (void *)hwbuf;
417
418 error = bus_dmamap_create(sc->sc_dt, size, 1, size, 0,
419 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &dma->buf_map);
420 if (error) {
421 printf("%s: unable to create map for %s h/w buffers, "
422 "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
423 unmap_dmamem:
424 dma->hwbuf = NULL;
425 bus_dmamem_unmap(sc->sc_dt, hwbuf, size);
426 goto free_dmamem;
427 }
428
429 error = bus_dmamap_load(sc->sc_dt, dma->buf_map, hwbuf, size, NULL,
430 BUS_DMA_NOWAIT);
431 if (error) {
432 printf("%s: unable to load map for %s h/w buffers, "
433 "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
434 destroy_dmamap:
435 bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
436 goto unmap_dmamem;
437 }
438
439 /* XXX M_TEMP */
440 dma->buf = malloc(nbuf * sizeof(struct npebuf), M_TEMP, M_NOWAIT | M_ZERO);
441 if (dma->buf == NULL) {
442 printf("%s: unable to allocate memory for %s s/w buffers\n",
443 sc->sc_dev.dv_xname, dma->name);
444 bus_dmamap_unload(sc->sc_dt, dma->buf_map);
445 error = ENOMEM;
446 goto destroy_dmamap;
447 }
448
449 dma->buf_phys = dma->buf_map->dm_segs[0].ds_addr;
450 for (i = 0; i < dma->nbuf; i++) {
451 struct npebuf *npe = &dma->buf[i];
452 struct npehwbuf *hw = &dma->hwbuf[i];
453
454 /* calculate offset to shared area */
455 npe->ix_neaddr = dma->buf_phys +
456 ((uintptr_t)hw - (uintptr_t)dma->hwbuf);
457 KASSERT((npe->ix_neaddr & 0x1f) == 0);
458 error = bus_dmamap_create(sc->sc_dt, MCLBYTES, 1,
459 MCLBYTES, 0, 0, &npe->ix_map);
460 if (error != 0) {
461 printf("%s: unable to create dmamap for %s buffer %u, "
462 "error %u\n", sc->sc_dev.dv_xname, dma->name, i,
463 error);
464 /* XXXSCW: Free up maps... */
465 return error;
466 }
467 npe->ix_hw = hw;
468 }
469 bus_dmamap_sync(sc->sc_dt, dma->buf_map, 0, dma->buf_map->dm_mapsize,
470 BUS_DMASYNC_PREWRITE);
471 return 0;
472 }
473
474 #if 0
475 static void
476 npe_dma_destroy(struct npe_softc *sc, struct npedma *dma)
477 {
478 int i;
479
480 /* XXXSCW: Clean this up */
481
482 if (dma->hwbuf != NULL) {
483 for (i = 0; i < dma->nbuf; i++) {
484 struct npebuf *npe = &dma->buf[i];
485 bus_dmamap_destroy(sc->sc_dt, npe->ix_map);
486 }
487 bus_dmamap_unload(sc->sc_dt, dma->buf_map);
488 bus_dmamem_free(sc->sc_dt, (void *)dma->hwbuf, dma->buf_map);
489 bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
490 }
491 if (dma->buf != NULL)
492 free(dma->buf, M_TEMP);
493 memset(dma, 0, sizeof(*dma));
494 }
495 #endif
496
497 static int
498 npe_activate(struct npe_softc *sc)
499 {
500 bus_dma_segment_t seg;
501 int unit = sc->sc_unit;
502 int error, i, rseg;
503 void *statbuf;
504
505 /* load NPE firmware and start it running */
506 error = ixpnpe_init(sc->sc_npe, "npe_fw", npeconfig[unit].imageid);
507 if (error != 0)
508 return error;
509
510 if (bus_space_map(sc->sc_iot, npeconfig[unit].regbase,
511 npeconfig[unit].regsize, 0, &sc->sc_ioh)) {
512 printf("%s: Cannot map registers 0x%x:0x%x\n",
513 sc->sc_dev.dv_xname, npeconfig[unit].regbase,
514 npeconfig[unit].regsize);
515 return ENOMEM;
516 }
517
518 if (npeconfig[unit].miibase != npeconfig[unit].regbase) {
519 /*
520 * The PHY's are only accessible from one MAC (it appears)
521 * so for other MAC's setup an additional mapping for
522 * frobbing the PHY registers.
523 */
524 if (bus_space_map(sc->sc_iot, npeconfig[unit].miibase,
525 npeconfig[unit].miisize, 0, &sc->sc_miih)) {
526 printf("%s: Cannot map MII registers 0x%x:0x%x\n",
527 sc->sc_dev.dv_xname, npeconfig[unit].miibase,
528 npeconfig[unit].miisize);
529 return ENOMEM;
530 }
531 } else
532 sc->sc_miih = sc->sc_ioh;
533 error = npe_dma_setup(sc, &sc->txdma, "tx", NPE_TXBUF, NPE_MAXSEG);
534 if (error != 0)
535 return error;
536 error = npe_dma_setup(sc, &sc->rxdma, "rx", NPE_RXBUF, 1);
537 if (error != 0)
538 return error;
539
540 /* setup statistics block */
541 error = bus_dmamem_alloc(sc->sc_dt, sizeof(struct npestats),
542 sizeof(uint32_t), 0, &seg, 1, &rseg, BUS_DMA_NOWAIT);
543 if (error) {
544 printf("%s: unable to allocate memory for stats block, "
545 "error %u\n", sc->sc_dev.dv_xname, error);
546 return error;
547 }
548
549 error = bus_dmamem_map(sc->sc_dt, &seg, 1, sizeof(struct npestats),
550 &statbuf, BUS_DMA_NOWAIT);
551 if (error) {
552 printf("%s: unable to map memory for stats block, "
553 "error %u\n", sc->sc_dev.dv_xname, error);
554 return error;
555 }
556 sc->sc_stats = (void *)statbuf;
557
558 error = bus_dmamap_create(sc->sc_dt, sizeof(struct npestats), 1,
559 sizeof(struct npestats), 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
560 &sc->sc_stats_map);
561 if (error) {
562 printf("%s: unable to create map for stats block, "
563 "error %u\n", sc->sc_dev.dv_xname, error);
564 return error;
565 }
566
567 if (bus_dmamap_load(sc->sc_dt, sc->sc_stats_map, sc->sc_stats,
568 sizeof(struct npestats), NULL, BUS_DMA_NOWAIT) != 0) {
569 printf("%s: unable to load memory for stats block, error %u\n",
570 sc->sc_dev.dv_xname, error);
571 return error;
572 }
573 sc->sc_stats_phys = sc->sc_stats_map->dm_segs[0].ds_addr;
574
575 /* XXX disable half-bridge LEARNING+FILTERING feature */
576
577 /*
578 * Setup h/w rx/tx queues. There are four q's:
579 * rx inbound q of rx'd frames
580 * rx_free pool of ixpbuf's for receiving frames
581 * tx outbound q of frames to send
582 * tx_done q of tx frames that have been processed
583 *
584 * The NPE handles the actual tx/rx process and the q manager
585 * handles the queues. The driver just writes entries to the
586 * q manager mailbox's and gets callbacks when there are rx'd
587 * frames to process or tx'd frames to reap. These callbacks
588 * are controlled by the q configurations; e.g. we get a
589 * callback when tx_done has 2 or more frames to process and
590 * when the rx q has at least one frame. These setings can
591 * changed at the time the q is configured.
592 */
593 sc->rx_qid = npeconfig[unit].rx_qid;
594 ixpqmgr_qconfig(sc->rx_qid, NPE_RXBUF, 0, 1,
595 IX_QMGR_Q_SOURCE_ID_NOT_E, npe_rxdone, sc);
596 sc->rx_freeqid = npeconfig[unit].rx_freeqid;
597 ixpqmgr_qconfig(sc->rx_freeqid, NPE_RXBUF, 0, NPE_RXBUF/2, 0, NULL, sc);
598 /* tell the NPE to direct all traffic to rx_qid */
599 #if 0
600 for (i = 0; i < 8; i++)
601 #else
602 printf("%s: remember to fix rx q setup\n", sc->sc_dev.dv_xname);
603 for (i = 0; i < 4; i++)
604 #endif
605 npe_setrxqosentry(sc, i, 0, sc->rx_qid);
606
607 sc->tx_qid = npeconfig[unit].tx_qid;
608 sc->tx_doneqid = npeconfig[unit].tx_doneqid;
609 ixpqmgr_qconfig(sc->tx_qid, NPE_TXBUF, 0, NPE_TXBUF, 0, NULL, sc);
610 if (tx_doneqid == -1) {
611 ixpqmgr_qconfig(sc->tx_doneqid, NPE_TXBUF, 0, 2,
612 IX_QMGR_Q_SOURCE_ID_NOT_E, npe_txdone, sc);
613 tx_doneqid = sc->tx_doneqid;
614 }
615
616 KASSERT(npes[npeconfig[unit].npeid] == NULL);
617 npes[npeconfig[unit].npeid] = sc;
618
619 return 0;
620 }
621
622 #if 0
623 static void
624 npe_deactivate(struct npe_softc *sc);
625 {
626 int unit = sc->sc_unit;
627
628 npes[npeconfig[unit].npeid] = NULL;
629
630 /* XXX disable q's */
631 if (sc->sc_npe != NULL)
632 ixpnpe_stop(sc->sc_npe);
633 if (sc->sc_stats != NULL) {
634 bus_dmamap_unload(sc->sc_stats_tag, sc->sc_stats_map);
635 bus_dmamem_free(sc->sc_stats_tag, sc->sc_stats,
636 sc->sc_stats_map);
637 bus_dmamap_destroy(sc->sc_stats_tag, sc->sc_stats_map);
638 }
639 if (sc->sc_stats_tag != NULL)
640 bus_dma_tag_destroy(sc->sc_stats_tag);
641 npe_dma_destroy(sc, &sc->txdma);
642 npe_dma_destroy(sc, &sc->rxdma);
643 bus_generic_detach(sc->sc_dev);
644 if (sc->sc_mii)
645 device_delete_child(sc->sc_dev, sc->sc_mii);
646 #if 0
647 /* XXX sc_ioh and sc_miih */
648 if (sc->mem_res)
649 bus_release_resource(dev, SYS_RES_IOPORT,
650 rman_get_rid(sc->mem_res), sc->mem_res);
651 sc->mem_res = 0;
652 #endif
653 }
654 #endif
655
656 /*
657 * Change media according to request.
658 */
659 static int
660 npe_ifmedia_change(struct ifnet *ifp)
661 {
662 struct npe_softc *sc = ifp->if_softc;
663
664 if (sc->sc_phy > IXPNPECF_PHY_DEFAULT)
665 return ether_mediachange(ifp);
666 return 0;
667 }
668
669 /*
670 * Notify the world which media we're using.
671 */
672 static void
673 npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
674 {
675 struct npe_softc *sc = ifp->if_softc;
676
677 if (sc->sc_phy > IXPNPECF_PHY_DEFAULT)
678 mii_pollstat(&sc->sc_mii);
679
680 ifmr->ifm_active = sc->sc_mii.mii_media_active;
681 ifmr->ifm_status = sc->sc_mii.mii_media_status;
682 }
683
684 static void
685 npe_addstats(struct npe_softc *sc)
686 {
687 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
688 struct npestats *ns = sc->sc_stats;
689
690 ifp->if_oerrors +=
691 be32toh(ns->dot3StatsInternalMacTransmitErrors)
692 + be32toh(ns->dot3StatsCarrierSenseErrors)
693 + be32toh(ns->TxVLANIdFilterDiscards)
694 ;
695 ifp->if_ierrors += be32toh(ns->dot3StatsFCSErrors)
696 + be32toh(ns->dot3StatsInternalMacReceiveErrors)
697 + be32toh(ns->RxOverrunDiscards)
698 + be32toh(ns->RxUnderflowEntryDiscards)
699 ;
700 ifp->if_collisions +=
701 be32toh(ns->dot3StatsSingleCollisionFrames)
702 + be32toh(ns->dot3StatsMultipleCollisionFrames)
703 ;
704 }
705
706 static void
707 npe_tick(void *xsc)
708 {
709 #define ACK (NPE_RESETSTATS << NPE_MAC_MSGID_SHL)
710 struct npe_softc *sc = xsc;
711 uint32_t msg[2];
712
713 /*
714 * NB: to avoid sleeping with the softc lock held we
715 * split the NPE msg processing into two parts. The
716 * request for statistics is sent w/o waiting for a
717 * reply and then on the next tick we retrieve the
718 * results. This works because npe_tick is the only
719 * code that talks via the mailbox's (except at setup).
720 * This likely can be handled better.
721 */
722 if (ixpnpe_recvmsg(sc->sc_npe, msg) == 0 && msg[0] == ACK) {
723 bus_dmamap_sync(sc->sc_dt, sc->sc_stats_map, 0,
724 sizeof(struct npestats), BUS_DMASYNC_POSTREAD);
725 npe_addstats(sc);
726 }
727 npe_updatestats(sc);
728 mii_tick(&sc->sc_mii);
729
730 /* schedule next poll */
731 callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
732 #undef ACK
733 }
734
735 static void
736 npe_setmac(struct npe_softc *sc, const u_char *eaddr)
737 {
738 WR4(sc, NPE_MAC_UNI_ADDR_1, eaddr[0]);
739 WR4(sc, NPE_MAC_UNI_ADDR_2, eaddr[1]);
740 WR4(sc, NPE_MAC_UNI_ADDR_3, eaddr[2]);
741 WR4(sc, NPE_MAC_UNI_ADDR_4, eaddr[3]);
742 WR4(sc, NPE_MAC_UNI_ADDR_5, eaddr[4]);
743 WR4(sc, NPE_MAC_UNI_ADDR_6, eaddr[5]);
744
745 }
746
747 static void
748 npe_getmac(struct npe_softc *sc, u_char *eaddr)
749 {
750 /* NB: the unicast address appears to be loaded from EEPROM on reset */
751 eaddr[0] = RD4(sc, NPE_MAC_UNI_ADDR_1) & 0xff;
752 eaddr[1] = RD4(sc, NPE_MAC_UNI_ADDR_2) & 0xff;
753 eaddr[2] = RD4(sc, NPE_MAC_UNI_ADDR_3) & 0xff;
754 eaddr[3] = RD4(sc, NPE_MAC_UNI_ADDR_4) & 0xff;
755 eaddr[4] = RD4(sc, NPE_MAC_UNI_ADDR_5) & 0xff;
756 eaddr[5] = RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff;
757 }
758
759 struct txdone {
760 struct npebuf *head;
761 struct npebuf **tail;
762 int count;
763 };
764
765 static __inline void
766 npe_txdone_finish(struct npe_softc *sc, const struct txdone *td)
767 {
768 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
769
770 *td->tail = sc->tx_free;
771 sc->tx_free = td->head;
772 /*
773 * We're no longer busy, so clear the busy flag and call the
774 * start routine to xmit more packets.
775 */
776 ifp->if_opackets += td->count;
777 ifp->if_flags &= ~IFF_OACTIVE;
778 ifp->if_timer = 0;
779 npestart(ifp);
780 }
781
782 /*
783 * Q manager callback on tx done queue. Reap mbufs
784 * and return tx buffers to the free list. Finally
785 * restart output. Note the microcode has only one
786 * txdone q wired into it so we must use the NPE ID
787 * returned with each npehwbuf to decide where to
788 * send buffers.
789 */
790 static void
791 npe_txdone(int qid, void *arg)
792 {
793 #define P2V(a, dma) \
794 &(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
795 struct npe_softc *sc;
796 struct npebuf *npe;
797 struct txdone *td, q[NPE_MAX];
798 uint32_t entry;
799
800 /* XXX no NPE-A support */
801 q[NPE_B].tail = &q[NPE_B].head; q[NPE_B].count = 0;
802 q[NPE_C].tail = &q[NPE_C].head; q[NPE_C].count = 0;
803 /* XXX max # at a time? */
804 while (ixpqmgr_qread(qid, &entry) == 0) {
805 sc = npes[NPE_QM_Q_NPE(entry)];
806 DPRINTF(sc, "%s: entry 0x%x NPE %u port %u\n",
807 __func__, entry, NPE_QM_Q_NPE(entry), NPE_QM_Q_PORT(entry));
808
809 npe = P2V(NPE_QM_Q_ADDR(entry), &sc->txdma);
810 m_freem(npe->ix_m);
811 npe->ix_m = NULL;
812
813 td = &q[NPE_QM_Q_NPE(entry)];
814 *td->tail = npe;
815 td->tail = &npe->ix_next;
816 td->count++;
817 }
818
819 if (q[NPE_B].count)
820 npe_txdone_finish(npes[NPE_B], &q[NPE_B]);
821 if (q[NPE_C].count)
822 npe_txdone_finish(npes[NPE_C], &q[NPE_C]);
823 #undef P2V
824 }
825
826 static __inline struct mbuf *
827 npe_getcl(void)
828 {
829 struct mbuf *m;
830
831 MGETHDR(m, M_DONTWAIT, MT_DATA);
832 if (m != NULL) {
833 MCLGET(m, M_DONTWAIT);
834 if ((m->m_flags & M_EXT) == 0) {
835 m_freem(m);
836 m = NULL;
837 }
838 }
839 return (m);
840 }
841
842 static int
843 npe_rxbuf_init(struct npe_softc *sc, struct npebuf *npe, struct mbuf *m)
844 {
845 struct npehwbuf *hw;
846 int error;
847
848 if (m == NULL) {
849 m = npe_getcl();
850 if (m == NULL)
851 return ENOBUFS;
852 }
853 KASSERT(m->m_ext.ext_size >= (1536 + ETHER_ALIGN));
854 m->m_pkthdr.len = m->m_len = 1536;
855 /* backload payload and align ip hdr */
856 m->m_data = m->m_ext.ext_buf + (m->m_ext.ext_size - (1536+ETHER_ALIGN));
857 error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
858 BUS_DMA_READ|BUS_DMA_NOWAIT);
859 if (error != 0) {
860 m_freem(m);
861 return error;
862 }
863 hw = npe->ix_hw;
864 hw->ix_ne[0].data = htobe32(npe->ix_map->dm_segs[0].ds_addr);
865 /* NB: NPE requires length be a multiple of 64 */
866 /* NB: buffer length is shifted in word */
867 hw->ix_ne[0].len = htobe32(npe->ix_map->dm_segs[0].ds_len << 16);
868 hw->ix_ne[0].next = 0;
869 npe->ix_m = m;
870 /* Flush the memory in the mbuf */
871 bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0, npe->ix_map->dm_mapsize,
872 BUS_DMASYNC_PREREAD);
873 return 0;
874 }
875
876 /*
877 * RX q processing for a specific NPE. Claim entries
878 * from the hardware queue and pass the frames up the
879 * stack. Pass the rx buffers to the free list.
880 */
881 static void
882 npe_rxdone(int qid, void *arg)
883 {
884 #define P2V(a, dma) \
885 &(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
886 struct npe_softc *sc = arg;
887 struct npedma *dma = &sc->rxdma;
888 uint32_t entry;
889
890 while (ixpqmgr_qread(qid, &entry) == 0) {
891 struct npebuf *npe = P2V(NPE_QM_Q_ADDR(entry), dma);
892 struct mbuf *m;
893
894 DPRINTF(sc, "%s: entry 0x%x neaddr 0x%x ne_len 0x%x\n",
895 __func__, entry, npe->ix_neaddr, npe->ix_hw->ix_ne[0].len);
896 /*
897 * Allocate a new mbuf to replenish the rx buffer.
898 * If doing so fails we drop the rx'd frame so we
899 * can reuse the previous mbuf. When we're able to
900 * allocate a new mbuf dispatch the mbuf w/ rx'd
901 * data up the stack and replace it with the newly
902 * allocated one.
903 */
904 m = npe_getcl();
905 if (m != NULL) {
906 struct mbuf *mrx = npe->ix_m;
907 struct npehwbuf *hw = npe->ix_hw;
908 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
909
910 /* Flush mbuf memory for rx'd data */
911 bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
912 npe->ix_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
913
914 /* XXX flush hw buffer; works now 'cuz coherent */
915 /* set m_len etc. per rx frame size */
916 mrx->m_len = be32toh(hw->ix_ne[0].len) & 0xffff;
917 mrx->m_pkthdr.len = mrx->m_len;
918 mrx->m_pkthdr.rcvif = ifp;
919 mrx->m_flags |= M_HASFCS;
920
921 ifp->if_ipackets++;
922 ifp->if_input(ifp, mrx);
923 } else {
924 /* discard frame and re-use mbuf */
925 m = npe->ix_m;
926 }
927 if (npe_rxbuf_init(sc, npe, m) == 0) {
928 /* return npe buf to rx free list */
929 ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
930 } else {
931 /* XXX should not happen */
932 }
933 }
934 #undef P2V
935 }
936
937 static void
938 npe_startxmit(struct npe_softc *sc)
939 {
940 struct npedma *dma = &sc->txdma;
941 int i;
942
943 sc->tx_free = NULL;
944 for (i = 0; i < dma->nbuf; i++) {
945 struct npebuf *npe = &dma->buf[i];
946 if (npe->ix_m != NULL) {
947 /* NB: should not happen */
948 printf("%s: %s: free mbuf at entry %u\n",
949 sc->sc_dev.dv_xname, __func__, i);
950 m_freem(npe->ix_m);
951 }
952 npe->ix_m = NULL;
953 npe->ix_next = sc->tx_free;
954 sc->tx_free = npe;
955 }
956 }
957
958 static void
959 npe_startrecv(struct npe_softc *sc)
960 {
961 struct npedma *dma = &sc->rxdma;
962 struct npebuf *npe;
963 int i;
964
965 for (i = 0; i < dma->nbuf; i++) {
966 npe = &dma->buf[i];
967 npe_rxbuf_init(sc, npe, npe->ix_m);
968 /* set npe buf on rx free list */
969 ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
970 }
971 }
972
973 /*
974 * Reset and initialize the chip
975 */
976 static void
977 npeinit_locked(void *xsc)
978 {
979 struct npe_softc *sc = xsc;
980 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
981
982 if (ifp->if_flags & IFF_RUNNING) return;/*XXX*/
983
984 /*
985 * Reset MAC core.
986 */
987 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
988 DELAY(NPE_MAC_RESET_DELAY);
989 /* configure MAC to generate MDC clock */
990 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
991
992 /* disable transmitter and reciver in the MAC */
993 WR4(sc, NPE_MAC_RX_CNTRL1,
994 RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
995 WR4(sc, NPE_MAC_TX_CNTRL1,
996 RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
997
998 /*
999 * Set the MAC core registers.
1000 */
1001 WR4(sc, NPE_MAC_INT_CLK_THRESH, 0x1); /* clock ratio: for ipx4xx */
1002 WR4(sc, NPE_MAC_TX_CNTRL2, 0xf); /* max retries */
1003 WR4(sc, NPE_MAC_RANDOM_SEED, 0x8); /* LFSR back-off seed */
1004 /* thresholds determined by NPE firmware FS */
1005 WR4(sc, NPE_MAC_THRESH_P_EMPTY, 0x12);
1006 WR4(sc, NPE_MAC_THRESH_P_FULL, 0x30);
1007 WR4(sc, NPE_MAC_BUF_SIZE_TX, 0x8); /* tx fifo threshold (bytes) */
1008 WR4(sc, NPE_MAC_TX_DEFER, 0x15); /* for single deferral */
1009 WR4(sc, NPE_MAC_RX_DEFER, 0x16); /* deferral on inter-frame gap*/
1010 WR4(sc, NPE_MAC_TX_TWO_DEFER_1, 0x8); /* for 2-part deferral */
1011 WR4(sc, NPE_MAC_TX_TWO_DEFER_2, 0x7); /* for 2-part deferral */
1012 WR4(sc, NPE_MAC_SLOT_TIME, 0x80); /* assumes MII mode */
1013
1014 WR4(sc, NPE_MAC_TX_CNTRL1,
1015 NPE_TX_CNTRL1_RETRY /* retry failed xmits */
1016 | NPE_TX_CNTRL1_FCS_EN /* append FCS */
1017 | NPE_TX_CNTRL1_2DEFER /* 2-part deferal */
1018 | NPE_TX_CNTRL1_PAD_EN); /* pad runt frames */
1019 /* XXX pad strip? */
1020 WR4(sc, NPE_MAC_RX_CNTRL1,
1021 NPE_RX_CNTRL1_CRC_EN /* include CRC/FCS */
1022 | NPE_RX_CNTRL1_PAUSE_EN); /* ena pause frame handling */
1023 WR4(sc, NPE_MAC_RX_CNTRL2, 0);
1024
1025 npe_setmac(sc, CLLADDR(ifp->if_sadl));
1026 npe_setmcast(sc);
1027
1028 npe_startxmit(sc);
1029 npe_startrecv(sc);
1030
1031 ifp->if_flags |= IFF_RUNNING;
1032 ifp->if_flags &= ~IFF_OACTIVE;
1033 ifp->if_timer = 0; /* just in case */
1034
1035 /* enable transmitter and reciver in the MAC */
1036 WR4(sc, NPE_MAC_RX_CNTRL1,
1037 RD4(sc, NPE_MAC_RX_CNTRL1) | NPE_RX_CNTRL1_RX_EN);
1038 WR4(sc, NPE_MAC_TX_CNTRL1,
1039 RD4(sc, NPE_MAC_TX_CNTRL1) | NPE_TX_CNTRL1_TX_EN);
1040
1041 callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
1042 }
1043
1044 static int
1045 npeinit(struct ifnet *ifp)
1046 {
1047 struct npe_softc *sc = ifp->if_softc;
1048 int s;
1049
1050 s = splnet();
1051 npeinit_locked(sc);
1052 splx(s);
1053
1054 return (0);
1055 }
1056
1057 /*
1058 * Defragment an mbuf chain, returning at most maxfrags separate
1059 * mbufs+clusters. If this is not possible NULL is returned and
1060 * the original mbuf chain is left in it's present (potentially
1061 * modified) state. We use two techniques: collapsing consecutive
1062 * mbufs and replacing consecutive mbufs by a cluster.
1063 */
1064 static __inline struct mbuf *
1065 npe_defrag(struct mbuf *m0)
1066 {
1067 struct mbuf *m;
1068
1069 MGETHDR(m, M_DONTWAIT, MT_DATA);
1070 if (m == NULL)
1071 return (NULL);
1072 M_COPY_PKTHDR(m, m0);
1073
1074 if ((m->m_len = m0->m_pkthdr.len) > MHLEN) {
1075 MCLGET(m, M_DONTWAIT);
1076 if ((m->m_flags & M_EXT) == 0) {
1077 m_freem(m);
1078 return (NULL);
1079 }
1080 }
1081
1082 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1083 m_freem(m0);
1084
1085 return (m);
1086 }
1087
1088 /*
1089 * Dequeue packets and place on the h/w transmit queue.
1090 */
1091 static void
1092 npestart(struct ifnet *ifp)
1093 {
1094 struct npe_softc *sc = ifp->if_softc;
1095 struct npebuf *npe;
1096 struct npehwbuf *hw;
1097 struct mbuf *m, *n;
1098 bus_dma_segment_t *segs;
1099 int nseg, len, error, i;
1100 uint32_t next;
1101
1102 /* XXX can this happen? */
1103 if (ifp->if_flags & IFF_OACTIVE)
1104 return;
1105
1106 while (sc->tx_free != NULL) {
1107 IFQ_DEQUEUE(&ifp->if_snd, m);
1108 if (m == NULL) {
1109 /* XXX? */
1110 ifp->if_flags &= ~IFF_OACTIVE;
1111 return;
1112 }
1113 npe = sc->tx_free;
1114 error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
1115 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1116 if (error == EFBIG) {
1117 n = npe_defrag(m);
1118 if (n == NULL) {
1119 printf("%s: %s: too many fragments\n",
1120 sc->sc_dev.dv_xname, __func__);
1121 m_freem(m);
1122 return; /* XXX? */
1123 }
1124 m = n;
1125 error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map,
1126 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1127 }
1128 if (error != 0) {
1129 printf("%s: %s: error %u\n",
1130 sc->sc_dev.dv_xname, __func__, error);
1131 m_freem(m);
1132 return; /* XXX? */
1133 }
1134 sc->tx_free = npe->ix_next;
1135
1136 #if NBPFILTER > 0
1137 /*
1138 * Tap off here if there is a bpf listener.
1139 */
1140 if (__predict_false(ifp->if_bpf))
1141 bpf_mtap(ifp->if_bpf, m);
1142 #endif
1143
1144 bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
1145 npe->ix_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1146
1147 npe->ix_m = m;
1148 hw = npe->ix_hw;
1149 len = m->m_pkthdr.len;
1150 nseg = npe->ix_map->dm_nsegs;
1151 segs = npe->ix_map->dm_segs;
1152 next = npe->ix_neaddr + sizeof(hw->ix_ne[0]);
1153 for (i = 0; i < nseg; i++) {
1154 hw->ix_ne[i].data = htobe32(segs[i].ds_addr);
1155 hw->ix_ne[i].len = htobe32((segs[i].ds_len<<16) | len);
1156 hw->ix_ne[i].next = htobe32(next);
1157
1158 len = 0; /* zero for segments > 1 */
1159 next += sizeof(hw->ix_ne[0]);
1160 }
1161 hw->ix_ne[i-1].next = 0; /* zero last in chain */
1162 /* XXX flush descriptor instead of using uncached memory */
1163
1164 DPRINTF(sc, "%s: qwrite(%u, 0x%x) ne_data %x ne_len 0x%x\n",
1165 __func__, sc->tx_qid, npe->ix_neaddr,
1166 hw->ix_ne[0].data, hw->ix_ne[0].len);
1167 /* stick it on the tx q */
1168 /* XXX add vlan priority */
1169 ixpqmgr_qwrite(sc->tx_qid, npe->ix_neaddr);
1170
1171 ifp->if_timer = 5;
1172 }
1173 if (sc->tx_free == NULL)
1174 ifp->if_flags |= IFF_OACTIVE;
1175 }
1176
1177 static void
1178 npe_stopxmit(struct npe_softc *sc)
1179 {
1180 struct npedma *dma = &sc->txdma;
1181 int i;
1182
1183 /* XXX qmgr */
1184 for (i = 0; i < dma->nbuf; i++) {
1185 struct npebuf *npe = &dma->buf[i];
1186
1187 if (npe->ix_m != NULL) {
1188 bus_dmamap_unload(sc->sc_dt, npe->ix_map);
1189 m_freem(npe->ix_m);
1190 npe->ix_m = NULL;
1191 }
1192 }
1193 }
1194
1195 static void
1196 npe_stoprecv(struct npe_softc *sc)
1197 {
1198 struct npedma *dma = &sc->rxdma;
1199 int i;
1200
1201 /* XXX qmgr */
1202 for (i = 0; i < dma->nbuf; i++) {
1203 struct npebuf *npe = &dma->buf[i];
1204
1205 if (npe->ix_m != NULL) {
1206 bus_dmamap_unload(sc->sc_dt, npe->ix_map);
1207 m_freem(npe->ix_m);
1208 npe->ix_m = NULL;
1209 }
1210 }
1211 }
1212
1213 /*
1214 * Turn off interrupts, and stop the nic.
1215 */
1216 void
1217 npestop(struct ifnet *ifp, int disable)
1218 {
1219 struct npe_softc *sc = ifp->if_softc;
1220
1221 /* disable transmitter and reciver in the MAC */
1222 WR4(sc, NPE_MAC_RX_CNTRL1,
1223 RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
1224 WR4(sc, NPE_MAC_TX_CNTRL1,
1225 RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
1226
1227 ifp->if_timer = 0;
1228 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1229
1230 callout_stop(&sc->sc_tick_ch);
1231
1232 npe_stopxmit(sc);
1233 npe_stoprecv(sc);
1234 /* XXX go into loopback & drain q's? */
1235 /* XXX but beware of disabling tx above */
1236
1237 /*
1238 * The MAC core rx/tx disable may leave the MAC hardware in an
1239 * unpredictable state. A hw reset is executed before resetting
1240 * all the MAC parameters to a known value.
1241 */
1242 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
1243 DELAY(NPE_MAC_RESET_DELAY);
1244 WR4(sc, NPE_MAC_INT_CLK_THRESH, NPE_MAC_INT_CLK_THRESH_DEFAULT);
1245 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
1246 }
1247
1248 void
1249 npewatchdog(struct ifnet *ifp)
1250 {
1251 struct npe_softc *sc = ifp->if_softc;
1252 int s;
1253
1254 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1255 s = splnet();
1256 ifp->if_oerrors++;
1257 npeinit_locked(sc);
1258 splx(s);
1259 }
1260
1261 static int
1262 npeioctl(struct ifnet *ifp, u_long cmd, void *data)
1263 {
1264 struct npe_softc *sc = ifp->if_softc;
1265 struct ifreq *ifr = (struct ifreq *)data;
1266 int s, error = 0;
1267
1268 s = splnet();
1269
1270 error = ether_ioctl(ifp, cmd, data);
1271 if (error == ENETRESET) {
1272 if ((ifp->if_flags & IFF_UP) == 0 &&
1273 ifp->if_flags & IFF_RUNNING) {
1274 ifp->if_flags &= ~IFF_RUNNING;
1275 npestop(&sc->sc_ethercom.ec_if, 0);
1276 } else {
1277 /* reinitialize card on any parameter change */
1278 npeinit_locked(sc);
1279 }
1280 error = 0;
1281 }
1282
1283 npestart(ifp);
1284
1285 splx(s);
1286 return error;
1287 }
1288
1289 /*
1290 * Setup a traffic class -> rx queue mapping.
1291 */
1292 static int
1293 npe_setrxqosentry(struct npe_softc *sc, int classix, int trafclass, int qid)
1294 {
1295 int npeid = npeconfig[sc->sc_unit].npeid;
1296 uint32_t msg[2];
1297
1298 msg[0] = (NPE_SETRXQOSENTRY << 24) | (npeid << 20) | classix;
1299 msg[1] = (trafclass << 24) | (1 << 23) | (qid << 16) | (qid << 4);
1300 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1301 }
1302
1303 /*
1304 * Update and reset the statistics in the NPE.
1305 */
1306 static int
1307 npe_updatestats(struct npe_softc *sc)
1308 {
1309 uint32_t msg[2];
1310
1311 msg[0] = NPE_RESETSTATS << NPE_MAC_MSGID_SHL;
1312 msg[1] = sc->sc_stats_phys; /* physical address of stat block */
1313 return ixpnpe_sendmsg(sc->sc_npe, msg); /* NB: no recv */
1314 }
1315
1316 #if 0
1317 /*
1318 * Get the current statistics block.
1319 */
1320 static int
1321 npe_getstats(struct npe_softc *sc)
1322 {
1323 uint32_t msg[2];
1324
1325 msg[0] = NPE_GETSTATS << NPE_MAC_MSGID_SHL;
1326 msg[1] = sc->sc_stats_phys; /* physical address of stat block */
1327 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1328 }
1329
1330 /*
1331 * Query the image id of the loaded firmware.
1332 */
1333 static uint32_t
1334 npe_getimageid(struct npe_softc *sc)
1335 {
1336 uint32_t msg[2];
1337
1338 msg[0] = NPE_GETSTATUS << NPE_MAC_MSGID_SHL;
1339 msg[1] = 0;
1340 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg) == 0 ? msg[1] : 0;
1341 }
1342
1343 /*
1344 * Enable/disable loopback.
1345 */
1346 static int
1347 npe_setloopback(struct npe_softc *sc, int ena)
1348 {
1349 uint32_t msg[2];
1350
1351 msg[0] = (NPE_SETLOOPBACK << NPE_MAC_MSGID_SHL) | (ena != 0);
1352 msg[1] = 0;
1353 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1354 }
1355 #endif
1356
1357 /*
1358 * MII bus support routines.
1359 *
1360 * NB: ixp425 has one PHY per NPE
1361 */
1362 static uint32_t
1363 npe_mii_mdio_read(struct npe_softc *sc, int reg)
1364 {
1365 #define MII_RD4(sc, reg) bus_space_read_4(sc->sc_iot, sc->sc_miih, reg)
1366 uint32_t v;
1367
1368 /* NB: registers are known to be sequential */
1369 v = (MII_RD4(sc, reg+0) & 0xff) << 0;
1370 v |= (MII_RD4(sc, reg+4) & 0xff) << 8;
1371 v |= (MII_RD4(sc, reg+8) & 0xff) << 16;
1372 v |= (MII_RD4(sc, reg+12) & 0xff) << 24;
1373 return v;
1374 #undef MII_RD4
1375 }
1376
1377 static void
1378 npe_mii_mdio_write(struct npe_softc *sc, int reg, uint32_t cmd)
1379 {
1380 #define MII_WR4(sc, reg, v) \
1381 bus_space_write_4(sc->sc_iot, sc->sc_miih, reg, v)
1382
1383 /* NB: registers are known to be sequential */
1384 MII_WR4(sc, reg+0, cmd & 0xff);
1385 MII_WR4(sc, reg+4, (cmd >> 8) & 0xff);
1386 MII_WR4(sc, reg+8, (cmd >> 16) & 0xff);
1387 MII_WR4(sc, reg+12, (cmd >> 24) & 0xff);
1388 #undef MII_WR4
1389 }
1390
1391 static int
1392 npe_mii_mdio_wait(struct npe_softc *sc)
1393 {
1394 #define MAXTRIES 100 /* XXX */
1395 uint32_t v;
1396 int i;
1397
1398 for (i = 0; i < MAXTRIES; i++) {
1399 v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_CMD);
1400 if ((v & NPE_MII_GO) == 0)
1401 return 1;
1402 }
1403 return 0; /* NB: timeout */
1404 #undef MAXTRIES
1405 }
1406
1407 static int
1408 npe_miibus_readreg(struct device *self, int phy, int reg)
1409 {
1410 struct npe_softc *sc = (void *)self;
1411 uint32_t v;
1412
1413 if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
1414 return 0xffff;
1415 v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
1416 | NPE_MII_GO;
1417 npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
1418 if (npe_mii_mdio_wait(sc))
1419 v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_STS);
1420 else
1421 v = 0xffff | NPE_MII_READ_FAIL;
1422 return (v & NPE_MII_READ_FAIL) ? 0xffff : (v & 0xffff);
1423 #undef MAXTRIES
1424 }
1425
1426 static void
1427 npe_miibus_writereg(struct device *self, int phy, int reg, int data)
1428 {
1429 struct npe_softc *sc = (void *)self;
1430 uint32_t v;
1431
1432 if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
1433 return;
1434 v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
1435 | data | NPE_MII_WRITE
1436 | NPE_MII_GO;
1437 npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
1438 /* XXX complain about timeout */
1439 (void) npe_mii_mdio_wait(sc);
1440 }
1441
1442 static void
1443 npe_miibus_statchg(struct device *self)
1444 {
1445 struct npe_softc *sc = (void *)self;
1446 uint32_t tx1, rx1;
1447
1448 /* sync MAC duplex state */
1449 tx1 = RD4(sc, NPE_MAC_TX_CNTRL1);
1450 rx1 = RD4(sc, NPE_MAC_RX_CNTRL1);
1451 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1452 tx1 &= ~NPE_TX_CNTRL1_DUPLEX;
1453 rx1 |= NPE_RX_CNTRL1_PAUSE_EN;
1454 } else {
1455 tx1 |= NPE_TX_CNTRL1_DUPLEX;
1456 rx1 &= ~NPE_RX_CNTRL1_PAUSE_EN;
1457 }
1458 WR4(sc, NPE_MAC_RX_CNTRL1, rx1);
1459 WR4(sc, NPE_MAC_TX_CNTRL1, tx1);
1460 }
1461