ixp425_npe.c revision 1.1 1 /* $NetBSD: ixp425_npe.c,v 1.1 2006/12/10 10:01:49 scw Exp $ */
2
3 /*-
4 * Copyright (c) 2006 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 *
18 * NO WARRANTY
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
22 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
23 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
24 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
27 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
29 * THE POSSIBILITY OF SUCH DAMAGES.
30 */
31
32 /*-
33 * Copyright (c) 2001-2005, Intel Corporation.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the Intel Corporation nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS''
50 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 */
61 #include <sys/cdefs.h>
62 #if 0
63 __FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/ixp425_npe.c,v 1.1 2006/11/19 23:55:23 sam Exp $");
64 #endif
65 __KERNEL_RCSID(0, "$NetBSD: ixp425_npe.c,v 1.1 2006/12/10 10:01:49 scw Exp $");
66
67 /*
68 * Intel XScale Network Processing Engine (NPE) support.
69 *
70 * Each NPE has an ixpnpeX device associated with it that is
71 * attached at boot. Depending on the microcode loaded into
72 * an NPE there may be an Ethernet interface (npeX) or some
73 * other network interface (e.g. for ATM). This file has support
74 * for loading microcode images and the associated NPE CPU
75 * manipulations (start, stop, reset).
76 *
77 * The code here basically replaces the npeDl and npeMh classes
78 * in the Intel Access Library (IAL).
79 *
80 * NB: Microcode images are loaded with firmware(9). To
81 * include microcode in a static kernel include the
82 * ixpnpe_fw device. Otherwise the firmware will be
83 * automatically loaded from the filesystem.
84 */
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/kernel.h>
88 #include <sys/malloc.h>
89 #include <sys/time.h>
90 #include <sys/proc.h>
91
92 #include <dev/firmload.h>
93
94 #include <machine/bus.h>
95 #include <machine/cpu.h>
96 #include <machine/intr.h>
97
98 #include <arm/xscale/ixp425reg.h>
99 #include <arm/xscale/ixp425var.h>
100 #include <arm/xscale/ixp425_ixmevar.h>
101
102 #include <arm/xscale/ixp425_npereg.h>
103 #include <arm/xscale/ixp425_npevar.h>
104
105 #include "locators.h"
106
107 struct ixpnpe_softc {
108 struct device sc_dev;
109 bus_dma_tag_t sc_dt;
110 bus_space_tag_t sc_iot;
111 bus_space_handle_t sc_ioh;
112 bus_size_t sc_size; /* size of mapped register window */
113 int sc_unit;
114 void *sc_ih; /* interrupt handler */
115 struct simplelock sc_lock; /* mailbox lock */
116 uint32_t sc_msg[2]; /* reply msg collected in ixpnpe_intr */
117 int sc_msgwaiting; /* sc_msg holds valid data */
118
119 int validImage; /* valid ucode image loaded */
120 int started; /* NPE is started */
121 uint8_t functionalityId;/* ucode functionality ID */
122 int insMemSize; /* size of instruction memory */
123 int dataMemSize; /* size of data memory */
124 uint32_t savedExecCount;
125 uint32_t savedEcsDbgCtxtReg2;
126 };
127
128 /*
129 * IXP425_NPE_MICROCODE will be defined by ixp425-fw.mk IFF the
130 * microcode object file exists in sys/arch/arm/xscale.
131 *
132 * To permit building the NPE drivers without microcode (so they
133 * don't bitrot due to lack of use), we use "empty" microcode so
134 * that the NPE drivers will simply fail to start at runtime.
135 */
136 #ifdef IXP425_NPE_MICROCODE
137 extern char _binary_IxNpeMicrocode_dat_start[];
138 #else
139 static char _binary_IxNpeMicrocode_dat_start[] = {
140 0xfe, 0xed, 0xf0, 0x0d, 0xfe, 0xed, 0xf0, 0x0d
141 };
142 #endif
143
144 #define IX_NPEDL_NPEIMAGE_FIELD_MASK 0xff
145
146 /* used to read download map from version in microcode image */
147 #define IX_NPEDL_BLOCK_TYPE_INSTRUCTION 0x00000000
148 #define IX_NPEDL_BLOCK_TYPE_DATA 0x00000001
149 #define IX_NPEDL_BLOCK_TYPE_STATE 0x00000002
150 #define IX_NPEDL_END_OF_DOWNLOAD_MAP 0x0000000F
151
152 /*
153 * masks used to extract address info from State information context
154 * register addresses as read from microcode image
155 */
156 #define IX_NPEDL_MASK_STATE_ADDR_CTXT_REG 0x0000000F
157 #define IX_NPEDL_MASK_STATE_ADDR_CTXT_NUM 0x000000F0
158
159 /* LSB offset of Context Number field in State-Info Context Address */
160 #define IX_NPEDL_OFFSET_STATE_ADDR_CTXT_NUM 4
161
162 /* size (in words) of single State Information entry (ctxt reg address|data) */
163 #define IX_NPEDL_STATE_INFO_ENTRY_SIZE 2
164
165 typedef struct {
166 uint32_t type;
167 uint32_t offset;
168 } IxNpeDlNpeMgrDownloadMapBlockEntry;
169
170 typedef union {
171 IxNpeDlNpeMgrDownloadMapBlockEntry block;
172 uint32_t eodmMarker;
173 } IxNpeDlNpeMgrDownloadMapEntry;
174
175 typedef struct {
176 /* 1st entry in the download map (there may be more than one) */
177 IxNpeDlNpeMgrDownloadMapEntry entry[1];
178 } IxNpeDlNpeMgrDownloadMap;
179
180 /* used to access an instruction or data block in a microcode image */
181 typedef struct {
182 uint32_t npeMemAddress;
183 uint32_t size;
184 uint32_t data[1];
185 } IxNpeDlNpeMgrCodeBlock;
186
187 /* used to access each Context Reg entry state-information block */
188 typedef struct {
189 uint32_t addressInfo;
190 uint32_t value;
191 } IxNpeDlNpeMgrStateInfoCtxtRegEntry;
192
193 /* used to access a state-information block in a microcode image */
194 typedef struct {
195 uint32_t size;
196 IxNpeDlNpeMgrStateInfoCtxtRegEntry ctxtRegEntry[1];
197 } IxNpeDlNpeMgrStateInfoBlock;
198
199 static int npe_debug = 0;
200 #define DPRINTF(dev, fmt, ...) do { \
201 if (npe_debug) printf(fmt, __VA_ARGS__); \
202 } while (0)
203 #define DPRINTFn(n, dev, fmt, ...) do { \
204 if (npe_debug >= n) printf(fmt, __VA_ARGS__); \
205 } while (0)
206
207 static int npe_checkbits(struct ixpnpe_softc *, uint32_t reg, uint32_t);
208 static int npe_isstopped(struct ixpnpe_softc *);
209 static int npe_load_ins(struct ixpnpe_softc *,
210 const IxNpeDlNpeMgrCodeBlock *bp, int verify);
211 static int npe_load_data(struct ixpnpe_softc *,
212 const IxNpeDlNpeMgrCodeBlock *bp, int verify);
213 static int npe_load_stateinfo(struct ixpnpe_softc *,
214 const IxNpeDlNpeMgrStateInfoBlock *bp, int verify);
215 static int npe_load_image(struct ixpnpe_softc *,
216 const uint32_t *imageCodePtr, int verify);
217 static int npe_cpu_reset(struct ixpnpe_softc *);
218 static int npe_cpu_start(struct ixpnpe_softc *);
219 static int npe_cpu_stop(struct ixpnpe_softc *);
220 static void npe_cmd_issue_write(struct ixpnpe_softc *,
221 uint32_t cmd, uint32_t addr, uint32_t data);
222 static uint32_t npe_cmd_issue_read(struct ixpnpe_softc *,
223 uint32_t cmd, uint32_t addr);
224 static int npe_ins_write(struct ixpnpe_softc *,
225 uint32_t addr, uint32_t data, int verify);
226 static int npe_data_write(struct ixpnpe_softc *,
227 uint32_t addr, uint32_t data, int verify);
228 static void npe_ecs_reg_write(struct ixpnpe_softc *,
229 uint32_t reg, uint32_t data);
230 static uint32_t npe_ecs_reg_read(struct ixpnpe_softc *, uint32_t reg);
231 static void npe_issue_cmd(struct ixpnpe_softc *, uint32_t command);
232 static void npe_cpu_step_save(struct ixpnpe_softc *);
233 static int npe_cpu_step(struct ixpnpe_softc *, uint32_t npeInstruction,
234 uint32_t ctxtNum, uint32_t ldur);
235 static void npe_cpu_step_restore(struct ixpnpe_softc *);
236 static int npe_logical_reg_read(struct ixpnpe_softc *,
237 uint32_t regAddr, uint32_t regSize,
238 uint32_t ctxtNum, uint32_t *regVal);
239 static int npe_logical_reg_write(struct ixpnpe_softc *,
240 uint32_t regAddr, uint32_t regVal,
241 uint32_t regSize, uint32_t ctxtNum, int verify);
242 static int npe_physical_reg_write(struct ixpnpe_softc *,
243 uint32_t regAddr, uint32_t regValue, int verify);
244 static int npe_ctx_reg_write(struct ixpnpe_softc *, uint32_t ctxtNum,
245 uint32_t ctxtReg, uint32_t ctxtRegVal, int verify);
246
247 static int ixpnpe_intr(void *arg);
248
249 static uint32_t
250 npe_reg_read(struct ixpnpe_softc *sc, bus_size_t off)
251 {
252 uint32_t v = bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
253 DPRINTFn(9, sc->sc_dev, "%s(0x%lx) => 0x%x\n", __func__, off, v);
254 return v;
255 }
256
257 static void
258 npe_reg_write(struct ixpnpe_softc *sc, bus_size_t off, uint32_t val)
259 {
260 DPRINTFn(9, sc->sc_dev, "%s(0x%lx, 0x%x)\n", __func__, off, val);
261 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
262 }
263
264 static int ixpnpe_match(struct device *, struct cfdata *, void *);
265 static void ixpnpe_attach(struct device *, struct device *, void *);
266 static int ixpnpe_print(void *, const char *);
267 static int ixpnpe_search(struct device *, struct cfdata *, const int *,
268 void *);
269
270 CFATTACH_DECL(ixpnpe, sizeof(struct ixpnpe_softc),
271 ixpnpe_match, ixpnpe_attach, NULL, NULL);
272
273 static int
274 ixpnpe_match(struct device *parent, struct cfdata *match, void *arg)
275 {
276 struct ixme_attach_args *ixa = arg;
277
278 return (ixa->ixa_npe == 1 || ixa->ixa_npe == 2);
279 }
280
281 static void
282 ixpnpe_attach(struct device *parent, struct device *self, void *arg)
283 {
284 struct ixpnpe_softc *sc = (void *)self;
285 struct ixme_attach_args *ixa = arg;
286 bus_addr_t base;
287 int irq;
288
289 aprint_naive("\n");
290 aprint_normal("\n");
291
292 sc->sc_iot = ixa->ixa_iot;
293 sc->sc_dt = ixa->ixa_dt;
294 sc->sc_unit = ixa->ixa_npe;
295
296 simple_lock_init(&sc->sc_lock);
297
298 /* XXX: Check features to ensure this NPE is enabled */
299
300 switch (ixa->ixa_npe) {
301 default:
302 panic("%s: Invalid NPE!", sc->sc_dev.dv_xname);
303
304 case 1:
305 base = IXP425_NPE_B_HWBASE;
306 sc->sc_size = IXP425_NPE_B_SIZE;
307 irq = IXP425_INT_NPE_B;
308
309 /* size of instruction memory */
310 sc->insMemSize = IX_NPEDL_INS_MEMSIZE_WORDS_NPEB;
311 /* size of data memory */
312 sc->dataMemSize = IX_NPEDL_DATA_MEMSIZE_WORDS_NPEB;
313 break;
314
315 case 2:
316 base = IXP425_NPE_C_HWBASE;
317 sc->sc_size = IXP425_NPE_C_SIZE;
318 irq = IXP425_INT_NPE_C;
319
320 /* size of instruction memory */
321 sc->insMemSize = IX_NPEDL_INS_MEMSIZE_WORDS_NPEC;
322 /* size of data memory */
323 sc->dataMemSize = IX_NPEDL_DATA_MEMSIZE_WORDS_NPEC;
324 break;
325 }
326 if (bus_space_map(sc->sc_iot, base, sc->sc_size, 0, &sc->sc_ioh))
327 panic("%s: Cannot map registers", sc->sc_dev.dv_xname);
328
329 /*
330 * Setup IRQ and handler for NPE message support.
331 */
332 sc->sc_ih = ixp425_intr_establish(irq, IPL_NET, ixpnpe_intr, sc);
333 if (sc->sc_ih == NULL)
334 panic("%s: Unable to establish irq %u", sc->sc_dev.dv_xname, irq);
335 /* enable output fifo interrupts (NB: must also set OFIFO Write Enable) */
336 npe_reg_write(sc, IX_NPECTL,
337 npe_reg_read(sc, IX_NPECTL) | (IX_NPECTL_OFE | IX_NPECTL_OFWE));
338
339 config_search_ia(ixpnpe_search, self, "ixpnpe", ixa);
340 }
341
342 static int
343 ixpnpe_print(void *arg, const char *name)
344 {
345
346 return (UNCONF);
347 }
348
349 static int
350 ixpnpe_search(struct device *parent, struct cfdata *cf, const int *ldesc,
351 void *arg)
352 {
353 struct ixpnpe_softc *sc = (void *)parent;
354 struct ixme_attach_args *ixa = arg;
355 struct ixpnpe_attach_args na;
356
357 na.na_unit = ixa->ixa_npe;
358 na.na_phy = cf->cf_loc[IXPNPECF_PHY];
359 na.na_npe = sc;
360 na.na_iot = ixa->ixa_iot;
361 na.na_dt = ixa->ixa_dt;
362
363 if (config_match(parent, cf, &na) > 0) {
364 config_attach(parent, cf, &na, ixpnpe_print);
365 return (1);
366 }
367
368 return (0);
369 }
370
371 int
372 ixpnpe_stopandreset(struct ixpnpe_softc *sc)
373 {
374 int error;
375
376 simple_lock(&sc->sc_lock);
377 error = npe_cpu_stop(sc); /* stop NPE */
378 if (error == 0)
379 error = npe_cpu_reset(sc); /* reset it */
380 if (error == 0)
381 sc->started = 0; /* mark stopped */
382 simple_unlock(&sc->sc_lock);
383
384 DPRINTF(sc->sc_dev, "%s: error %d\n", __func__, error);
385 return error;
386 }
387
388 static int
389 ixpnpe_start_locked(struct ixpnpe_softc *sc)
390 {
391 int error;
392
393 if (!sc->started) {
394 error = npe_cpu_start(sc);
395 if (error == 0)
396 sc->started = 1;
397 } else
398 error = 0;
399
400 DPRINTF(sc->sc_dev, "%s: error %d\n", __func__, error);
401 return error;
402 }
403
404 int
405 ixpnpe_start(struct ixpnpe_softc *sc)
406 {
407 int ret;
408
409 simple_lock(&sc->sc_lock);
410 ret = ixpnpe_start_locked(sc);
411 simple_unlock(&sc->sc_lock);
412 return (ret);
413 }
414
415 int
416 ixpnpe_stop(struct ixpnpe_softc *sc)
417 {
418 int error;
419
420 simple_lock(&sc->sc_lock);
421 error = npe_cpu_stop(sc);
422 if (error == 0)
423 sc->started = 0;
424 simple_unlock(&sc->sc_lock);
425
426 DPRINTF(sc->sc_dev, "%s: error %d\n", __func__, error);
427 return error;
428 }
429
430 /*
431 * Indicates the start of an NPE Image, in new NPE Image Library format.
432 * 2 consecutive occurances indicates the end of the NPE Image Library
433 */
434 #define NPE_IMAGE_MARKER 0xfeedf00d
435
436 /*
437 * NPE Image Header definition, used in new NPE Image Library format
438 */
439 typedef struct {
440 uint32_t marker;
441 uint32_t id;
442 uint32_t size;
443 } IxNpeDlImageMgrImageHeader;
444
445 static int
446 npe_findimage(struct ixpnpe_softc *sc,
447 const uint32_t *imageLibrary, uint32_t imageId,
448 const uint32_t **imagePtr, uint32_t *imageSize)
449 {
450 const IxNpeDlImageMgrImageHeader *image;
451 uint32_t offset = 0;
452
453 while (imageLibrary[offset] == NPE_IMAGE_MARKER) {
454 image = (const IxNpeDlImageMgrImageHeader *)&imageLibrary[offset];
455 offset += sizeof(IxNpeDlImageMgrImageHeader)/sizeof(uint32_t);
456
457 DPRINTF(sc->sc_dev, "%s: off %u mark 0x%x id 0x%x size %u\n",
458 __func__, offset, image->marker, image->id, image->size);
459 if (image->id == imageId) {
460 *imagePtr = imageLibrary + offset;
461 *imageSize = image->size;
462 return 0;
463 }
464 /* 2 consecutive NPE_IMAGE_MARKER's indicates end of library */
465 if (image->id == NPE_IMAGE_MARKER) {
466 printf("%s: imageId 0x%08x not found in image library header\n",
467 sc->sc_dev.dv_xname, imageId);
468 /* reached end of library, image not found */
469 return EIO;
470 }
471 offset += image->size;
472 }
473 return EIO;
474 }
475
476 int
477 ixpnpe_init(struct ixpnpe_softc *sc, const char *imageName, uint32_t imageId)
478 {
479 uint32_t imageSize;
480 const uint32_t *imageCodePtr;
481 void *fw;
482 int error;
483
484 DPRINTF(sc->sc_dev, "load %s, imageId 0x%08x\n", imageName, imageId);
485
486 #if 0
487 IxFeatureCtrlDeviceId devid = IX_NPEDL_DEVICEID_FROM_IMAGEID_GET(imageId);
488 /*
489 * Checking if image being loaded is meant for device that is running.
490 * Image is forward compatible. i.e Image built for IXP42X should run
491 * on IXP46X but not vice versa.
492 */
493 if (devid > (ixFeatureCtrlDeviceRead() & IX_FEATURE_CTRL_DEVICE_TYPE_MASK))
494 return EINVAL;
495 #endif
496 error = ixpnpe_stopandreset(sc); /* stop and reset the NPE */
497 if (error != 0)
498 return error;
499
500 fw = (void *)_binary_IxNpeMicrocode_dat_start;
501
502 /* Locate desired image in files w/ combined images */
503 error = npe_findimage(sc, (void *)fw /*fw->data*/, imageId, &imageCodePtr, &imageSize);
504 if (error != 0)
505 goto done;
506
507 /*
508 * If download was successful, store image Id in list of
509 * currently loaded images. If a critical error occured
510 * during download, record that the NPE has an invalid image
511 */
512 simple_lock(&sc->sc_lock);
513 error = npe_load_image(sc, imageCodePtr, 1 /*VERIFY*/);
514 if (error == 0) {
515 sc->validImage = 1;
516 error = ixpnpe_start_locked(sc);
517 } else {
518 sc->validImage = 0;
519 }
520 sc->functionalityId = IX_NPEDL_FUNCTIONID_FROM_IMAGEID_GET(imageId);
521 simple_unlock(&sc->sc_lock);
522 done:
523 DPRINTF(sc->sc_dev, "%s: error %d\n", __func__, error);
524 return error;
525 }
526
527 int
528 ixpnpe_getfunctionality(struct ixpnpe_softc *sc)
529 {
530 return (sc->validImage ? sc->functionalityId : 0);
531 }
532
533 static int
534 npe_checkbits(struct ixpnpe_softc *sc, uint32_t reg, uint32_t expectedBitsSet)
535 {
536 uint32_t val;
537
538 val = npe_reg_read(sc, reg);
539 DPRINTFn(5, sc->sc_dev, "%s(0x%x, 0x%x) => 0x%x (%u)\n",
540 __func__, reg, expectedBitsSet, val,
541 (val & expectedBitsSet) == expectedBitsSet);
542 return ((val & expectedBitsSet) == expectedBitsSet);
543 }
544
545 static int
546 npe_isstopped(struct ixpnpe_softc *sc)
547 {
548 return npe_checkbits(sc,
549 IX_NPEDL_REG_OFFSET_EXCTL, IX_NPEDL_EXCTL_STATUS_STOP);
550 }
551
552 static int
553 npe_load_ins(struct ixpnpe_softc *sc,
554 const IxNpeDlNpeMgrCodeBlock *bp, int verify)
555 {
556 uint32_t npeMemAddress;
557 int i, blockSize;
558
559 npeMemAddress = bp->npeMemAddress;
560 blockSize = bp->size; /* NB: instruction/data count */
561 if (npeMemAddress + blockSize > sc->insMemSize) {
562 printf("%s: Block size too big for NPE memory\n", sc->sc_dev.dv_xname);
563 return EINVAL; /* XXX */
564 }
565 for (i = 0; i < blockSize; i++, npeMemAddress++) {
566 if (npe_ins_write(sc, npeMemAddress, bp->data[i], verify) != 0) {
567 printf("%s: NPE instruction write failed", sc->sc_dev.dv_xname);
568 return EIO;
569 }
570 }
571 return 0;
572 }
573
574 static int
575 npe_load_data(struct ixpnpe_softc *sc,
576 const IxNpeDlNpeMgrCodeBlock *bp, int verify)
577 {
578 uint32_t npeMemAddress;
579 int i, blockSize;
580
581 npeMemAddress = bp->npeMemAddress;
582 blockSize = bp->size; /* NB: instruction/data count */
583 if (npeMemAddress + blockSize > sc->dataMemSize) {
584 printf("%s: Block size too big for NPE memory\n", sc->sc_dev.dv_xname);
585 return EINVAL;
586 }
587 for (i = 0; i < blockSize; i++, npeMemAddress++) {
588 if (npe_data_write(sc, npeMemAddress, bp->data[i], verify) != 0) {
589 printf("%s: NPE data write failed\n", sc->sc_dev.dv_xname);
590 return EIO;
591 }
592 }
593 return 0;
594 }
595
596 static int
597 npe_load_stateinfo(struct ixpnpe_softc *sc,
598 const IxNpeDlNpeMgrStateInfoBlock *bp, int verify)
599 {
600 int i, nentries, error;
601
602 npe_cpu_step_save(sc);
603
604 /* for each state-info context register entry in block */
605 nentries = bp->size / IX_NPEDL_STATE_INFO_ENTRY_SIZE;
606 error = 0;
607 for (i = 0; i < nentries; i++) {
608 /* each state-info entry is 2 words (address, value) in length */
609 uint32_t regVal = bp->ctxtRegEntry[i].value;
610 uint32_t addrInfo = bp->ctxtRegEntry[i].addressInfo;
611
612 uint32_t reg = (addrInfo & IX_NPEDL_MASK_STATE_ADDR_CTXT_REG);
613 uint32_t cNum = (addrInfo & IX_NPEDL_MASK_STATE_ADDR_CTXT_NUM) >>
614 IX_NPEDL_OFFSET_STATE_ADDR_CTXT_NUM;
615
616 /* error-check Context Register No. and Context Number values */
617 if (!(0 <= reg && reg < IX_NPEDL_CTXT_REG_MAX)) {
618 printf("%s: invalid Context Register %u\n", sc->sc_dev.dv_xname,
619 reg);
620 error = EINVAL;
621 break;
622 }
623 if (!(0 <= cNum && cNum < IX_NPEDL_CTXT_NUM_MAX)) {
624 printf("%s: invalid Context Number %u\n", sc->sc_dev.dv_xname,
625 cNum);
626 error = EINVAL;
627 break;
628 }
629 /* NOTE that there is no STEVT register for Context 0 */
630 if (cNum == 0 && reg == IX_NPEDL_CTXT_REG_STEVT) {
631 printf("%s: no STEVT for Context 0\n", sc->sc_dev.dv_xname);
632 error = EINVAL;
633 break;
634 }
635
636 if (npe_ctx_reg_write(sc, cNum, reg, regVal, verify) != 0) {
637 printf("%s: write of state-info to NPE failed\n",
638 sc->sc_dev.dv_xname);
639 error = EIO;
640 break;
641 }
642 }
643
644 npe_cpu_step_restore(sc);
645 return error;
646 }
647
648 static int
649 npe_load_image(struct ixpnpe_softc *sc,
650 const uint32_t *imageCodePtr, int verify)
651 {
652 #define EOM(marker) ((marker) == IX_NPEDL_END_OF_DOWNLOAD_MAP)
653 const IxNpeDlNpeMgrDownloadMap *downloadMap;
654 int i, error;
655
656 if (!npe_isstopped(sc)) { /* verify NPE is stopped */
657 printf("%s: cannot load image, NPE not stopped\n", sc->sc_dev.dv_xname);
658 return EIO;
659 }
660
661 /*
662 * Read Download Map, checking each block type and calling
663 * appropriate function to perform download
664 */
665 error = 0;
666 downloadMap = (const IxNpeDlNpeMgrDownloadMap *) imageCodePtr;
667 for (i = 0; !EOM(downloadMap->entry[i].eodmMarker); i++) {
668 /* calculate pointer to block to be downloaded */
669 const uint32_t *bp = imageCodePtr + downloadMap->entry[i].block.offset;
670 switch (downloadMap->entry[i].block.type) {
671 case IX_NPEDL_BLOCK_TYPE_INSTRUCTION:
672 error = npe_load_ins(sc,
673 (const IxNpeDlNpeMgrCodeBlock *) bp, verify);
674 DPRINTF(sc->sc_dev, "%s: inst, error %d\n", __func__, error);
675 break;
676 case IX_NPEDL_BLOCK_TYPE_DATA:
677 error = npe_load_data(sc,
678 (const IxNpeDlNpeMgrCodeBlock *) bp, verify);
679 DPRINTF(sc->sc_dev, "%s: data, error %d\n", __func__, error);
680 break;
681 case IX_NPEDL_BLOCK_TYPE_STATE:
682 error = npe_load_stateinfo(sc,
683 (const IxNpeDlNpeMgrStateInfoBlock *) bp, verify);
684 DPRINTF(sc->sc_dev, "%s: state, error %d\n", __func__, error);
685 break;
686 default:
687 printf("%s: unknown block type 0x%x in download map\n",
688 sc->sc_dev.dv_xname, downloadMap->entry[i].block.type);
689 error = EIO; /* XXX */
690 break;
691 }
692 if (error != 0)
693 break;
694 }
695 return error;
696 #undef EOM
697 }
698
699 /* contains Reset values for Context Store Registers */
700 static const struct {
701 uint32_t regAddr;
702 uint32_t regResetVal;
703 } ixNpeDlEcsRegResetValues[] = {
704 { IX_NPEDL_ECS_BG_CTXT_REG_0, IX_NPEDL_ECS_BG_CTXT_REG_0_RESET },
705 { IX_NPEDL_ECS_BG_CTXT_REG_1, IX_NPEDL_ECS_BG_CTXT_REG_1_RESET },
706 { IX_NPEDL_ECS_BG_CTXT_REG_2, IX_NPEDL_ECS_BG_CTXT_REG_2_RESET },
707 { IX_NPEDL_ECS_PRI_1_CTXT_REG_0, IX_NPEDL_ECS_PRI_1_CTXT_REG_0_RESET },
708 { IX_NPEDL_ECS_PRI_1_CTXT_REG_1, IX_NPEDL_ECS_PRI_1_CTXT_REG_1_RESET },
709 { IX_NPEDL_ECS_PRI_1_CTXT_REG_2, IX_NPEDL_ECS_PRI_1_CTXT_REG_2_RESET },
710 { IX_NPEDL_ECS_PRI_2_CTXT_REG_0, IX_NPEDL_ECS_PRI_2_CTXT_REG_0_RESET },
711 { IX_NPEDL_ECS_PRI_2_CTXT_REG_1, IX_NPEDL_ECS_PRI_2_CTXT_REG_1_RESET },
712 { IX_NPEDL_ECS_PRI_2_CTXT_REG_2, IX_NPEDL_ECS_PRI_2_CTXT_REG_2_RESET },
713 { IX_NPEDL_ECS_DBG_CTXT_REG_0, IX_NPEDL_ECS_DBG_CTXT_REG_0_RESET },
714 { IX_NPEDL_ECS_DBG_CTXT_REG_1, IX_NPEDL_ECS_DBG_CTXT_REG_1_RESET },
715 { IX_NPEDL_ECS_DBG_CTXT_REG_2, IX_NPEDL_ECS_DBG_CTXT_REG_2_RESET },
716 { IX_NPEDL_ECS_INSTRUCT_REG, IX_NPEDL_ECS_INSTRUCT_REG_RESET }
717 };
718
719 /* contains Reset values for Context Store Registers */
720 static const uint32_t ixNpeDlCtxtRegResetValues[] = {
721 IX_NPEDL_CTXT_REG_RESET_STEVT,
722 IX_NPEDL_CTXT_REG_RESET_STARTPC,
723 IX_NPEDL_CTXT_REG_RESET_REGMAP,
724 IX_NPEDL_CTXT_REG_RESET_CINDEX,
725 };
726
727 #define IX_NPEDL_RESET_NPE_PARITY 0x0800
728 #define IX_NPEDL_PARITY_BIT_MASK 0x3F00FFFF
729 #define IX_NPEDL_CONFIG_CTRL_REG_MASK 0x3F3FFFFF
730
731 static int
732 npe_cpu_reset(struct ixpnpe_softc *sc)
733 {
734 #define N(a) (sizeof(a) / sizeof(a[0]))
735 uint32_t ctxtReg; /* identifies Context Store reg (0-3) */
736 uint32_t regAddr;
737 uint32_t regVal;
738 uint32_t resetNpeParity;
739 uint32_t ixNpeConfigCtrlRegVal;
740 int i, error = 0;
741
742 /* pre-store the NPE Config Control Register Value */
743 ixNpeConfigCtrlRegVal = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_CTL);
744 ixNpeConfigCtrlRegVal |= 0x3F000000;
745
746 /* disable the parity interrupt */
747 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_CTL,
748 (ixNpeConfigCtrlRegVal & IX_NPEDL_PARITY_BIT_MASK));
749 DPRINTFn(2, sc->sc_dev, "%s: dis parity int, CTL => 0x%x\n",
750 __func__, ixNpeConfigCtrlRegVal & IX_NPEDL_PARITY_BIT_MASK);
751
752 npe_cpu_step_save(sc);
753
754 /*
755 * Clear the FIFOs.
756 */
757 while (npe_checkbits(sc,
758 IX_NPEDL_REG_OFFSET_WFIFO, IX_NPEDL_MASK_WFIFO_VALID)) {
759 /* read from the Watch-point FIFO until empty */
760 (void) npe_reg_read(sc, IX_NPEDL_REG_OFFSET_WFIFO);
761 }
762
763 while (npe_checkbits(sc,
764 IX_NPEDL_REG_OFFSET_STAT, IX_NPEDL_MASK_STAT_OFNE)) {
765 /* read from the outFIFO until empty */
766 (void) npe_reg_read(sc, IX_NPEDL_REG_OFFSET_FIFO);
767 }
768
769 while (npe_checkbits(sc,
770 IX_NPEDL_REG_OFFSET_STAT, IX_NPEDL_MASK_STAT_IFNE)) {
771 /*
772 * Step execution of the NPE intruction to read inFIFO using
773 * the Debug Executing Context stack.
774 */
775 error = npe_cpu_step(sc, IX_NPEDL_INSTR_RD_FIFO, 0, 0);
776 if (error != 0) {
777 DPRINTF(sc->sc_dev, "%s: cannot step (1), error %u\n",
778 __func__, error);
779 npe_cpu_step_restore(sc);
780 return error;
781 }
782 }
783
784 /*
785 * Reset the mailbox reg
786 */
787 /* ...from XScale side */
788 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_MBST, IX_NPEDL_REG_RESET_MBST);
789 /* ...from NPE side */
790 error = npe_cpu_step(sc, IX_NPEDL_INSTR_RESET_MBOX, 0, 0);
791 if (error != 0) {
792 DPRINTF(sc->sc_dev, "%s: cannot step (2), error %u\n", __func__, error);
793 npe_cpu_step_restore(sc);
794 return error;
795 }
796
797 /*
798 * Reset the physical registers in the NPE register file:
799 * Note: no need to save/restore REGMAP for Context 0 here
800 * since all Context Store regs are reset in subsequent code.
801 */
802 for (regAddr = 0;
803 regAddr < IX_NPEDL_TOTAL_NUM_PHYS_REG && error == 0;
804 regAddr++) {
805 /* for each physical register in the NPE reg file, write 0 : */
806 error = npe_physical_reg_write(sc, regAddr, 0, TRUE);
807 if (error != 0) {
808 DPRINTF(sc->sc_dev, "%s: cannot write phy reg, error %u\n",
809 __func__, error);
810 npe_cpu_step_restore(sc);
811 return error; /* abort reset */
812 }
813 }
814
815 /*
816 * Reset the context store:
817 */
818 for (i = IX_NPEDL_CTXT_NUM_MIN; i <= IX_NPEDL_CTXT_NUM_MAX; i++) {
819 /* set each context's Context Store registers to reset values: */
820 for (ctxtReg = 0; ctxtReg < IX_NPEDL_CTXT_REG_MAX; ctxtReg++) {
821 /* NOTE that there is no STEVT register for Context 0 */
822 if (!(i == 0 && ctxtReg == IX_NPEDL_CTXT_REG_STEVT)) {
823 regVal = ixNpeDlCtxtRegResetValues[ctxtReg];
824 error = npe_ctx_reg_write(sc, i, ctxtReg, regVal, TRUE);
825 if (error != 0) {
826 DPRINTF(sc->sc_dev, "%s: cannot write ctx reg, error %u\n",
827 __func__, error);
828 npe_cpu_step_restore(sc);
829 return error; /* abort reset */
830 }
831 }
832 }
833 }
834
835 npe_cpu_step_restore(sc);
836
837 /* write Reset values to Execution Context Stack registers */
838 for (i = 0; i < N(ixNpeDlEcsRegResetValues); i++)
839 npe_ecs_reg_write(sc,
840 ixNpeDlEcsRegResetValues[i].regAddr,
841 ixNpeDlEcsRegResetValues[i].regResetVal);
842
843 /* clear the profile counter */
844 npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_CLR_PROFILE_CNT);
845
846 /* clear registers EXCT, AP0, AP1, AP2 and AP3 */
847 for (regAddr = IX_NPEDL_REG_OFFSET_EXCT;
848 regAddr <= IX_NPEDL_REG_OFFSET_AP3;
849 regAddr += sizeof(uint32_t))
850 npe_reg_write(sc, regAddr, 0);
851
852 /* Reset the Watch-count register */
853 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_WC, 0);
854
855 /*
856 * WR IXA00055043 - Remove IMEM Parity Introduced by NPE Reset Operation
857 */
858
859 /*
860 * Reset the NPE and its coprocessor - to reset internal
861 * states and remove parity error. Note this makes no
862 * sense based on the documentation. The feature control
863 * register always reads back as 0 on the ixp425 and further
864 * the bit definition of NPEA/NPEB is off by 1 according to
865 * the Intel documention--so we're blindly following the
866 * Intel code w/o any real understanding.
867 */
868 regVal = EXP_BUS_READ_4(ixp425_softc, EXP_FCTRL_OFFSET);
869 DPRINTFn(2, sc->sc_dev, "%s: FCTRL 0x%x\n", __func__, regVal);
870 resetNpeParity =
871 IX_NPEDL_RESET_NPE_PARITY << (1 + sc->sc_unit);
872 DPRINTFn(2, sc->sc_dev, "%s: FCTRL fuse parity, write 0x%x\n",
873 __func__, regVal | resetNpeParity);
874 EXP_BUS_WRITE_4(ixp425_softc, EXP_FCTRL_OFFSET, regVal | resetNpeParity);
875
876 /* un-fuse and un-reset the NPE & coprocessor */
877 DPRINTFn(2, sc->sc_dev, "%s: FCTRL unfuse parity, write 0x%x\n",
878 __func__, regVal & resetNpeParity);
879 EXP_BUS_WRITE_4(ixp425_softc, EXP_FCTRL_OFFSET, regVal &~ resetNpeParity);
880
881 /*
882 * Call NpeMgr function to stop the NPE again after the Feature Control
883 * has unfused and Un-Reset the NPE and its associated Coprocessors.
884 */
885 error = npe_cpu_stop(sc);
886
887 /* restore NPE configuration bus Control Register - Parity Settings */
888 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_CTL,
889 (ixNpeConfigCtrlRegVal & IX_NPEDL_CONFIG_CTRL_REG_MASK));
890 DPRINTFn(2, sc->sc_dev, "%s: restore CTL => 0x%x\n",
891 __func__, npe_reg_read(sc, IX_NPEDL_REG_OFFSET_CTL));
892
893 return error;
894 #undef N
895 }
896
897 static int
898 npe_cpu_start(struct ixpnpe_softc *sc)
899 {
900 uint32_t ecsRegVal;
901
902 /*
903 * Ensure only Background Context Stack Level is Active by turning off
904 * the Active bit in each of the other Executing Context Stack levels.
905 */
906 ecsRegVal = npe_ecs_reg_read(sc, IX_NPEDL_ECS_PRI_1_CTXT_REG_0);
907 ecsRegVal &= ~IX_NPEDL_MASK_ECS_REG_0_ACTIVE;
908 npe_ecs_reg_write(sc, IX_NPEDL_ECS_PRI_1_CTXT_REG_0, ecsRegVal);
909
910 ecsRegVal = npe_ecs_reg_read(sc, IX_NPEDL_ECS_PRI_2_CTXT_REG_0);
911 ecsRegVal &= ~IX_NPEDL_MASK_ECS_REG_0_ACTIVE;
912 npe_ecs_reg_write(sc, IX_NPEDL_ECS_PRI_2_CTXT_REG_0, ecsRegVal);
913
914 ecsRegVal = npe_ecs_reg_read(sc, IX_NPEDL_ECS_DBG_CTXT_REG_0);
915 ecsRegVal &= ~IX_NPEDL_MASK_ECS_REG_0_ACTIVE;
916 npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_0, ecsRegVal);
917
918 /* clear the pipeline */
919 npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_CLR_PIPE);
920
921 /* start NPE execution by issuing command through EXCTL register on NPE */
922 npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_START);
923
924 /*
925 * Check execution status of NPE to verify operation was successful.
926 */
927 return npe_checkbits(sc,
928 IX_NPEDL_REG_OFFSET_EXCTL, IX_NPEDL_EXCTL_STATUS_RUN) ? 0 : EIO;
929 }
930
931 static int
932 npe_cpu_stop(struct ixpnpe_softc *sc)
933 {
934 /* stop NPE execution by issuing command through EXCTL register on NPE */
935 npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_STOP);
936
937 /* verify that NPE Stop was successful */
938 return npe_checkbits(sc,
939 IX_NPEDL_REG_OFFSET_EXCTL, IX_NPEDL_EXCTL_STATUS_STOP) ? 0 : EIO;
940 }
941
942 #define IX_NPEDL_REG_SIZE_BYTE 8
943 #define IX_NPEDL_REG_SIZE_SHORT 16
944 #define IX_NPEDL_REG_SIZE_WORD 32
945
946 /*
947 * Introduce extra read cycles after issuing read command to NPE
948 * so that we read the register after the NPE has updated it
949 * This is to overcome race condition between XScale and NPE
950 */
951 #define IX_NPEDL_DELAY_READ_CYCLES 2
952 /*
953 * To mask top three MSBs of 32bit word to download into NPE IMEM
954 */
955 #define IX_NPEDL_MASK_UNUSED_IMEM_BITS 0x1FFFFFFF;
956
957 static void
958 npe_cmd_issue_write(struct ixpnpe_softc *sc,
959 uint32_t cmd, uint32_t addr, uint32_t data)
960 {
961 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXDATA, data);
962 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXAD, addr);
963 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCTL, cmd);
964 }
965
966 static uint32_t
967 npe_cmd_issue_read(struct ixpnpe_softc *sc, uint32_t cmd, uint32_t addr)
968 {
969 uint32_t data;
970 int i;
971
972 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXAD, addr);
973 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCTL, cmd);
974 for (i = 0; i <= IX_NPEDL_DELAY_READ_CYCLES; i++)
975 data = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_EXDATA);
976 return data;
977 }
978
979 static int
980 npe_ins_write(struct ixpnpe_softc *sc, uint32_t addr, uint32_t data, int verify)
981 {
982 DPRINTFn(4, sc->sc_dev, "%s(0x%x, 0x%x)\n", __func__, addr, data);
983 npe_cmd_issue_write(sc, IX_NPEDL_EXCTL_CMD_WR_INS_MEM, addr, data);
984 if (verify) {
985 uint32_t rdata;
986
987 /*
988 * Write invalid data to this reg, so we can see if we're reading
989 * the EXDATA register too early.
990 */
991 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXDATA, ~data);
992
993 /* Disabled since top 3 MSB are not used for Azusa hardware Refer WR:IXA00053900*/
994 data &= IX_NPEDL_MASK_UNUSED_IMEM_BITS;
995
996 rdata = npe_cmd_issue_read(sc, IX_NPEDL_EXCTL_CMD_RD_INS_MEM, addr);
997 rdata &= IX_NPEDL_MASK_UNUSED_IMEM_BITS;
998
999 if (data != rdata)
1000 return EIO;
1001 }
1002 return 0;
1003 }
1004
1005 static int
1006 npe_data_write(struct ixpnpe_softc *sc, uint32_t addr, uint32_t data, int verify)
1007 {
1008 DPRINTFn(4, sc->sc_dev, "%s(0x%x, 0x%x)\n", __func__, addr, data);
1009 npe_cmd_issue_write(sc, IX_NPEDL_EXCTL_CMD_WR_DATA_MEM, addr, data);
1010 if (verify) {
1011 /*
1012 * Write invalid data to this reg, so we can see if we're reading
1013 * the EXDATA register too early.
1014 */
1015 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXDATA, ~data);
1016 if (data != npe_cmd_issue_read(sc, IX_NPEDL_EXCTL_CMD_RD_DATA_MEM, addr))
1017 return EIO;
1018 }
1019 return 0;
1020 }
1021
1022 static void
1023 npe_ecs_reg_write(struct ixpnpe_softc *sc, uint32_t reg, uint32_t data)
1024 {
1025 npe_cmd_issue_write(sc, IX_NPEDL_EXCTL_CMD_WR_ECS_REG, reg, data);
1026 }
1027
1028 static uint32_t
1029 npe_ecs_reg_read(struct ixpnpe_softc *sc, uint32_t reg)
1030 {
1031 return npe_cmd_issue_read(sc, IX_NPEDL_EXCTL_CMD_RD_ECS_REG, reg);
1032 }
1033
1034 static void
1035 npe_issue_cmd(struct ixpnpe_softc *sc, uint32_t command)
1036 {
1037 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCTL, command);
1038 }
1039
1040 static void
1041 npe_cpu_step_save(struct ixpnpe_softc *sc)
1042 {
1043 /* turn off the halt bit by clearing Execution Count register. */
1044 /* save reg contents 1st and restore later */
1045 sc->savedExecCount = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_EXCT);
1046 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCT, 0);
1047
1048 /* ensure that IF and IE are on (temporarily), so that we don't end up
1049 * stepping forever */
1050 sc->savedEcsDbgCtxtReg2 = npe_ecs_reg_read(sc, IX_NPEDL_ECS_DBG_CTXT_REG_2);
1051
1052 npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_2,
1053 (sc->savedEcsDbgCtxtReg2 | IX_NPEDL_MASK_ECS_DBG_REG_2_IF |
1054 IX_NPEDL_MASK_ECS_DBG_REG_2_IE));
1055 }
1056
1057 static int
1058 npe_cpu_step(struct ixpnpe_softc *sc, uint32_t npeInstruction,
1059 uint32_t ctxtNum, uint32_t ldur)
1060 {
1061 #define IX_NPE_DL_MAX_NUM_OF_RETRIES 1000000
1062 uint32_t ecsDbgRegVal;
1063 uint32_t oldWatchcount, newWatchcount;
1064 int tries;
1065
1066 /* set the Active bit, and the LDUR, in the debug level */
1067 ecsDbgRegVal = IX_NPEDL_MASK_ECS_REG_0_ACTIVE |
1068 (ldur << IX_NPEDL_OFFSET_ECS_REG_0_LDUR);
1069
1070 npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_0, ecsDbgRegVal);
1071
1072 /*
1073 * Set CCTXT at ECS DEBUG L3 to specify in which context to execute the
1074 * instruction, and set SELCTXT at ECS DEBUG Level to specify which context
1075 * store to access.
1076 * Debug ECS Level Reg 1 has form 0x000n000n, where n = context number
1077 */
1078 ecsDbgRegVal = (ctxtNum << IX_NPEDL_OFFSET_ECS_REG_1_CCTXT) |
1079 (ctxtNum << IX_NPEDL_OFFSET_ECS_REG_1_SELCTXT);
1080
1081 npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_1, ecsDbgRegVal);
1082
1083 /* clear the pipeline */
1084 npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_CLR_PIPE);
1085
1086 /* load NPE instruction into the instruction register */
1087 npe_ecs_reg_write(sc, IX_NPEDL_ECS_INSTRUCT_REG, npeInstruction);
1088
1089 /* we need this value later to wait for completion of NPE execution step */
1090 oldWatchcount = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_WC);
1091
1092 /* issue a Step One command via the Execution Control register */
1093 npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_STEP);
1094
1095 /*
1096 * Force the XScale to wait until the NPE has finished execution step
1097 * NOTE that this delay will be very small, just long enough to allow a
1098 * single NPE instruction to complete execution; if instruction execution
1099 * is not completed before timeout retries, exit the while loop.
1100 */
1101 newWatchcount = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_WC);
1102 for (tries = 0; tries < IX_NPE_DL_MAX_NUM_OF_RETRIES &&
1103 newWatchcount == oldWatchcount; tries++) {
1104 /* Watch Count register increments when NPE completes an instruction */
1105 newWatchcount = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_WC);
1106 }
1107 return (tries < IX_NPE_DL_MAX_NUM_OF_RETRIES) ? 0 : EIO;
1108 #undef IX_NPE_DL_MAX_NUM_OF_RETRIES
1109 }
1110
1111 static void
1112 npe_cpu_step_restore(struct ixpnpe_softc *sc)
1113 {
1114 /* clear active bit in debug level */
1115 npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_0, 0);
1116
1117 /* clear the pipeline */
1118 npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_CLR_PIPE);
1119
1120 /* restore Execution Count register contents. */
1121 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCT, sc->savedExecCount);
1122
1123 /* restore IF and IE bits to original values */
1124 npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_2, sc->savedEcsDbgCtxtReg2);
1125 }
1126
1127 static int
1128 npe_logical_reg_read(struct ixpnpe_softc *sc,
1129 uint32_t regAddr, uint32_t regSize,
1130 uint32_t ctxtNum, uint32_t *regVal)
1131 {
1132 uint32_t npeInstruction, mask;
1133 int error;
1134
1135 switch (regSize) {
1136 case IX_NPEDL_REG_SIZE_BYTE:
1137 npeInstruction = IX_NPEDL_INSTR_RD_REG_BYTE;
1138 mask = 0xff;
1139 break;
1140 case IX_NPEDL_REG_SIZE_SHORT:
1141 npeInstruction = IX_NPEDL_INSTR_RD_REG_SHORT;
1142 mask = 0xffff;
1143 break;
1144 case IX_NPEDL_REG_SIZE_WORD:
1145 npeInstruction = IX_NPEDL_INSTR_RD_REG_WORD;
1146 mask = 0xffffffff;
1147 break;
1148 default:
1149 return EINVAL;
1150 }
1151
1152 /* make regAddr be the SRC and DEST operands (e.g. movX d0, d0) */
1153 npeInstruction |= (regAddr << IX_NPEDL_OFFSET_INSTR_SRC) |
1154 (regAddr << IX_NPEDL_OFFSET_INSTR_DEST);
1155
1156 /* step execution of NPE intruction using Debug Executing Context stack */
1157 error = npe_cpu_step(sc, npeInstruction, ctxtNum, IX_NPEDL_RD_INSTR_LDUR);
1158 if (error != 0) {
1159 DPRINTF(sc->sc_dev, "%s(0x%x, %u, %u), cannot step, error %d\n",
1160 __func__, regAddr, regSize, ctxtNum, error);
1161 return error;
1162 }
1163 /* read value of register from Execution Data register */
1164 *regVal = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_EXDATA);
1165
1166 /* align value from left to right */
1167 *regVal = (*regVal >> (IX_NPEDL_REG_SIZE_WORD - regSize)) & mask;
1168
1169 return 0;
1170 }
1171
1172 static int
1173 npe_logical_reg_write(struct ixpnpe_softc *sc, uint32_t regAddr, uint32_t regVal,
1174 uint32_t regSize, uint32_t ctxtNum, int verify)
1175 {
1176 int error;
1177
1178 DPRINTFn(4, sc->sc_dev, "%s(0x%x, 0x%x, %u, %u)\n",
1179 __func__, regAddr, regVal, regSize, ctxtNum);
1180 if (regSize == IX_NPEDL_REG_SIZE_WORD) {
1181 /* NPE register addressing is left-to-right: e.g. |d0|d1|d2|d3| */
1182 /* Write upper half-word (short) to |d0|d1| */
1183 error = npe_logical_reg_write(sc, regAddr,
1184 regVal >> IX_NPEDL_REG_SIZE_SHORT,
1185 IX_NPEDL_REG_SIZE_SHORT, ctxtNum, verify);
1186 if (error != 0)
1187 return error;
1188
1189 /* Write lower half-word (short) to |d2|d3| */
1190 error = npe_logical_reg_write(sc,
1191 regAddr + sizeof(uint16_t),
1192 regVal & 0xffff,
1193 IX_NPEDL_REG_SIZE_SHORT, ctxtNum, verify);
1194 } else {
1195 uint32_t npeInstruction;
1196
1197 switch (regSize) {
1198 case IX_NPEDL_REG_SIZE_BYTE:
1199 npeInstruction = IX_NPEDL_INSTR_WR_REG_BYTE;
1200 regVal &= 0xff;
1201 break;
1202 case IX_NPEDL_REG_SIZE_SHORT:
1203 npeInstruction = IX_NPEDL_INSTR_WR_REG_SHORT;
1204 regVal &= 0xffff;
1205 break;
1206 default:
1207 return EINVAL;
1208 }
1209 /* fill dest operand field of instruction with destination reg addr */
1210 npeInstruction |= (regAddr << IX_NPEDL_OFFSET_INSTR_DEST);
1211
1212 /* fill src operand field of instruction with least-sig 5 bits of val*/
1213 npeInstruction |= ((regVal & IX_NPEDL_MASK_IMMED_INSTR_SRC_DATA) <<
1214 IX_NPEDL_OFFSET_INSTR_SRC);
1215
1216 /* fill coprocessor field of instruction with most-sig 11 bits of val*/
1217 npeInstruction |= ((regVal & IX_NPEDL_MASK_IMMED_INSTR_COPROC_DATA) <<
1218 IX_NPEDL_DISPLACE_IMMED_INSTR_COPROC_DATA);
1219
1220 /* step execution of NPE intruction using Debug ECS */
1221 error = npe_cpu_step(sc, npeInstruction,
1222 ctxtNum, IX_NPEDL_WR_INSTR_LDUR);
1223 }
1224 if (error != 0) {
1225 DPRINTF(sc->sc_dev, "%s(0x%x, 0x%x, %u, %u), error %u writing reg\n",
1226 __func__, regAddr, regVal, regSize, ctxtNum, error);
1227 return error;
1228 }
1229 if (verify) {
1230 uint32_t retRegVal;
1231
1232 error = npe_logical_reg_read(sc, regAddr, regSize, ctxtNum, &retRegVal);
1233 if (error == 0 && regVal != retRegVal)
1234 error = EIO; /* XXX ambiguous */
1235 }
1236 return error;
1237 }
1238
1239 /*
1240 * There are 32 physical registers used in an NPE. These are
1241 * treated as 16 pairs of 32-bit registers. To write one of the pair,
1242 * write the pair number (0-16) to the REGMAP for Context 0. Then write
1243 * the value to register 0 or 4 in the regfile, depending on which
1244 * register of the pair is to be written
1245 */
1246 static int
1247 npe_physical_reg_write(struct ixpnpe_softc *sc,
1248 uint32_t regAddr, uint32_t regValue, int verify)
1249 {
1250 int error;
1251
1252 /*
1253 * Set REGMAP for context 0 to (regAddr >> 1) to choose which pair (0-16)
1254 * of physical registers to write .
1255 */
1256 error = npe_logical_reg_write(sc, IX_NPEDL_CTXT_REG_ADDR_REGMAP,
1257 (regAddr >> IX_NPEDL_OFFSET_PHYS_REG_ADDR_REGMAP),
1258 IX_NPEDL_REG_SIZE_SHORT, 0, verify);
1259 if (error == 0) {
1260 /* regAddr = 0 or 4 */
1261 regAddr = (regAddr & IX_NPEDL_MASK_PHYS_REG_ADDR_LOGICAL_ADDR) *
1262 sizeof(uint32_t);
1263 error = npe_logical_reg_write(sc, regAddr, regValue,
1264 IX_NPEDL_REG_SIZE_WORD, 0, verify);
1265 }
1266 return error;
1267 }
1268
1269 static int
1270 npe_ctx_reg_write(struct ixpnpe_softc *sc, uint32_t ctxtNum,
1271 uint32_t ctxtReg, uint32_t ctxtRegVal, int verify)
1272 {
1273 DPRINTFn(4, sc->sc_dev, "%s(%u, %u, %u)\n",
1274 __func__, ctxtNum, ctxtReg, ctxtRegVal);
1275 /*
1276 * Context 0 has no STARTPC. Instead, this value is used to set
1277 * NextPC for Background ECS, to set where NPE starts executing code
1278 */
1279 if (ctxtNum == 0 && ctxtReg == IX_NPEDL_CTXT_REG_STARTPC) {
1280 /* read BG_CTXT_REG_0, update NEXTPC bits, and write back to reg */
1281 uint32_t v = npe_ecs_reg_read(sc, IX_NPEDL_ECS_BG_CTXT_REG_0);
1282 v &= ~IX_NPEDL_MASK_ECS_REG_0_NEXTPC;
1283 v |= (ctxtRegVal << IX_NPEDL_OFFSET_ECS_REG_0_NEXTPC) &
1284 IX_NPEDL_MASK_ECS_REG_0_NEXTPC;
1285
1286 npe_ecs_reg_write(sc, IX_NPEDL_ECS_BG_CTXT_REG_0, v);
1287 return 0;
1288 } else {
1289 static const struct {
1290 uint32_t regAddress;
1291 uint32_t regSize;
1292 } regAccInfo[IX_NPEDL_CTXT_REG_MAX] = {
1293 { IX_NPEDL_CTXT_REG_ADDR_STEVT, IX_NPEDL_REG_SIZE_BYTE },
1294 { IX_NPEDL_CTXT_REG_ADDR_STARTPC, IX_NPEDL_REG_SIZE_SHORT },
1295 { IX_NPEDL_CTXT_REG_ADDR_REGMAP, IX_NPEDL_REG_SIZE_SHORT },
1296 { IX_NPEDL_CTXT_REG_ADDR_CINDEX, IX_NPEDL_REG_SIZE_BYTE }
1297 };
1298 return npe_logical_reg_write(sc, regAccInfo[ctxtReg].regAddress,
1299 ctxtRegVal, regAccInfo[ctxtReg].regSize, ctxtNum, verify);
1300 }
1301 }
1302
1303 /*
1304 * NPE Mailbox support.
1305 */
1306 #define IX_NPEMH_MAXTRIES 100000
1307
1308 static int
1309 ixpnpe_ofifo_wait(struct ixpnpe_softc *sc)
1310 {
1311 int i;
1312
1313 for (i = 0; i < IX_NPEMH_MAXTRIES; i++) {
1314 if (npe_reg_read(sc, IX_NPESTAT) & IX_NPESTAT_OFNE)
1315 return 1;
1316 DELAY(10);
1317 }
1318 printf("%s: %s: timeout, last status 0x%x\n", sc->sc_dev.dv_xname,
1319 __func__, npe_reg_read(sc, IX_NPESTAT));
1320 return 0;
1321 }
1322
1323 static int
1324 ixpnpe_intr(void *arg)
1325 {
1326 struct ixpnpe_softc *sc = arg;
1327 uint32_t status;
1328
1329 status = npe_reg_read(sc, IX_NPESTAT);
1330 if ((status & IX_NPESTAT_OFINT) == 0) {
1331 /* NB: should not happen */
1332 printf("%s: %s: status 0x%x\n", sc->sc_dev.dv_xname, __func__, status);
1333 /* XXX must silence interrupt? */
1334 return(1);
1335 }
1336 /*
1337 * A message is waiting in the output FIFO, copy it so
1338 * the interrupt will be silenced; then signal anyone
1339 * waiting to collect the result.
1340 */
1341 sc->sc_msgwaiting = -1; /* NB: error indicator */
1342 if (ixpnpe_ofifo_wait(sc)) {
1343 sc->sc_msg[0] = npe_reg_read(sc, IX_NPEFIFO);
1344 if (ixpnpe_ofifo_wait(sc)) {
1345 sc->sc_msg[1] = npe_reg_read(sc, IX_NPEFIFO);
1346 sc->sc_msgwaiting = 1; /* successful fetch */
1347 }
1348 }
1349 wakeup(sc);
1350
1351 return (1);
1352 }
1353
1354 static int
1355 ixpnpe_ififo_wait(struct ixpnpe_softc *sc)
1356 {
1357 int i;
1358
1359 for (i = 0; i < IX_NPEMH_MAXTRIES; i++) {
1360 if (npe_reg_read(sc, IX_NPESTAT) & IX_NPESTAT_IFNF)
1361 return 1;
1362 DELAY(10);
1363 }
1364 return 0;
1365 }
1366
1367 static int
1368 ixpnpe_sendmsg_locked(struct ixpnpe_softc *sc, const uint32_t msg[2])
1369 {
1370 int error = 0;
1371
1372 sc->sc_msgwaiting = 0;
1373 if (ixpnpe_ififo_wait(sc)) {
1374 npe_reg_write(sc, IX_NPEFIFO, msg[0]);
1375 if (ixpnpe_ififo_wait(sc))
1376 npe_reg_write(sc, IX_NPEFIFO, msg[1]);
1377 else
1378 error = EIO;
1379 } else
1380 error = EIO;
1381
1382 if (error)
1383 printf("%s: input FIFO timeout, msg [0x%x,0x%x]\n",
1384 sc->sc_dev.dv_xname, msg[0], msg[1]);
1385 return error;
1386 }
1387
1388 static int
1389 ixpnpe_recvmsg_locked(struct ixpnpe_softc *sc, uint32_t msg[2])
1390 {
1391
1392 if (!sc->sc_msgwaiting)
1393 ltsleep(sc, 0, "npemh", 0, &sc->sc_lock);
1394 bcopy(sc->sc_msg, msg, sizeof(sc->sc_msg));
1395 /* NB: sc_msgwaiting != 1 means the ack fetch failed */
1396 return sc->sc_msgwaiting != 1 ? EIO : 0;
1397 }
1398
1399 /*
1400 * Send a msg to the NPE and wait for a reply. We use the
1401 * private mutex and sleep until an interrupt is received
1402 * signalling the availability of data in the output FIFO
1403 * so the caller cannot be holding a mutex. May be better
1404 * piggyback on the caller's mutex instead but that would
1405 * make other locking confusing.
1406 */
1407 int
1408 ixpnpe_sendandrecvmsg(struct ixpnpe_softc *sc,
1409 const uint32_t send[2], uint32_t recv[2])
1410 {
1411 int error;
1412
1413 simple_lock(&sc->sc_lock);
1414 error = ixpnpe_sendmsg_locked(sc, send);
1415 if (error == 0)
1416 error = ixpnpe_recvmsg_locked(sc, recv);
1417 simple_unlock(&sc->sc_lock);
1418
1419 return error;
1420 }
1421
1422 /* XXX temporary, not reliable */
1423
1424 int
1425 ixpnpe_sendmsg(struct ixpnpe_softc *sc, const uint32_t msg[2])
1426 {
1427 int error;
1428
1429 simple_lock(&sc->sc_lock);
1430 error = ixpnpe_sendmsg_locked(sc, msg);
1431 simple_unlock(&sc->sc_lock);
1432
1433 return error;
1434 }
1435
1436 int
1437 ixpnpe_recvmsg(struct ixpnpe_softc *sc, uint32_t msg[2])
1438 {
1439 int error;
1440
1441 simple_lock(&sc->sc_lock);
1442 if (sc->sc_msgwaiting)
1443 bcopy(sc->sc_msg, msg, sizeof(sc->sc_msg));
1444 /* NB: sc_msgwaiting != 1 means the ack fetch failed */
1445 error = sc->sc_msgwaiting != 1 ? EIO : 0;
1446 simple_unlock(&sc->sc_lock);
1447
1448 return error;
1449 }
1450